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Abstract 

Market forecasting is an integral part of supply chain management. Machine learning models have turned a new page 

in predictive analysis and helped organizations achieve improved accuracy. This paper focuses on creating a Gated 

Recurrent Unit (GRU) model to predict sales for multiple stores as a multivariate time series. GRUs are a variation of 

Recurrent Neural Networks (RNNs) used to sequence modelling tasks. The dataset used to create the model contains 

the unit sales of 3,049 SKUs sold in 10 stores. The sales data from the 3049 SKUs were grouped into the 7 departments 

to use as input to the model. A Vector Autoregression (VAR) and LightGBM models were used to compare the GRU 

model predictions. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to compare 

the 2 models. The mean MAPE values for forecasts of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, 

and 14.24% respectively, while MAE values were 68 Units, 72 Units, and 69 Units Respectively. The study reveals 

that the GRU model provides more accuracy for multivariate sales forecasting due to its ability to learn hidden patterns 

automatically and handle time mechanisms such as trends and seasonality. 

Keywords: Multivariate Sales Forecasting; Deep Learning; Recurrent Neural Networks (RNN); Supply Chains; Gated 

Recurrent Unit (GRU). 

1. Introduction 

Market forecasting is an integral part of supply chain management. Forecasting is the root of all supply chain decisions. 

Although demand forecasting is undeniably significant, it is also one of the most challenging facets of supply chain 

planning. Market Forecasting supports essential industry practices such as budgeting, financial decision-making, 

distribution, marketing strategies, raw material purchasing, development planning, risk management, and reduction 

strategies. Hence, organizations are trying to develop a highly accurate model using past demand data (Forslund & 

Jonsson, 2007). Demand forecasting can be done using both Quantitative and qualitative approaches. However, the 

industry's academic and standard practices suggest that demand forecasts are often subject to human activity (Perera 

et al., 2019). Organizations spend their resources on supply chain projects that develop forecasting models to improve 

the functionality of the supply chain ( Arachchige et al., 2021). 

Over the last decade, the emergence of deep learning has revolutionized the industry as the motivational factor behind 

all possible machine learning benchmarks. Machine vision and natural language processing are some of the popular 

applications in the field of Artificial Neural Networks (ANN). This new technology can capture the hidden data 
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patterns used to make predictions. The capability of ANNs has realigned the possible future of sales forecasting ( 

Zhang et al., 1998). 

Significant work has been conducted in forecasting and inventory management, including creating modern statistical 

distributions for overall lead-time demand and several enhanced variants of Croston's method for predicting irregular 

time sequences (Gardner, 2006). Modelling of time series is a dynamic research field that has continued to grow over 

the past few decades (Hewamalage et al., 2020). The main objective of time series modelling is to gather and 

thoroughly analyze historical data to create a fitting model that explains the series' intrinsic structure and to establish 

the temporal ordering among certain variables (Wang et al., 2024). Then, this model is used to produce potential values 

to continue the sequence and make future predictions. Time series forecasting can thus be characterized by considering 

the past as predicting the future (Azubuike & Kosemoni, 2017).  

Moving average models are the simplest yet most common forecasting methods in the time series analysis. A Moving 

average model takes N measurements' most recent numerical average, where N is a given number based on the 

expected data type (Cochran et al., 2011). Autoregressive Integrated Moving Average (ARIMA) is one of the most 

widely used standard methodologies, a generalization of the Autoregressive Moving Average System (Gilbert, 2005). 

ARIMA models have a significant divergence from predicting high-frequency financial time series, suggesting that 

there is still potential for development(Li et al., 2020). High computing power and modern database architecture allow 

data to be stored and processed with finer and finer pellets to generate lower and lower count data time series. The 

estimated methods sufficient for continuous probability distributions can no longer be extended to these sequences 

(Kolassa, 2016). Because of that, machine learning models like Random Forest Regression and  XGBoost have also 

been used to obtain better results using non-linear data (Helmini et al., 2019).  

In several fields, such as stock market forecasting, weather forecasting, complex dynamic system analysis, and Internet 

of Things data analysis, multivariate time series forecasting has become widely used (Ahaggach et al., 2024). Provided 

multiple time series in which any or all of them are associated to some degree, a significant challenge has been 

exploring and manipulating the complexities and correlations between them while making forecasts in a reasonable 

period (Chang et al., 2018). Over the years, multivariate time series forecasting was embraced, possibly because of its 

capacity to bring other variables along. However, the critical objective of modelling the time series is estimation, and 

a successful model can forecast the actual data values with fewer errors. Naturally, if a model can predict the actual 

data values well, it is apparent that the predictions are accurate (Azubuike and Kosemoni 2017).   

