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Abstract 

In a realistic environment, operational decision problems involve several sources of uncertainty, due to measurement 

errors, approximate parameters, or simply the unavailability of information at the time of decision-making. These 

disturbances are important in the optimization process and must be taken into consideration. To meet these needs, 

optimization under uncertainty has emerged as an important area of modern operations research and has gained increasing 

popularity in recent years by tackling complex optimization problems, such as multimodal chain management and 

container terminals management. In this regard, the present article provides a general overview of the different 

optimization paradigms and approaches used in the literature to support decision-making in the face of uncertainty. In 

particular, this article aims to present a state of the art on application of optimization under uncertainty in multimodal 

transport problems, with a particular focus on the application of Robust Optimization. 

Keywords: Optimization, Uncertainty, Robust Optimization, Multimodal transport.  

1. Introduction   

In a real-world context, many optimization problems are subject to data uncertainties. One can think of all production, 

planning, transportation, and financial problems where decision-makers are faced with imperfect knowledge about future 

customer demands, resource availability, oil prices, or interest rates. Incorporating this lack of information into the initial 

modeling of the problem increases its complexity but neglecting it can make the model lose credibility. Indeed, an optimal 

solution obtained by a deterministic approach that does not consider the uncertainties may differ from the real optimum. 
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In the literature, approaches dealing with optimization under uncertainty have followed a variety of modeling philosophies 

over the years, which can be classified into the following three categories (Roy, 2010):  

 

● A posteriori approaches: in these approaches, solutions for the initial (deterministic) optimization problem are 

first computed, using classical deterministic optimization methods. Once the solutions have been calculated, the 

influence of input parameter perturbations on the quality of these solutions is studied. An example of the most 

well-known a posteriori approach is Sensitivity Analysis. 

● A priori approaches: In these approaches, uncertainties about input data are incorporated into the initial 

formulation of the problem. These approaches aim to find the best solution that protects against disturbance. The 

uncertainties are considered during the optimization process and the solution found by these approaches is an 

optimal (or approximate) solution to the optimization problem under uncertainties.  

● Online approaches: The optimization problem is solved when the data is known in this category of approaches. 

In practice, online approaches are rarely used since decision-making must be established in advance to allow 

solutions to be implemented before when the data will be known. Thus, it is preferable to use an a priori or a posteriori 

approach to manage disturbances on the input data of the systems under study, to obtain prior solutions that will be 

effective in dealing with possible future disturbances. In this context, several types of these approaches have been 

developed in the literature to guide the decision-maker in making decisions under uncertainty such as stochastic 

optimization, sensitivity analysis, fuzzy optimization, belief functions, and robust optimization.  

1. Stochastic Optimization 

Stochastic optimization techniques are probabilistic approaches where uncertainties on the input data are modeled 

by probability distributions to describe the probability of occurrence of an event. Stochastic approaches assume that the 

probability distributions governing the data are known or can be estimated, and the objective is to find feasible solutions 

for all (or almost all) possible realizations of uncertain parameters while optimizing the expected value of the objective 

function (Shapiro et al., 2009). In the literature, three types of stochastic optimization paradigms can be distinguished: 

● Stochastic programming without recourse (SP): generally, in stochastic programming, the expected value of 

the objective function is calculated by integrating over the set of uncertain parameters, which can be a difficult 

task. In the case of discrete or finite sets of uncertainties, realizations of uncertainty can be modeled using a 

finite set of scenarios, which simplifies the calculation of the expected value. As a result, in uncertainty-based 

optimization theory, stochastic programming is often considered a scenario-based approach and problem 

formulations are performed at several decision levels depending on the order in which the uncertainties arise. 

Each level involves a discrete temporal representation of the problem and establishes the information on the 

uncertain parameters available at the time of its occurrence. The simplest formulation considers only those 

decisions that are made before the uncertainty is revealed. This type of formulation is called stochastic 

programming with a single decision level or stochastic programming without recourse (Grossmann et al., 2016). 

● Two-stage stochastic programming (TSP): the problem variables are divided into two decision levels in this 

type of formulation. The variables at the first level are those that need to be decided before the uncertain 

parameters are realized. Then, once the uncertainties are revealed, further improvements are made to the 
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resolution of the problem by selecting, at some cost, the values of the variables at the second level of decision 

or appeal. Second level variables are interpreted as corrective actions or remedies against any infeasibility arising 

from a particular realization of the uncertainties. Due to uncertainties, the costs of the second level are also 

considered random variables. The objective is to select the variables in the first level to minimize the sum of the 

costs in the first level and the expected random costs in the second level. This type of formulation is also called 

stochastic programming with recourse (Sahinidis, 2004). 

