References
Azubuike, I., & Kosemoni, O. (2017). A Comparison of Univariate and Multivariate Time Series Approaches to Modeling Currency Exchange Rate. British Journal of Mathematics & Computer Science, 21(4), 1–17. https://doi.org/10.9734/bjmcs/2017/30733
Ahaggach, H., Abrouk, L., & Lebon, E. (2024). Systematic Mapping Study of Sales Forecasting: Methods, Trends, and Future Directions. Forecasting, 6(3), 502-532. https://doi.org/10.3390/FORECAST6030028
Arachchige, A., Sugathadasa, R., Herath, O., & Thibbotuwawa, A. (2021). Artificial Neural Network Based
Demand Forecasting Integrated With Federal Funds Rate. Applied Computer Science, 17(4), 34–44.
https://doi.org/10.23743/acs-2021-27
Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales Demand Forecast in E-commerce using a Long Short-Term Memory Neural Network Methodology. Springer International Publishing. http://arxiv.org/abs/1901.04028
Chang, Y.-Y., Sun, F.-Y., Wu, Y.-H., & Lin, S.-D. (2018). A Memory-Network Based Solution for Multivariate Time-Series Forecasting. ArXiv. http://arxiv.org/abs/1809.02105
Chen, Z., Ma, M., Li, T., Wang, H., & Li, C. (2023). Long sequence time-series forecasting with deep learning: A survey. Information Fusion, 97, 101819. https://doi.org/10.1016/J.INFFUS.2023.101819
Cochran, J. J., Cox, L. A., Keskinocak, P., Kharoufeh, J. P., Smith, J. C., Wang, S., & Chaovalitwongse, W. A. (2011). Evaluating and Comparing Forecasting Models. In Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470400531.eorms0307
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660. https://doi.org/10.1016/j.ijforecast.2011.04.001
Davydenko, A., & Fildes, R. (2013). Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To Sku-Level Demand Forecasts. International Journal of Forecasting, 29(3), 510–522. https://doi.org/10.1016/j.ijforecast.2012.09.002
Eglite, L., & Birzniece, I. (2022). Retail Sales Forecasting Using Deep Learning: Systematic Literature Review. Complex Systems Informatics and Modeling Quarterly, 2022(30). https://doi.org/10.7250/csimq.2022-30.03
Forslund, H., & Jonsson, P. (2007). The impact of forecast information quality on supply chain performance. International Journal of Operations and Production Management, 27(1), 90–107. https://doi.org/10.1108/01443570710714556
Gilbert, K. (2005). An ARIMA supply chain model. In Management Science (Vol. 51, Issue 2, pp. 305–310). https://doi.org/10.1287/mnsc.1040.0308
He, Q. Q., Wu, C., & Si, Y. W. (2022). LSTM with particle Swam optimization for sales forecasting. Electronic Commerce Research and Applications, 51. https://doi.org/10.1016/j.elerap.2022.101118
Helmini, S., Jihan, N., Jayasinghe, M., & Perera, S. (2019). Sales forecasting using multivariate long short term memory network models. https://doi.org/10.7287/peerj.preprints.27712v1
Hewage, H. C., & Perera, H. N. (2021). Comparing Statistical and Machine Learning Methods for Sales Forecasting during the Post-promotional Period. 2021 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021. https://doi.org/10.1109/IEEM50564.2021.9672954
Hewage, H. C., Perera, H. N., & De Baets, S. (2022). Forecast adjustments during post-promotional periods. European Journal of Operational Research, 300(2). https://doi.org/10.1016/j.ejor.2021.07.057
Hewamalage, H., Bergmeir, C., & Bandara, K. (2020). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2020.06.008
Hyndman, R. J. (2020). A brief history of forecasting competitions. International Journal of Forecasting, 36(1), 7–14. https://doi.org/10.1016/j.ijforecast.2019.03.015
Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting, 32(3), 788–803. https://doi.org/10.1016/j.ijforecast.2015.12.004
Lai, K. K. (2006). An Integrated Data Preparation Scheme for Neural Network Data Analysis. IEEE Transactions on Knowledge and Data Engineering, 18(2), 217–230. https://doi.org/10.1109/TKDE.2006.22
Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677
Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. http://arxiv.org/abs/1506.00019
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36, 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014
Obaidur Rahman, M., Sabir Hossain, M., Shafiul Alam Forhad, M., Kamal Hossen, M., & Junaid, T.-S. (2019). Predicting Prices of Stock Market using Gated Recurrent Units (GRUs) Neural Networks. In IJCSNS International Journal of Computer Science and Network Security (Vol. 19, Issue 1). https://www.researchgate.net/publication/331385031
Predić, B., Jovanovic, L., Simic, V., Bacanin, N., Zivkovic, M., Spalevic, P., Budimirovic, N., & Dobrojevic, M. (2024). Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex and Intelligent Systems, 10(2), 2249–2269. https://doi.org/10.1007/S40747-023-01265-3/FIGURES/11
Perera, H. N., Hurley, J., Fahimnia, B., & Reisi, M. (2019). The human factor in supply chain forecasting: A systematic review. European Journal of Operational Research, 274(2), 574–600. https://doi.org/10.1016/j.ejor.2018.10.028
Qin, Z., Yang, S., & Zhong, Y. (2024). Hierarchically Gated Recurrent Neural Network for Sequence Modeling. Retrieved August 19, from https://github.com/OpenNLPLab/HGRN
Šestanović, T., & Arnerić, J. (2021). Neural network structure identification in inflation forecasting. Journal of Forecasting, 40(1), 62–79. https://doi.org/10.1002/for.2698
Wang, P., Gurmani, S. H., Tao, Z., Liu, J., & Chen, H. (2024). Interval time series forecasting: A systematic literature review. Journal of Forecasting, 43(2), 249–285. https://doi.org/10.1002/FOR.3024
Yang, K., & Shahabi, C. (2005). On the stationarity of multivariate time series for correlation-based data analysis. Proceedings - IEEE International Conference on Data Mining, ICDM, 805–808. https://doi.org/10.1109/ICDM.2005.109
Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7