Linear and non-linear time series models have limited predictive potential in the presence of nonlinearity and non-

normality, where the functional structure of the interaction between inputs and outputs is uncertain. When the relevant 

characteristics are present, machine learning models outperform univariate techniques in identifying the post-

promotion impact(Hewage & Perera, 2021). Artificial Neural Networks are used for this purpose(Šestanović & 

Arnerić, 2021). Neural networks are very complex models for non-linear simulation, which can be used to forecast 

time series. The equations' parameters are modified using a process of optimization. Various neural networks have 

different computational equations and various methods of optimization. Optimization approaches vary from basic 

techniques like gradient descent to more complex procedures like genetic algorithms (Bandara et al., 2019). ANNs 

work like a system of interconnected neurons, which is how the human brain works. Through an objective function, 

primarily a loss function, ANNs can calculate a collection of values as inputs, generating the desired output. Neural 

networks differentiate themselves by not defining all parameters specified by the author. 

Computing these parameters is done by exposing the network to several thousand instances and changing internal 

parameters to make sure the maximum performance is reached. The findings of the ANN demonstrate the potential of 

ANN to manage complicated data, including short and seasonal time series, beyond expectations and suggest several 

avenues for future study (Crone et al., 2011). Due to the relatively short nature of most time series, ANNs (and other 

strongly non-linear and nonparametric methods) are unsuitable for univariable time series predictions (Hyndman, 

2020). The most typical Deep Learning architectures for sales forecasting are LSTM, Deep neural networks, and 

Multi-layer perceptron (Chen et al., 2023). Deep learning prediction models enable new capabilities that conventional 

models may not be able to achieve (Eglite & Birzniece, 2022).  

Despite their strength, there are limitations to regular neural networks. They are based on the premise that preparation 

and test examples are separate. The whole state of the network is lost after each instance is processed. However, it is 

inappropriate where data points are connected in time or space. Standard networks often depend on examples of fixed 
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length vectors. This means extending these powerful learning instruments for modelling data with temporal or 

sequential structures and varying inputs and outputs, particularly in many already state-of-the-art fields with Recurrent 

Neural Networks (RNNs). RNNs are connection models with the capacity of cross-sequence data selectively 

transferring information when processing sequential data from one part to another (Lipton et al., 2015). RNN is a type 

of Artificial Neural Network used for sequential data (Predić et al., 2024). In standard ANNs, inputs and outputs are 

independent, but in RNNs, all the information is connected.  

When teaching itself, the RNN remembers all these links. To do this, the RNN builds networks with loops, allowing 

the knowledge to remain. The ability to create and modify complex RNN models may not apply to too many users 

who are used to conventional time series techniques. They would like to use familiar and easier-to-interpret and 

develop strategies. Thus, they might be hesitant to use RNNs to achieve adequate precision despite the recent 

achievements of RNNs in forecasting. This is also closely linked to the current disagreement in the forecasting world 

over whether so-called off-the-shelf learning strategies will surpass classical benchmarks. Besides the intuitions 

described above regarding small single series against more extensive multivariate time series, there are no known 

rules for when conventional statistical methods are better at modelling time series than RNNs (Hewamalage et al., 

2020). Long Short-Term Memory(LSTM) networks are among the more popular RNN models for sales forecasting. 

LSTMs predict sales accurately and automatically. This sheds light on the potential for sophisticated neural network 

approaches to improve sales forecasting methodologies(He et al., 2022).  

GRU is a specific form of RNN. GRU neural networks are among the most effective and efficient ANNs. GRU 

networks are explicitly designed to prevent the inconvenience of long-term reliance. GRU neural networks 

outperformed the LSTM on most tasks (Qin et al., n.d.). GRU performs a similar scheme for any part of a chain. That 

is the reason it is referred to as recurring. The outcome was based on previous equations. Another theory concerning 

GRUs is that they have a device called a memory unit. The knowledge determined is captured by it. GRUs also allow 

information to be transmitted over time stages (Obaidur Rahman et al., 2019).   

2. Problem Definition  

A crucial component of supply chain management is market forecasting, which enables businesses to match customer 

demand and make well-informed plans precisely. Precise sales forecasting is essential in reducing inventory expenses, 

guaranteeing product accessibility, and increasing operational effectiveness. To tackle this obstacle, establishments 

have resorted to machine learning models, transforming predictive analysis by offering sophisticated instruments for 

using past demand information. 

The main topic of this article is the creation and assessment of a Gated Recurrent Unit (GRU) network model for 

multivariate sales forecasting. For modern enterprises, multivariate sales forecasting is an essential andchallenging 

process that involves several variables and time series data. Recurrent neural networks (RNNs) have shown great 

promise in modelling sequential data, and one particular RNN variation that performs well for capturing temporal 

dependencies in time series data is the GRU. To address the multivariate character of the problem, the model we 

present attempts to predict sales for several stores spanning a varied range of stock-keeping units (SKUs). The study's 

dataset includes unit sales information for 3,049 SKUs from ten shops. To make the most of this data, we have divided 

the 3,049 SKUs' sales records into seven different departments. As part of our study technique, we compare the GRU 

model's performance to that of two alternative models: the LightGBM model and the Vector Autoregression (VAR) 

model. A comparative analysis is necessary to evaluate if the GRU model is better at capturing the complexities of 

multivariate sales forecasting.  