● Chance constrained programming (CCP): another aspect of stochastic programming is that of programming 

with probabilistic constraints introduced by Charnes and Cooper (1959). Unlike the aspect of recourse models, 

this type of formulation focuses on the probability of constraint violation by ensuring that the probability of 

encountering a certain constraint is greater than a certain level. In other words, probabilistic constraint 

programming restricts the range of possible solutions so that the level of confidence provided by the final 

solution (i.e., the degree of protection against uncertainties) is high. 

A more detailed description of the different stochastic optimization paradigms is available in the tutorial proposed by 

(Shapiro and Philpott, 2007) and in the work of (Birge and Louveaux, 1997) and (Sahinidis, 2004).  

Table 1 presents some work that uses stochastic optimization to solve multimodal transport problems under uncertainty. 

Table1. Overview of the use of stochastic optimization in multimodal transport problems 

Reference  
Stochastic optimization 

paradigm 
Description 

Min (1991) CCP 

Propose a stochastic scheduling model with probabilistic 

constraints to help distribution managers to choose the most 

efficient intermodal combination that minimizes 

transportation costs, risks, and meets various service 

requirements on time 

Cheung and Chen (1998) TSP 

Effectively solve the problem of the dynamic allocation of 

empty containers to match customer demand over time. The 

goal is to minimize the total cost of leasing containers and 

determine the level of inventory required at ports. 

Wu et al. (2006) CCP 

Optimize the selection of container shipping routes in a 

maritime transshipment problem with uncertain demand. 

The objective is to maximize profit during transport subject 

to capacity constraints and the balance of empty and heavy 

containers 

Meng and Wang (2010) CCP 

Study the problem of short-term planning of shipping lines 

for a fleet of ships, taking into consideration the 

uncertainties about the demand for shipping containers 

between ports 

Wang and Yang (2012)  CCP 

Minimize the cost of repositioning empty containers, 

assuming that the number of containers available at the 

beginning of planning is uncertain 

Meng et al. (2012) TSP 

Study the problem of short-term planning of shipping lines 

for a fleet of vessels with uncertain demands. Given a 

network of shipping lines services comprising several 

shipping routes, the problem is to determine the number and 

type of vessels required in the fleet and to assign each of 
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these vessels to a particular route to maximize the value of 

the total profit.  

Van Hui et al. (2014) TSP 

Study the problem of planning the shipment of goods with 

random processing times in intermodal terminals. Shipping 

activities are divided into two groups according to regional 

parameters. Processing times for activities in the first region 

are assumed to be random while those in the second region 

are deterministic. 

Rouky et al. (2019) TSP 

Investigates the stochastic quay crane scheduling problem 

where the loading /unloading times of containers and travel 

time of quay cranes are considered uncertain. A simulation-

based ant colony algorithm is proposed for the resolution of 

the problem.  

Guo et al. (2021) CCP 

Investigates the dynamic and stochastic shipment matching 

problem faced by network operators in hinterland 

synchromodal transportation. The objective is to provide 

optimal matches between shipment requests and multimodal 

services within a finite horizon under spot request 

uncertainty. To solve the problem an anticipatory algorithm, 

with a sample average approximation method to address 

spot request uncertainties, was proposed. 

Zhang et al (2022) TSP 

Study the incomplete multimodal hub location problem in 

many-to-many transportation and distribution systems with 

considering transportation costs. An improved Benders 

decomposition algorithm is implemented to solve the 

problem by adopting a sample average approximation 

approach and a dualization strategy. 

Zweers and Mei (2022) CCP 

Study the intermodal transportation networks problem with 

stochastic travel times and overbooking to minimize the 

travel cost.   

CCP: Chance Constrained Programing, TSP: Two-Stage Programming TSP 

2. Fuzzy Optimization   

Fuzzy set programming also deals with optimization under uncertainty. The main difference between stochastic 

and fuzzy approaches lies in the way uncertainties are modeled.  In the case of stochastic programming, discrete or 

continuous probability functions are used to model uncertainties in the data. However, this type of modeling is not always 

appropriate, particularly when the information about the uncertain data is vaguely defined or described qualitatively; 

because of partial data, insufficient understanding of data, or when it relates to human behavior (Tang et al., 2004). Fuzzy 

set optimization considers random parameters as fuzzy numbers and constraints are treated as fuzzy sets (Buckley and 

Eslami, 2002). Some constraint violations are allowed and the degree of satisfaction of a constraint is defined as the 

belonging function of the constraint. Two types of fuzzy set programming can be distinguished: flexible programming 

devoted to the study of uncertainties on the second member of the constraints and possibilistic programming which deals 

with uncertainties in the coefficients of the objective function as well as in the coefficients of the constraints. In both 

types of fuzzy programming, the objective function is addressed as a constraint of the problem, and the lower and upper 

bounds of this constraint define the expectations of decision-makers. Belonging functions are used to represent the degree 

of satisfaction with constraints and the levels of expectations of decision-makers concerning the objective function.  

