Aggarwal, R. (2018). A chance constraint based low carbon footprint supply chain configuration for an FMCG product. Management of Environmental Quality: An International Journal, 29(6), 1002–1025. https://doi.org/10.1108/MEQ-11-2017-0130
Ahmadi, E., Masel, D. T., Hostetler, S., Maihami, R., and Ghalehkhondabi, I. (2020). A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time. In Top (Vol. 28, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/s11750-019-00533-1
Ahmadi, E., Masel, D. T., Metcalf, A. Y., and Schuller, K. (2019). Inventory management of surgical supplies and sterile instruments in hospitals: a literature review. Health Systems, 8(2), 134–151. https://doi.org/10.1080/20476965.2018.1496875
Ahmadi, E., Mosadegh, H., Maihami, R., Ghalehkhondabi, I., Sun, M., and Süer, G. A. (2022). Intelligent inventory management approaches for perishable pharmaceutical products in a healthcare supply chain. Computers and Operations Research, 147(June 2021), 105968. https://doi.org/10.1016/j.cor.2022.105968
Ali, S. S., Barman, H., Kaur, R., Tomaskova, H., and Roy, S. K. (2021). Multi-product multi echelon measurements of perishable supply chain: Fuzzy non-linear programming approach. Mathematics, 9(17), 1–27. https://doi.org/10.3390/math9172093
Armagan Tarim, S., and Kingsman, B. G. (2004). The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. International Journal of Production Economics, 88(1), 105–119. https://doi.org/10.1016/S0925-5273(03)00182-8
Barman, H., Pervin, M., and Roy, S. K. (2022). Impacts of green and preservation technology investments on a sustainable EPQ model during COVID-19 pandemic. RAIRO - Operations Research, 56(4), 2245–2275. https://doi.org/10.1051/ro/2022102
Barman, H., Pervin, M., Roy, S. K., and Weber, G. W. (2023). Analysis of a dual-channel green supply chain game-theoretical model under carbon policy. International Journal of Systems Science: Operations and Logistics, 10(1). https://doi.org/10.1080/23302674.2023.2242770
Barman, H., Roy, S. K., Sakalauskas, L., and Weber, G. W. (2023). Inventory model involving reworking of faulty products with three carbon policies under neutrosophic environment. Advanced Engineering Informatics, 57(June), 102081. https://doi.org/10.1016/j.aei.2023.102081
Charnes, A., and Cooper, W. W. (1959). Chance-Constrained Programming. August 2015.
Chen, Z., and Rossi, R. (2021). A dynamic ordering policy for a stochastic inventory problem with cash constraints. Omega (United Kingdom), 102. https://doi.org/10.1016/j.omega.2020.102378
Das, S. K., Yu, V. F., Roy, S. K., and Weber, G. W. (2024). Location–allocation problem for green efficient two-stage vehicle-based logistics system: A type-2 neutrosophic multi-objective modeling approach. Expert Systems with Applications, 238(PE), 122174. https://doi.org/10.1016/j.eswa.2023.122174
Ekren, B. Y., and Arslan, B. (2020). Simulation-based lateral transshipment policy optimization for s, S inventory control problem in a single-echelon supply chain network. International Journal of Optimization and Control: Theories and Applications, 10(1), 9–16. https://doi.org/10.11121/ijocta.01.2020.00789
Gen, M., and Cheng, R. (1997). Genetic algorithms and engineering design. John Wiley and Sons.
Ghalebsaz-Jeddi, B., Shultes, B. C., and Haji, R. (2004). A multi-product continuous review inventory system with stochastic demand, backorders, and a budget constraint. European Journal of Operational Research, 158(2), 456–469. https://doi.org/10.1016/S0377-2217(03)00363-1
Goldberg, D. E., and Samtani, M. P. (1986). Engineering Optimization Via Genetic Algorithm. John Wiley and Sons, Inc.