The results of this study should show that the Gated Recurrent Unit (GRU) model performs exceptionally well in 

multivariate sales forecasting because of its innate ability to discover hidden patterns automatically and to handle 

time-related complications like trends and seasonality. The research's findings have significant ramifications for 

businesses looking to increase the precision and effectiveness of their sales forecasting procedures.  

3. Methodology 

This segment discusses the design of the research. As the study focuses on creating a GRU network model, LIghtGBM, 

and a VAR model to estimate sales demand, historical sales data were obtained from secondary data sources. This 

section focused on research methodology, including research design, data collection, model development of the GRU 

model, and the VAR model describing the associated steps. Model evaluation matrices are also discussed in the latter 



Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model 
 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.11, NO.4  

393 
 

part. The novelty of the research is building a GRU model to predict multivariate sales data and further comparing it 

with the VAR and LightGBM models. 

3.1 Data  

Time series data of past sales were obtained from the dataset of the M5 forecasting challenge hosted by the Kaggle 

community, which ran from 2 March to 30 June 2020. The dataset contains sales data for ten stores of Walmart, an 

American multinational supermarket chain, encompassing seven departments (product families). Each department 

would have several stock-keeping units (SKUs) assigned to them. The dataset includes the unit sales of various 

products arranged as clustered time series. The dataset contains the sales of 3049 items, which can be categorized into 

seven other departments. 

 

 

Figure 1. SKU vs department plot 

 

Observations are not independent during time series analysis; hence, splitting the data as in the case of non-time series 

analysis does not work because, in non-time series analysis, training and testing data will be randomly divided into 

sets. Therefore, time series observations are usually broken along with the sequences. Sales data for one month (30 

days) was selected from the end of the time series to test and compare the model. One thousand nine hundred twelve 

days (98% of the time series) were used to train the model. 

3.2 GRU and LightGBM  Model Development 

Figure 2 shows the steps in building GRU and LightGBM models to forecast demand. The model was developed using 

the Python programming language. Keras library with TensorFlow is used to create and train the neural network 

models, and for analysis and preprocessing pandas, Scikit-learn packages were used. 
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Figure 2. GRU Model development workflow 

Data processing entails normalization and standardization before training a neural network model to rescale input and 

output variables (Lai, 2006). Each of the time series was scaled using the following equation in the formula 𝑥̅ is the 

mean of the time series and 𝜎 is the standard deviation. 

𝑍 = (𝑥 − 𝑥̅)/𝜎                                                                                                                                                           (1) 

The sequential model is used to construct the models using the Keras library. It enables a model layer by layer to be 

built. Each layer has weights that fit the following layer. The input layer is a GRU layer followed by two hidden layers, 

which are also GRU layers, and in between hidden layers, dropout layers were positioned, which helped to reduce 

overfitting during the training process. Finally, a dense layer is set up to get the output. 

 

Figure 3. GRU Model Architecture 
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A GRU layer should always be in 3 dimensions. The first dimension is the batch size, which is the number of samples 

that need to be processed before updating the neural network, and the next dimension is the time step, which represents 

the number of days that were used to predict the next day's forecast. The other dimension is the considered features, 

the number of variables in the multivariate time series data frame. Features are the sales of different departments in 

each store that add up to 70-time series. 

 

Figure 4. GRU input shape 

The loss function used in the study is a mean squared error (MSE). MSE loss is the cumulative mean of the square 

differences between actual and expected values. MSE is sensitive to outliers, and their cumulative target value would 

be the best prediction, provided multiple instances of the same input function values. The formula for the MSE is 

defined as follows. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖

𝑛

𝑖=1
− 𝑦̂𝑖)

2                                                                                                                                            (2) 

Hyperparameter tuning uses the Bayesian optimization technique since manually tuning hyperparameters is 

inefficient. Bayesian optimization offers a Bayes theorem-based principled technology for an efficient and effective 

global optimization problem. The GRU and LightGBM models consist of several hyperparameters that can be tuned 

to get the best model. Table 1. Hyperparameters and search spacesshows the hyperparameters that were used in the 

research. LightGBM model hyperparameters and search spaces are shown in Table 2.  

Table 1. Hyperparameters and search spaces for the GRU model 

Hyperparameter Search space 

Layer 1 units Integer (50,400) 

Layer 2 units Integer (50,400) 

Layer 3 units  Integer (50,400) 

Layer 1 activation  Categorical (['relu', 'tanh']) 

Layer 2 activation Categorical (['relu', 'tanh']) 

Layer 3 activation Categorical (['relu', 'tanh']) 

Batch size Integer (2,256) 

Epochs Integer (5,100) 

Dropout rate Real (0.1,0.8) 
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Table 2. Hyperparameters and search spaces for the LightGBM model 

Hyperparameter Search space 

max_depth Integer (50,500) 

num_leaves Integer (50,500) 

min_data_in_leaf Integer (50,500) 

n_estimators Integer (50,500) 

3.3 VAR Model Development 

The VAR model was developed to compare the results of the GRU model forecast. The VAR model was also 

developed using Python, and the steps involved are shown in Figure 5. In an autoregression model, a linear 

combination of past values of a variable is used to predict the same variable's future values. The word autoregression 

reveals that it is a regression against itself of the variable. The VAR model is an extension of the autoregression that 

uses multiple variables. VAR models are distinguished by their order, corresponding to the number of prior periods 

used by the model, also known as the lag length (p). 

