Abbassi, A., El hilali Alaoui, A., & Boukachour, J. (2019). Robust optimisation of the intermodal freight transport problem: Modeling and solving with an efficient hybrid approach. Journal of computational science, 30, PP.127-142.
Aloulou, M. A., Kalaï, R., & Vanderpooten, D. (2005). Une nouvelle approche de robustesse: α-robustesse lexicographique. Bulletin du Groupe de Travail Européen Aide Multicritère à la Décision.
Appriou A. (1991). Probabilités et incertitudes en fusion de données multi-senseurs. Revue Scientifique et Technique de la Défense, 11, PP.27–40.
Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations research letters, 25(1), PP.1-13.
Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations research, 52(1), pp.35-53.
Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.
Bray, S., Caggiani, L., & Ottomanelli, M. (2015). Measuring transport systems efficiency under uncertainty by fuzzy sets theory based Data Envelopment Analysis: theoretical and practical comparison with traditional DEA model. Transportation Research Procedia, 5, pp.186-200.
Bruns, F., Goerigk, M., Knust, S., & Schöbel, A. (2014). Robust load planning of trains in intermodal transportation. OR spectrum, 36(3), PP.631-668.
Buckley, J. J., & Eslami, E. (2002). An introduction to fuzzy logic and fuzzy sets (Vol. 13). Springer Science & Business Media.
Caris, A., & Janssens, G. K. (2010). A deterministic annealing algorithm for the pre-and endhaulage of intermodal container terminals. International Journal of Computer Aided Engineering and Technology, 2(4), PP.340-355.
Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management science, 6(1), PP.73-79.
Cheemakurthy, H., & Garme, K. (2022). Fuzzy AHP-Based Design Performance Index for Evaluation of Ferries. Sustainability, 14(6), 3680.
Cheung, R. K., & Chen, C. Y. (1998). A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transportation science, 32(2), PP.142-162.
Coco, A. A., Solano-Charris, E. L., Santos, A. C., Prins, C., & de Noronha, T. F. (2014). Robust optimization criteria: state-of-the-art and new issues. Technical Report UTT-LOSI-14001, ISSN: 2266-5064.
Correia, I., & da Gama, F. S. (2015). Facility location under uncertainty. In Location science. Springer, Cham. pp. 177-203.
Dantzig G. B. (1955), Linear programming under uncertainty. Management Science, 1, pp 179– 206.
Dempster J A.P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, PP.325–339.
Ding, D., & Chou, M. C. (2015). Stowage planning for container ships: a heuristic algorithm to reduce the number of shifts. European Journal of Operational Research, 246(1), PP.242-249.
Erera, A. L., Morales, J. C., & Savelsbergh, M. (2009). Robust optimization for empty repositioning problems. Operations Research, 57(2), PP.468-483.
Ertem, M. A., Akdogan, M. A., & Kahya, M. (2022). Intermodal transportation in humanitarian logistics with an application to a Turkish network using retrospective analysis. International Journal of Disaster Risk Reduction, 72, 102828.
Expósito-Izquiero, C., Lalla-Ruiz, E., Lamata, T., Melián-Batista, B., & Moreno-Vega, J. M. (2016). Fuzzy optimization models for seaside port logistics: berthing and quay crane scheduling. In Computational Intelligence Springer, Cham, PP.323-343.
Fotuhi, F., & Huynh, N. (2017). Reliable intermodal freight network expansion with demand uncertainties and network disruptions. Networks and Spatial Economics, 17(2), PP.405-433.
Gabrel, V., & Murat, C. (2010). Robustness and duality in linear programming. Journal of the Operational Research Society, 61(8), PP.1288-1296.
Ghaderi, A., & Rahmaniani, R. (2016). Meta-heuristic solution approaches for robust single allocation p-hub median problem with stochastic demands and travel times. The International Journal of Advanced Manufacturing Technology, 82(9-12), PP.1627-1647.
Grossmann, I. E., Apap, R. M., Calfa, B. A., García-Herreros, P., & Zhang, Q. (2016). Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. Computers & Chemical Engineering, 91, pp.3-14.
Guo, W., Atasoy, B., van Blokland, W. B., & Negenborn, R. R. (2021). Anticipatory approach for dynamic and stochastic shipment matching in hinterland synchromodal transportation. Flexible Services and Manufacturing Journal, pp.1-35.