The reader interested in more details on fuzzy set optimization can refer to (Luhandjula and Gupta, 1996), (Ross, 2009), 

and (Lodwick and Untiedt, 2010). Table 2 presents some applications of fuzzy set optimization in multimodal transport 

problems. 
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Table 2.  Some Applications of Fuzzy Set Optimization in Multimodal Transport Problems 

Reference  Description 

Ding and Chou (2015) 

Development of a multi-objective decision-making model to 

determine the best selection of transshipment ports in a maritime 

container transport chain 

Ries et al. (2014) 

Design of a decision support system based on the solution of the 

container storage problem in a container terminal. The objective is to 

provide real-time decisions to deal with a high degree of uncertainty 

affecting the arrival dates of containers at the storage areas 

Bray et al. (2015) 

Measurement of the efficiency of transport and service systems 

considering uncertainties in the input data, using an approach that 

combines Fuzzy Set Optimization (FSO) and Data Envelope Analysis 

(DEA). The accuracy of the measurements provided by the hybrid 

approach is compared to that of the traditional DEA approach 

Expósito-Izquiero et al. (2016)  

A joint resolution of the problems of berth allocation and scheduling 

of quay cranes under uncertainty about container ship arrival dates and 

handling times 

Segura et al. (2017) 

Proposal of a mathematical model to solve the problem of allocating 

continuous berths, considering the uncertainties on the dates of arrival 

of container ships 

Wang et al.  (2018) 

Proposal of a mathematical model and a memetic algorithm for solving 

the Hub-and-Spokes network design problem in a Rail-Road 

intermodal transport system 

Sheikhtajian et al. (2020) 

Studied the uncertain Liquified Natural Gaz (LNG) inventory-routing 

problem. Vessel speed was modeled as a fuzzy parameter and a 

memetic genetic algorithm was proposed as a solution method. 

Sharma et al. (2020) 

Developed an efficient soft set-based approach for the multi-objective 

multimodel transportation problem. This approach was used to 

successfully perform multi-criteria decision-making for the choice of 

various modes of transport with different objectives and tested for real 

data set. 

Cheemakurthy and Garme (2022) 

Proposed a Fuzzy Analytic Hierarchic Process (AHP) in combination 

with particle swarm optimization for the evaluation of ferries in 

Stockholm.  

Trikollaee and Aydin (2022) 

Build up a useful fuzzy bi-level Decision Support System (DSS) for 

integrated design of sustainable supply chain and co-modal 

transportation network for perishable products under uncertain 

environments. 

Wang et al. (2022) 

Studied the uncertain petroleum supply chain design problem with the 

pipeline system. Uncertainties on resource cost, demand, and price 

were considered and a Fussy min-max goal programming model 

integrated with a heuristic approach was proposed for the resolution. 

3. Sensitivity Analysis 

Sensitivity analysis is one of the a posteriori approaches for optimization under uncertainty.  It consists in studying the 

impact of perturbations in the input data of a problem on the quality of the solutions obtained by classical optimization 

methods. Sensitivity analysis does not aim to solve the problem under uncertainty but to analyze the behavior of the 

solutions already obtained in the face of data perturbations, highlighting the links between the inputs and outputs of the 

system under study.  Indeed, it is an a posteriori analysis of the stability of the deterministic solutions to determine the 
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input data whose uncertainties on their values generate the greatest degradation in the value of the objective function. In 

combinatorial optimization, two main types of approaches can be distinguished:  

● Quantitative sensitivity analysis: which seeks to evaluate various measures of sensitivity for each 

solution and to propose efficient algorithms for their calculation. 

● Qualitative sensitivity analysis: which aims to analyze the structural, combinatorial, or geometric 

properties of solutions. 

Table 3 provides an overview of the applications of sensitivity analysis to multimodal container transport problems. 

Table 3 Overview of Applications of Sensitivity Analysis to Multimodal Transportation Problems 

Reference  Description 

Vis (2006) 

Comparison of the performance of straddle carriers and automated 

gantry cranes in container handling, considering the uncertainties on 

handling equipment travel times and container arrival dates.  

Caris and Janssens (2010) 

Solving a container transfer problem in an intermodal terminal using 

deterministic algorithms and analyzing the sensitivity of solutions 

found in the face of various data perturbations. 

Lu and Park (2013) 
Proposal of a sensitivity analysis approach to identify critical factors 

for improving the productivity of container terminals. 

Jin et al. (2015) 

Resolution of the congestion problem encountered in the berthing of 

container ships by introducing a proactive management strategy from 

a terminal perspective that adjusts the calling schedule of supply 

vessels to balance the distribution of workload at the wharf level. 