 

Figure 5. VAR model development workflow 
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Checking the stationarity of the time series is important when modelling the time series using the VAR model. 

Stationary time series correlation coefficients will be more consistent than non-stationary correlation coefficients and 

would also impact the output of subsequent data processing steps. Observations from a non-stationary time series 

show seasonal impacts, patterns, and other mechanisms that depend on the time index (Yang & Shahabi, 2005). 

Stationarity is checked using the Augmented Dicky Fuller (ADF) test.  

Table 3. Stationarity check Results (Augmented Dicky fuller test) 

series p_stat Status p_stat_differenced Status_differenced 

CA_1_FOODS_1 0.004311053 Stationary 2.72E-26 Stationary 

CA_1_FOODS_2 8.16E-05 Stationary 0 Stationary 

CA_1_FOODS_3 0.148980919 Non-Stationary 0 Stationary 

CA_1_HOBBIES_1 0.019833431 Stationary 5.30E-27 Stationary 

CA_1_HOBBIES_2 0.01739633 Stationary 8.46E-24 Stationary 

CA_1_HOUSEHOLD_1 0.532348411 Non-Stationary 1.43E-27 Stationary 

CA_1_HOUSEHOLD_2 0.130899043 Non-Stationary 2.54E-25 Stationary 

CA_2_FOODS_1 0.006678353 Stationary 2.96E-24 Stationary 

CA_2_FOODS_2 0.99026148 Non-Stationary 1.65E-27 Stationary 

CA_2_FOODS_3 0.763985019 Non-Stationary 5.43E-28 Stationary 

CA_2_HOBBIES_1 0.062681006 Non-Stationary 3.08E-27 Stationary 

CA_2_HOBBIES_2 0.011737301 Stationary 3.89E-27 Stationary 

CA_2_HOUSEHOLD_1 0.324011227 Non-Stationary 1.65E-27 Stationary 

CA_2_HOUSEHOLD_2 0.269248565 Non-Stationary 2.08E-26 Stationary 

CA_3_FOODS_1 0.014083316 Stationary 1.08E-28 Stationary 

CA_3_FOODS_2 0.001077103 Stationary 0 Stationary 

CA_3_FOODS_3 0.107024364 Non-Stationary 0 Stationary 

CA_3_HOBBIES_1 0.190229232 Non-Stationary 1.51E-27 Stationary 

CA_3_HOBBIES_2 0.013365331 Stationary 1.31E-23 Stationary 

CA_3_HOUSEHOLD_1 0.308180045 Non-Stationary 9.19E-24 Stationary 

CA_3_HOUSEHOLD_2 0.03320509 Stationary 5.34E-25 Stationary 

CA_4_FOODS_1 0.026127811 Stationary 6.44E-25 Stationary 

CA_4_FOODS_2 0.130139814 Non-Stationary 2.02E-30 Stationary 

CA_4_FOODS_3 0.118663688 Non-Stationary 1.02E-27 Stationary 

CA_4_HOBBIES_1 0.246507618 Non-Stationary 1.34E-25 Stationary 

CA_4_HOBBIES_2 0.000775528 Stationary 3.57E-29 Stationary 

CA_4_HOUSEHOLD_1 0.643451726 Non-Stationary 2.36E-25 Stationary 

CA_4_HOUSEHOLD_2 0.526158976 Non-Stationary 5.37E-25 Stationary 

TX_1_FOODS_1 0.036800071 Stationary 6.37E-27 Stationary 

TX_1_FOODS_2 0.00028336 Stationary 0 Stationary 
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Table 4. Stationarity check Results (Augmented Dicky fuller test) (Continued) 