Gómez-Rocha, J. E., Hernández-Gress, E. S., and Rivera-Gómez, H. (2021). Production planning of a furniture manufacturing company with random demand and production capacity using stochastic programming. PLoS ONE, 16(6 June), 1–26. https://doi.org/10.1371/journal.pone.0252801
Guerrero Campanur, A., Olivares-Benitez, E., Miranda, P. A., Perez-Loaiza, R. E., and Ablanedo-Rosas, J. H. (2018). Design of a Logistics Nonlinear System for a Complex, Multiechelon, Supply Chain Network with Uncertain Demands. Complexity, 2018. https://doi.org/10.1155/2018/4139601
Gürler, Ü., and Özkaya, B. Y. (2008). Analysis of the (s, S) policy for perishables with a random shelf life. IIE Transactions (Institute of Industrial Engineers), 40(8), 759–781. https://doi.org/10.1080/07408170701730792
Hiassat, A., Diabat, A., and Rahwan, I. (2017). A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems, 42, 93–103. https://doi.org/10.1016/j.jmsy.2016.10.004
Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88–105. https://doi.org/10.1137/0202009
Hooshangi-Tabrizi, P., Hashemi Doulabi, H., Contreras, I., and Bhuiyan, N. (2022). Two-stage robust optimization for perishable inventory management with order modification. Expert Systems with Applications, 193(December 2021), 116346. https://doi.org/10.1016/j.eswa.2021.116346
Kleijnen, J. P. C., and Wan, J. (2007). Optimization of simulated systems: OptQuest and alternatives. Simulation Modelling Practice and Theory, 15(3), 354–362. https://doi.org/10.1016/j.simpat.2006.11.001
Kundu, A., and Chakrabarti, T. (2012). A multi-product continuous review inventory system in stochastic environment with budget constraint. Optimization Letters, 6(2), 299–313. https://doi.org/10.1007/s11590-010-0245-3
Li, W., Ding, Y., Yang, Y., Sherratt, R. S., Park, J. H., and Wang, J. (2020). Parameterized algorithms of fundamental NP-hard problems: a survey. Human-Centric Computing and Information Sciences, 10(1). https://doi.org/10.1186/s13673-020-00226-w
Modibbo, U. M., Gupta, S., Ahmed, A., and Ali, I. (2022). An integrated multi-objective multi-product inventory managed production planning problem under uncertain environment. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04795-0
Movahed, K. K., and Zhang, Z. H. (2015). Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties. International Journal of Systems Science, 46(12), 2258–2268. https://doi.org/10.1080/00207721.2013.860637
Nahmias, S. (2008). Production and Operation Analysis. In McGraw-Hill/Irwin Series Operation and Decision Science.
Noordhoek, M., Dullaert, W., Lai, D. S. W., and de Leeuw, S. (2018). A simulation–optimization approach for a service-constrained multi-echelon distribution network. Transportation Research Part E: Logistics and Transportation Review, 114, 292–311. https://doi.org/10.1016/j.tre.2018.02.006
Paul, A., Pervin, M., Roy, S. K., Weber, G. W., and Mirzazadeh, A. (2021). Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO - Operations Research, 55, S2575–S2592. https://doi.org/10.1051/ro/2020108
Perera, S. C., and Sethi, S. P. (2023). A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)-type policies—Discrete-time case. Production and Operations Management, 32(1), 131–153. https://doi.org/10.1111/poms.13820
Pervin, M., Roy, S. K., Sannyashi, P., and Weber, G. W. (2023). Sustainable inventory model with environmental impact for non-instantaneous deteriorating items with composite demand. RAIRO - Operations Research, 57(1), 237–261. https://doi.org/10.1051/ro/2023005
Qiu, R., Sun, Y., and Sun, M. (2022). A robust optimization approach for multi-product inventory management in a dual-channel warehouse under demand uncertainties. Omega (United Kingdom), 109, 102591. https://doi.org/10.1016/j.omega.2021.102591
Report, G. (2021). Public spending on the rise? 2021.
Rossi, R., Tarim, S. A., Hnich, B., and Prestwich, S. (2008). A global chance-constraint for stochastic inventory systems under service level constraints. Constraints, 13(4), 490–517. https://doi.org/10.1007/s10601-007-9038-4
Saracoglu, I. (2023). Simulation Optimization for Multi-product (s, S) Inventory Policy with Stochastic Demand. Lecture Notes in Production Engineering, Part F1164, 523–534. https://doi.org/10.1007/978-3-031-18641-7_48
Shapiro, A., and Ruszczyn, A. (2003). Chapter 5 Probabilistic Programming.pdf. 10, 1–18.
Shaw, K., Irfan, M., Shankar, R., and Yadav, S. S. (2016). Low carbon chance constrained supply chain network design problem: a Benders decomposition based approach. Computers and Industrial Engineering, 98, 483–497. https://doi.org/10.1016/j.cie.2016.06.011
Sivazlian, B. D. (1974). A continuous-review (s, S) inventory system with arbitrary interarrival distribution between unit demand. Operations Research, 22(1), 65–71.
Taha, H. A. (2007). Operations Research: An Introduction. Pearson Education, Inc.
Veinott, A. F. (1965). Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem. Management Science, 12(3), 206–222. https://doi.org/10.1287/mnsc.12.3.206
Xiang, M., Rossi, R., Martin-Barragan, B., and Tarim, S. A. (2018). Computing non-stationary (s, S) policies using mixed integer linear programming. European Journal of Operational Research, 271(2), 490–500. https://doi.org/10.1016/j.ejor.2018.05.030
Xiang, M., Rossi, R., Martin-Barragan, B., and Tarim, S. A. (2023). A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand. European Journal of Operational Research, 304(2), 515–524. https://doi.org/10.1016/j.ejor.2022.04.011
Xu, G., Feng, J., Chen, F., Wang, H., and Wang, Z. (2019). Simulation-based optimization of control policy on multi-echelon inventory system for fresh agricultural products. 12(2), 184–194. https://doi.org/10.25165/j.ijabe.20191202.2834
Žic, S., Žic, J., and Đukić, G. (2023). Efficient planning and optimization of inventory replenishments for sustainable supply chains operating under (R, s, S) policy. Sustainable Futures, 5(June 2022). https://doi.org/10.1016/j.sftr.2023.100110