Guo, J., Xu, J., He, Z., & Liao, W. (2022). Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 18(1), 397.
Heggen, H., Braekers, K., & Caris, A. (2017). An efficient heuristic for multi-objective train load planning: a parameter sensitivity analysis. Proceedings of the International Conference on Harbor Maritime and Multimodal Logistics Modelling and Simulation.
Iancu, D. A., & Trichakis, N. (2013). Pareto efficiency in robust optimization. Management Science, 60(1), PP.130-147.
Jin, J. G., Lee, D. H., & Hu, H. (2015). Tactical berth and yard template design at container transshipment terminals: A column generation based approach. Transportation Research Part E: Logistics and Transportation Review, 73, PP.168-184.
Kahfi, A., Tavakkoli-Moghaddam, R., & Seyed Hosseini, S. M. (2021). Robust Bi-Objective Location-Arc Routing Problem with Time Windows: A Case Study of an Iranian Bank. International Journal of Supply and Operations Management, 8(1), PP.1-17
Kouvelis, P., & Yu, G. (2013). Robust discrete optimization and its applications (Vol. 14). Springer Science & Business Media.
Lodwick, W. A., & Untiedt, E. (2010). Introduction to fuzzy and possibilistic optimization. In Fuzzy Optimization Springer, Berlin, Heidelberg, pp. 33-62.
Lu, B., & Park, N. K. (2013). Sensitivity analysis for identifying the critical productivity factors of container terminals. Journal of Mechanical Engineering, 59(9), pp.536-546.
Luhandjula, M. K., & Gupta, M. M. (1996). On fuzzy stochastic optimization. Fuzzy Sets and Systems, 81(1), PP.47-55.
Maiyar, L. M., & Thakkar, J. J. (2020). Robust optimisation of sustainable food grain transportation with uncertain supply and intentional disruptions. International Journal of Production Research, 58(18), PP.5651-5675.
Meng, Q., & Wang, T. (2010). A chance constrained programming model for short-term liner ship fleet planning problems. Marit. Pol. Mgmt., 37(4), PP.329-346.
Meng, Q., Wang, T., & Wang, S. (2012). Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand. European Journal of Operational Research, 223(1), PP.96-105.
Meraklı, M., & Yaman, H. (2016). Robust intermodal hub location under polyhedral demand uncertainty. Transportation Research Part B: Methodological, 86, PP.66-85.
Min, H. (1991). International intermodal choices via chance-constrained goal programming. Transportation Research Part A: General, 25(6), PP.351-362.
Mudchanatongsuk, S., Ordóñez, F., & Liu, J. (2008). Robust solutions for network design under transportation cost and demand uncertainty. Journal of the Operational Research Society, 59(5), PP.652-662.
Munim, Z. H., & Haralambides, H. (2018). Competition and cooperation for intermodal container transhipment: A network optimization approach. Research in Transportation Business & Management, 26, PP.87-99.
Ordóñez, F., & Zhao, J. (2007). Robust capacity expansion of network flows. Networks: An International Journal, 50(2), PP.136-145.
Park, H. J., Cho, S. W., & Lee, C. (2021). Particle swarm optimization algorithm with time buffer insertion for robust berth scheduling. Computers & Industrial Engineering, 160, 107585.
Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), PP.637-649.
Ries, J., González-Ramírez, R. G., & Miranda, P. (2014, September). A fuzzy logic model for the container stacking problem at container terminals. In International Conference on Computational Logistics. Springer, Cham, PP.93-111.
Rodrigues, F., & Agra, A. (2021). An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times. European Journal of Operational Research, 295(2), PP.499-516.
Rouky, N., Boukachour, J., Boudebous, D., & Alaoui, A. E. H. (2018). A Robust Metaheuristic for the Rail Shuttle Routing Problem with Uncertainty: A Real Case Study in the Le Havre Port. The Asian Journal of Shipping and Logistics, 34(2), PP.171-187.
Rouky, N., Abourraja, M., Boukachour, J., Boudebous, D., Alaoui, A., & Khoukhi, F. (2019). Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem. International Journal of Industrial Engineering Computations, 10(1), PP.111-132.