TX_1_FOODS_3 0.008214364 Stationary 0 Stationary 

TX_1_HOBBIES_1 0.185985526 Non-Stationary 3.90E-25 Stationary 

TX_1_HOBBIES_2 0.01086493 Stationary 4.98E-22 Stationary 

TX_1_HOUSEHOLD_1 0.33596135 Non-Stationary 1.93E-25 Stationary 

TX_1_HOUSEHOLD_2 0.409465622 Non-Stationary 1.20E-26 Stationary 

TX_2_FOODS_1 0.074771194 Non-Stationary 1.21E-27 Stationary 

TX_2_FOODS_2 0.004797366 Stationary 0 Stationary 

TX_2_FOODS_3 0.078298352 Non-Stationary 3.45E-30 Stationary 

TX_2_HOBBIES_1 0.112566879 Non-Stationary 2.14E-26 Stationary 

TX_2_HOBBIES_2 1.83E-09 Stationary 1.27E-26 Stationary 

TX_2_HOUSEHOLD_1 0.159884557 Non-Stationary 1.06E-24 Stationary 

TX_2_HOUSEHOLD_2 0.071650135 Non-Stationary 1.77E-22 Stationary 

TX_3_FOODS_1 0.092315373 Non-Stationary 2.04E-26 Stationary 

TX_3_FOODS_2 0.108362186 Non-Stationary 0 Stationary 

TX_3_FOODS_3 0.02654422 Stationary 3.46E-30 Stationary 

TX_3_HOBBIES_1 0.614753975 Non-Stationary 6.48E-24 Stationary 

TX_3_HOBBIES_2 0.001758733 Stationary 1.37E-27 Stationary 

TX_3_HOUSEHOLD_1 0.30490459 Non-Stationary 2.89E-26 Stationary 

TX_3_HOUSEHOLD_2 0.515269898 Non-Stationary 6.77E-25 Stationary 

WI_1_FOODS_1 0.000241426 Stationary 3.87E-25 Stationary 

WI_1_FOODS_2 0.876724594 Non-Stationary 2.16E-30 Stationary 

WI_1_FOODS_3 0.582192651 Non-Stationary 1.68E-27 Stationary 

WI_1_HOBBIES_1 0.016838784 Stationary 6.35E-27 Stationary 

WI_1_HOBBIES_2 0.006290415 Stationary 7.04E-21 Stationary 

WI_1_HOUSEHOLD_1 0.231552217 Non-Stationary 4.47E-26 Stationary 

WI_1_HOUSEHOLD_2 0.172272631 Non-Stationary 1.19E-24 Stationary 

WI_2_FOODS_1 0.114706355 Non-Stationary 3.82E-30 Stationary 

WI_2_FOODS_2 0.907627417 Non-Stationary 0 Stationary 

WI_2_FOODS_3 0.565704064 Non-Stationary 0 Stationary 

WI_2_HOBBIES_1 0.388960834 Non-Stationary 7.00E-27 Stationary 

WI_2_HOBBIES_2 0.001218291 Stationary 4.29E-28 Stationary 

WI_2_HOUSEHOLD_1 0.338079811 Non-Stationary 0 Stationary 

WI_2_HOUSEHOLD_2 0.390617085 Non-Stationary 1.27E-27 Stationary 

WI_3_FOODS_1 0.088189069 Non-Stationary 2.47E-30 Stationary 

WI_3_FOODS_2 0.283054378 Non-Stationary 0 Stationary 
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Table 5. Stationarity check Results (Augmented Dicky fuller test) (Continued) 

WI_3_FOODS_3 0.168658341 Non-Stationary 0 Stationary 

WI_3_HOBBIES_1 1.68E-05 Stationary 1.53E-27 Stationary 

WI_3_HOBBIES_2 0.000275599 Stationary 2.89E-25 Stationary 

WI_3_HOUSEHOLD_1 0.055660951 Non-Stationary 1.27E-29 Stationary 

WI_3_HOUSEHOLD_2 0.134125657 Non-Stationary 5.35E-24 Stationary 

The basic translation of a non-stationary time series into a stationary time series can be accomplished by taking the 

differences in time series. The first-order difference is typically sufficient for non-seasonal data to achieve apparent 

stationarity. The differenced time series can be taken by using the equation shown below. 

𝑦̂𝑡 = 𝑦𝑡 − 𝑦𝑡−1                                                                                                                                                          (3) 

3.4 Model Evaluation matrices 

The challenge of calculating the accuracy of the forecast is related to the need to select an acceptable error measure. 

In particular, choosing an error measure to determine the precision of forecasts over time series is an essential subject 

for forecasting research (Davydenko & Fildes, 2013). Model evaluation was conducted using two metrics. 

• Mean absolute error (MAE) 

• Mean absolute percentage error (MAPE) 

The mean absolute error (MAE) value is calculated in the same units as the data. Since it does not square the errors in 

the equation, it is less susceptible to the occasional substantial error. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑡 − 𝐹𝑡|
𝑛
𝑡=1                                                                                                                                             (4) 

Mean absolute percentage error (MAPE) is widely used in evaluating time series forecasting. The MAPE value of 

each time series was taken to assess the GRU model. Since the MAPE value gives the percentage value, it is easier to 

interpret the error. 

𝑀𝐴𝑃𝐸 =
1

𝑛
(∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1
) ∗ 100                                                                                                                             (5) 

4. Results  

4.1 Hyperparameter Tuning in GRU 

Hyperparameters were tuned using the BayesSearchcv class in the sci-kit learn library. After fitting the Bayes search 

object with the training data, the result of the object is shown in 4. The Table shows the hyperparameter values used 

in each iteration. When training the model across a 5-fold time series, cross-validation techniques were used to ensure 

that the model was not overfitted. The mean test score is calculated using the negative mean value for MSE values for 

5 test splits. The Std train test score column in Table 2 is calculated by taking the negative mean value for MSE values 

for five train splits. Also, the mean train score is shown in  Table 6. 

According to the Bayes Search hyperparameter, the best model was selected using the mean score test value after 

tuning run through 25 iterations. The best model was chosen by getting the model with the least MSE for the testing 

sets. This can also be seen in the mean test score, the negative MSE for the testing sets. According to the test score 

with its hyperparameters values, the best model is the last row of Table 6. The graph in  

Figure 6 shows how the MSE changed with each epoch for the training data. MSE has drastically reduced during the 

first 10 epochs, then after the 60th epoch, the error becomes more stable. 
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Figure 6. MSE change over the epochs 

4.2 LightGBM model 

LightGBM model Hyperparameters were also tuned using BayesSearchcv. Table 5 shows the hyperparameter values 

used in each iteration and train test scores. 

Table 6. Bayes search optimization results for GRU model 

Mean  

test score 

std test 

score 

rank 

test 

score 

mean train 

score 

std train 

score 

 activation  batch 

size 

 dropout  epochs  layer 1 

units 

 layer 2 

units 

 layer 3 

units 

rank 

train 

score 

-0.9345 0.1577 22 -0.5747 0.0607 relu 254 0.7430 91 305 399 136 23 

-0.7011 0.1694 15 -0.2388 0.0081 relu 42 0.2860 40 164 313 100 11 

-0.8036 0.3608 20 -0.2071 0.0054 relu 219 0.1160 65 88 301 240 6 

-0.6538 0.1324 9 -0.1937 0.0062 relu 49 0.1809 51 373 88 246 5 

-0.6981 0.1694 13 -0.2535 0.0157 relu 225 0.3143 68 240 117 276 13 

-1.0224 0.2705 25 -0.7007 0.0422 relu 118 0.7999 19 229 255 119 24 

-0.7339 0.0580 18 -0.4503 0.0502 tanh 134 0.2873 6 73 56 249 20 

-0.7504 0.1093 19 -0.3635 0.0355 relu 31 0.7138 99 148 355 251 19 

-0.8854 0.1516 21 -0.5074 0.0424 relu 200 0.2752 9 322 246 99 22 

-0.6851 0.0972 12 -0.3060 0.0304 relu 94 0.4484 62 58 155 160 18 

-0.7122 0.1179 17 -0.1482 0.0414 tanh 2 0.3662 100 50 400 400 2 

-0.7066 0.1712 16 -0.2120 0.0078 relu 41 0.3162 71 200 65 224 8 

-0.6674 0.1218 11 -0.2991 0.0095 tanh 215 0.6115 58 354 50 400 17 

-1.0216 0.2209 24 -0.7204 0.1359 relu 226 0.7928 43 241 50 252 25 

-0.5858 0.0867 4 -0.2387 0.0075 tanh 253 0.4241 98 214 323 116 10 

-0.5893 0.0738 5 -0.1800 0.0090 tanh 256 0.2360 100 329 272 185 4 

-0.5810 0.0710 3 -0.2087 0.0067 tanh 256 0.3366 100 284 295 158 7 

-0.5795 0.0825 2 -0.2673 0.0125 tanh 256 0.4515 100 279 253 50 14 
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Table 7. Bayes search optimization results for GRU model (Continued) 