Roy, B. (2010). Robustness in operational research and decision aiding: A multi-faceted issue. European Journal of Operational Research, 200(3), PP.629-638.
Ross, T. J. (2009). Fuzzy logic with engineering applications. John Wiley & Sons.
Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6-7), PP.971-983.
Segura, F. G., Segura, E. L., Moreno, E. V., & Uceda, R. A. (2017, September). A fully fuzzy linear programming model for the berth allocation problem. In Computer Science and Information Systems (FedCSIS), 2017 Federated Conference on pp.453-458. IEEE.
Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: modeling and theory. Society for Industrial and Applied Mathematics.
Shapiro, A., & Philpott, A. (2007). A tutorial on stochastic programming. Manuscript. Available at www2. isye. gatech. edu/ashapiro/publications. html, 17.
Shafer, G. (1976). A mathematical theory of evidence. Princeton university press.
Shang, X. T., Cao, J. X., & Ren, J. (2016). A robust optimization approach to the integrated berth allocation and quay crane assignment problem. Transportation Research Part E: Logistics and Transportation Review, 94, PP.44-65.
Sharma, G., Sharma, V., Pardasani, K. R., & Alshehri, M. (2020). Soft set based intelligent assistive model for multiobjective and multimodal transportation problem. IEEE Access, 8, pp.102646-102656.
Sheikhtajian, S., Nazemi, A., & Feshari, M. (2020). Marine Inventory-Routing Problem for Liquefied Natural Gas under Travel Time Uncertainty. International Journal of Supply and Operations Management, 7(1), PP.93-111.
Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial intelligence, 66(2), PP.191-234.
Smets, P. (1998). Application of the transferable belief model to diagnostic problems. International journal of intelligent systems, 13(2‐3), PP.127-157.
Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations research, 21(5), PP.1154-1157.
Tang, J., Wang, D. W., Fung, R. Y., & Yung, K. L. (2004). Understanding of fuzzy optimization: theories and methods. Journal of Systems Science and Complexity, 17(1), PP.117- 136.
Tirkolaee, E. B., & Aydin, N. S. (2022). Integrated design of sustainable supply chain and transportation network using a fuzzy bi-level decision support system for perishable products. Expert Systems with Applications, 195, 116628.
Tsang, H. T., & Mak, H. Y. (2015). Robust Optimization Approach to Empty Container Repositioning in Liner Shipping. In Handbook of Ocean Container Transport Logistics pp. 209-229. Springer, Cham.
Van Hui, Y., Gao, J., Leung, L., & Wallace, S. (2014). Airfreight forwarder’s shipment planning under uncertainty: A two-stage stochastic programming approach. Transportation Research Part E: Logistics and Transportation Review, 66, PP.83-102.
Vis, I. F. (2006). A comparative analysis of storage and retrieval equipment at a container terminal. International Journal of Production Economics, 103(2), PP. 680-693.
Wang, C. N., Nhieu, N. L., Tran, K. P., & Wang, Y. H. (2022). Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam. Axioms, 11(2), 60.
Wang, B., & Yang, T. (2012). Stochastic optimization of empty container repositioning of sea carriage. In Advanced Materials Research (Vol. 340, pp. 324-330. Trans Tech Publications.
Wang, R., Yang, K., Yang, L., & Gao, Z. (2018). Modeling and optimization of a road-rail intermodal transport system under uncertain information. Engineering Applications of Artificial Intelligence, 72, PP.423-436.
Wu, Z., Song, T., & Zhao, K. (2006). Selection of Container Shipping Routes [J]. Journal of Southwest Jiaotong University, 41(3), pp. 269-272.
Yu, G., & Yang, J. (1998). On the robust shortest path problem. Computers & Operations Research, 25(6), PP.457-468.
Zetina, C. A., Contreras, I., Cordeau, J. F., & Nikbakhsh, E. (2017). Robust uncapacitated hub location. Transportation Research Part B: Methodological, 106, PP.393-410.
Zhang, H., Yang, K., Gao, Y. and Yang, L., 2022. Accelerating Benders decomposition for stochastic incomplete multimodal hub location problem in many-to-many transportation and distribution systems. International Journal of Production Economics, 248, p.108493.
Zweers, B. G., & van der Mei, R. D. (2022). Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings. Eu