-0.9746 0.2696 23 -0.4968 0.0099 tanh 256 0.8000 100 400 50 50 21 

-0.7006 0.0993 14 -0.1115 0.0426 tanh 2 0.1000 100 400 50 113 1 

-0.6555 0.1214 10 -0.2373 0.0076 tanh 215 0.4926 100 400 50 400 9 

-0.6307 0.1034 8 -0.2728 0.0112 tanh 256 0.3057 100 109 50 50 15 

-0.5994 0.0852 6 -0.2771 0.0143 tanh 256 0.4832 100 182 361 50 16 

-0.6089 0.0892 7 -0.1621 0.0083 tanh 256 0.2703 100 400 358 400 3 

-0.5405 0.0739 1 -0.2139 0.0026 tanh 128 0.1980 67 300 300 300 12 

Table 8. Bayes search optimization results for the LightGBM model 

mean_test

_score 

std_test_s

core 

param_max

_depth 

param_min_

data_in_leaf 

param_n_

estimators 

param_num

_leaves 

rank_test

_score 

mean_train

_score 

std_train

_score 

rank_train

_score 

0.9585 0.0091 66 271 118 484 16 0.9803 0.0014 22 

0.9593 0.0093 397 169 303 81 6 0.9877 0.0013 7 

0.9565 0.0100 498 456 357 292 24 0.9818 0.0015 18 

0.9598 0.0097 375 69 323 156 3 0.9948 0.0018 4 

0.9591 0.0102 483 54 386 251 9 0.9977 0.0013 1 

0.9585 0.0094 339 292 403 161 15 0.9866 0.0010 10 

0.9588 0.0095 383 241 329 251 11 0.9873 0.0010 9 

0.9587 0.0093 144 320 446 58 13 0.9849 0.0011 12 

0.9591 0.0100 66 73 448 345 8 0.9969 0.0010 2 

0.9572 0.0095 457 451 373 377 20 0.9822 0.0013 17 

0.9566 0.0098 436 500 464 53 23 0.9816 0.0014 19 

0.9566 0.0100 56 499 468 191 22 0.9822 0.0015 15 

0.9601 0.0097 336 59 160 186 1 0.9922 0.0019 6 

0.9556 0.0102 280 499 58 377 25 0.9745 0.0020 25 

0.9597 0.0099 89 59 52 378 4 0.9864 0.0012 11 

0.9574 0.0093 201 321 51 55 18 0.9756 0.0017 24 

0.9593 0.0094 309 186 99 290 7 0.9822 0.0012 16 

0.9569 0.0095 493 454 96 335 21 0.9766 0.0017 23 

0.9595 0.0100 440 50 50 487 5 0.9876 0.0011 8 

0.9574 0.0095 282 431 306 442 19 0.9816 0.0013 20 

0.9600 0.0098 57 50 50 128 2 0.9839 0.0020 13 

0.9586 0.0093 64 295 171 481 14 0.9815 0.0013 21 

0.9584 0.0099 396 174 496 491 17 0.9933 0.0006 5 

0.9589 0.0094 326 268 208 304 10 0.9834 0.0012 14 

0.9588 0.0101 390 127 445 309 12 0.9951 0.0004 3 
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4.3 VAR model  

Selecting lag length is essential in VAR modelling. Error, trend, and seasonal models and ARIMA models lead to 

choosing the best by minimizing various information criteria like the Akaike Information Criterion (AIC) (an in-

sample match technique to measure a model's probability of estimating future values) (Akaike, 1974), which are 

usually described by minimizing a one-step square error in the forecast (Makridakis et al., 2020). Several information 

criteria can be used to obtain the best lag value. AIC can be used to find the best lag value; a good model has minimum 

AIC among all the different lag value models. Another criterion for selecting the best lag length that tests the trade-

off between model fit and model complexity is the Bayesian information criterion (BIC) (Stone, 1979). A better fit is 

shown by a lower BIC score, just like the AIC score. The Final Prediction Error (FPE) was also used to estimate the 

model-fitting error for different lag lengths. Similar to the other 2 criteria, the model that gives the minimum FPE 

selects the best model. 

Table 9. Lag value selection criterion 

Lag length AIC BIC FPE HQIC 

0 555.1 555.3 1.17E+241 555.2 

1 540 554.5 3.24E+234 545.3 

2 535 563.9 2.31E+232 545.6 

3 533.1 576.2 3.45E+231 549 

4 532.1 589.6 1.41E+231 553.3 

5 531.3 603.2 7.70E+230 557.8 

6 531.1 617.2 7.44E+230 562.8 

7 531.7 632.2 1.94E+231 568.7 

8 532.5 647.3 6.67E+231 574.8 

9 533.2 662.3 2.22E+232 580.7 

10 533.7 677.1 7.57E+232 586.5 

11 534 691.8 2.64E+233 592.1 

12 533.9 706 7.50E+233 597.3 

Table 9 shows the information criterion values for different lag lengths. The tables also show the Hannan-Quinn 

information criterion (HQIC) values, which is also a measure of the goodness of fit of a statistical model. HQIC is 

similar to AIC but not based on the log-likelihood function. According to the table, lag lengths 1 and 6 are the lowest 

when considering the 4 criteria represented in the columns. The lag length was chosen as 6 since using just 1 previous 

time step is too small to capture the data patterns. 

4.4 Model Comparison 

Using GRU, LightGBM, and VAR models' predictions were done 30 days ahead, considering each department in each 

store as a multivariate time series and the forecasts of the 7 departments of CA_1 using both models are shown in 

Figure 7. Predictions of the other stores are provided in the appendix.  
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Figure 7. Predictions vs Actual plots of store CA_1 

GRU, LightGBM, and VAR models were compared using MAE and MAPE. The mean MAPE value for predictions 

of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, and 14.24%, respectively. 

The mean MAE value of the GRU model is 68 units, and 72 units for the VAR model. The standard deviation of the 

GRU model MAE is 58 units, which is lower than the VAR model's standard deviation of 66 units. MAPE values for 

the GRU and VAR models in each of the 7 departments (series) that the SKUs populate on the retail chain were also 

reviewed. In the department, FOOD_1 FOOD_2, HOBBIES_1, HOBBIES_2, and HOUSEHOLD_2 GRU model has 

comparatively lower MAPE values. VAR model's MAPE values are less in FOODS_3 and HOUSEHOLD_1 

departments. According to the MAE values, the GRU model has performed The mean MAE value of the GRU model 

is 68 units, and 72 units for the VAR model. The standard deviation of the GRU model MAE is 58 units, which is 

lower than the VAR model's standard deviation of 66 units. MAPE values for the GRU and VAR models in each of 

the 7 departments (series) that the SKUs populate on the retail chain were also reviewed. In the department, FOOD_1 

FOOD_2, HOBBIES_1, HOBBIES_2, and HOUSEHOLD_2 GRU model has comparatively lower MAPE values. 

VAR model's MAPE values are less in FOODS_3 and HOUSEHOLD_1 departments. According to the MAE values, 

the GRU model has performed better in 5 departments and the VAR model in 2 departments. Therefore, considering 
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the MAPE values, the GRU model performed better than the VAR model. Despite this, the LightGBM model 

performed better in 4 departments. 

 

Figure 8. Model MAPE values of departments 

 

Figure 9. Models MAE values of departments 

Managerial Insights 

To increase demand forecasting accuracy, organizations should invest in creating and implementing sophisticated 

forecasting models such as Artificial Neural Networks (ANNs) and Gated Recurrent Units (GRUs). Organizations 

could use multivariate time series forecasting techniques when numerous variables are interrelated to effectively 

manage correlations and complexity between variables and produce educated forecasts. Consider employing hybrid 

forecasting models, which combine the advantages of classic statistical approaches with the capabilities of deep 

learning techniques. 

Conclusion 

The goal of this paper is to find where GRU can be used to forecast the demand for multiple stores. To achieve the 

expected goal of the research, 3 objectives were defined. The first objective is to build the GRU model to predict the 
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demand for the data collected from the M5 forecasting challenge. The second objective is to create a VAR model for 

the same dataset. The third and final objective is to compare the 2 models. 

To achieve the first objective, the GRU model was built using Python. All SKU sales data were grouped by department 

so the model could use each store's department as input during the modelling process. Hyperparameters of the model 

were tuned using Bayesian optimization techniques. Bayesian hyperparameter search was run through 25 iterations to 

find a good forecasting model. 

The second objective of the research is to build VAR and LightGBM models to predict the sales for 30 days for the 

same 70-time series from each store's departments. First-order differencing was used to make the time series stationary 

before VAR modelling after the stationarity check lag length of the VAR model was chosen as 6 using the AIC and 

BIC criterion.  

The third objective of the research is to evaluate and compare the GRU, LightGBM, and VAR models based on their 

predictions, which were done for 30 days. Both models were evaluated using MAE and MAPE values generated for 

the forecasts of 7 departments in the 10 stores, which consists of 70 different time-series predictions. The MAPE value 

for the GRU model was 13.77%, and the VAR model was 14.87%. LightGBM GBM model MAPE value is 14.24%. 

It was seen that the GRU model's overall performance was better than the VAR model and LightGBM model. The 

mean MAE value of the GRU model was 68 units, and for the VAR model, 72 units. The mean MAE value of the 

LightGBM model was 69 units. The GRU model MAE standard deviation was 58 units, lower than the VAR model 

standard deviation of 66 units. The standard deviation of the LightGBM model was 58. From the research findings, 

we can conclude that the GRU neural network approach to forecasting the demand for multiple stores is more effective 

when compared to VAR for the subject dataset. 

This research studies how the GRU model can be used to forecast the sales of multiple stores. In this research, only 

the previous sales data from each store were used as inputs to the model. However, it might be interesting to investigate 

other variables that can be used to improve the model, such as a special event (Mother's Day, Father's Day, Christmas, 

Easter, etc.). While a Sales Forecasting System Based On Deep Learning Techniques presents a novel method of sales 

forecasting via Deep neural networks, evaluating the larger context of sales forecasting is critical. We can extend the 

model to forecast the demand during post-promotional periods(Hewage et al., 2022). Another possible future 

implementation of this research is to develop the GRU model to predict sales during a pandemic. Demand may change 

drastically during a pandemic because customers' purchasing habits change to mitigate supply uncertainty. Modelling 

customer demand using disease proliferation and other auxiliary data, such as government decisions to sudden 

lockdown days, are possible areas of extension in this regard. 

Further, investigate and create innovative hybrid forecasting models that successfully blend old statistical approaches 

with new deep learning techniques. Investigate various combinations and architectures of these models to improve 

accuracy and interpretability in real-world forecasting scenarios. Improve uncertainty estimation in forecasting 

models. Develop approaches for quantifying and communicating the uncertainty of various forecasting scenarios, 

allowing decision-makers to make better-informed choices. 

Deep neural networks, for example, can have lengthy training cycles and demand significant computer resources. This 

can be a problem, especially when dealing with massive datasets. When using forecasting models in real-world 

corporate contexts, obstacles such as resistance to change, data integration concerns, and the need for continuing 

model maintenance may arise.  
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Appendix A. 

Sales forecasting plots of GRU and VAR models 

 

A 1:Predictions  vs Actual plots of store CA_2 
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A 2: Predictions vs Actual plots of store CA_3 
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A 3: Predictions vs Actual plots of store CA_4 
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A 4: Predictions vs Actual plots of store TX_1 
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A 5: Predictions vs Actual plots of store TX_2 
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A 6: Predictions vs Actual plots of store TX_3 
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A 7: Predictions vs Actual plots of store WI_1 
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A 8: Predictions vs Actual plots of store WI_2 
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A 9: Predictions vs Actual plots of store WI_3 

 

 

 

 

 

 

 