Heggen et al. (2017) 

Proposal of a multi-objective heuristic for the planning of train 

loading operations, and development of a sensitivity analysis 

approach to consider the different aspects that affect the capacity 

utilization of trains. 

Munim and Haralambides (2018) 

 

Proposal of a linear model to find the optimal economic conditions 

for efficient cooperation between the ports of Bangladesh and India, 

at the level of intermodal traffic. Sensitivity analysis considering 

uncertainties about the capacities and demands of the different ports 

is used to establish the robustness of the strategic decisions that could 

be taken. 

Ertem et al. (2022) 

Studied the intermodal transportation in humanitarian logistics within 

a Turkish network using retrospective analysis. Dynamic and 

capacitated models are proposed to analyze the sensitivity of the 

system to time and scarce resource environments.  

Guo et al. (2022) 

 Investigated the effect of different cascading failure modes and 

attack strategies of the multimodal transport network. The uniqueness 

of the network was studied by complying with the percolation theory 

and a cascading failure model will consider recovery mechanisms and 

dynamics. 

 

4. Belief Functions 

The theory of belief functions, also known as evidence theory or Dempster-Shafer Theory (DST), is a general framework 

for reasoning under uncertainty, with understandable links to other fields such as probability, possibility theory, and 
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imprecise probability theory. First introduced by Arthur Pentland Dempster (Dempster, 1967) in the context of statistical 

inference, the theory was then used by Glenn Shafer (Shafer, 1976) to model uncertainty. The theory of belief functions 

is a rich and flexible framework generalizing Bayesian inference to the treatment of uncertainty. It allows to explicitly 

represent uncertainties in the data by perfectly expressing what is already known and considering what remains to be 

known. The most widely used model in the theory of belief functions is the Transferable Belief Model (TBM) (Smets and 

Kennes, 1994), in which the aim is to monitor, record, and transmit new knowledge based on observed information. The 

Transferable Belief Model differentiates between two levels of reasoning:  

● The credal level: from the Latin "credo" meaning "I believe", which consists of two parts: a static part for 

representing information and a dynamic part for observing and combining knowledge. 

● The pignistic level: from the Latin "pignus" meaning "bet", also known as the decision-making level, where 

risks are assessed, and decisions are made.  

The theory of belief functions has been applied in several works dealing with various fields, such as pattern recognition 

(Appriou, 1991) and diagnosis (Smets, 1998). But little work in the literature has been devoted to its applications to 

multimodal transport problems. 

Although the first four approaches presented in this article have been widely used in the literature for the management of 

uncertainties, in particular the resolution of many multimodal transport problems, their application in practice is often 

very difficult, especially if the probability laws or degrees of membership associated with the uncertain data cannot be 

precisely determined. This is particularly important in new real-world applications, where there is a lack of historical data 

that can allow these estimates to be made. As alternatives to these approaches, robust optimization techniques are 

increasingly being used to deal with uncertainties when dealing with real-world problems. In what follows, we will present 

these techniques in more detail. 

5. Robust Optimization 

Robust optimization is an approach that seeks to find a so-called "robust" solution to an optimization problem in which 

the data are uncertain without the use of probabilistic analysis. Introduced as early as 1955 by Dantzig (Dantzig, 1955), 

the idea of robustness has experienced a resurgence of interest in recent decades with numerous applications by both 

practitioners and theorists. In contrast to stochastic approaches, robust optimization models uncertain data using 

continuous or discrete sets of possible values with no attached probabilities.  In the continuous case, sets of uncertainties 

are often represented by intervals and convex sets (i.e. polyhedron, box, or ellipsoid), based on the minimum and 

maximum deviations of the uncertain parameters from their nominal values. The discrete case is referred to as scenario-

based models, where the possible values of the uncertain parameters are modeled by a discrete finite set of scenarios with 

the same probability of occurrence. In both cases, it is the cartesian product of the sets of uncertainties considered that 

define the possible instances of the problem under consideration. Several definitions of a "robust solution" circulate in 

the literature; we will adopt the one proposed by Gabrel and Murat (2010). According to these authors, a solution is 

qualified as robust if it is "acceptable" in all possible scenarios and if its performance is never "too bad". A robust 

optimization approach then consists in defining the best strategy to protect against the various possible realizations of 

uncertainties, while minimizing the value of the worst case on all possible solutions. Therefore, when using a robust 

approach, it is important to identify the context in which the study is being conducted. According to Kouvelis and Yu 

(2013), the implementation of a robust optimization approach involves three main steps: 
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1. Selection of an appropriate robustness criterion (i.e. absolute robustness, maximum regret, relative regret, 𝛼-

robustness, 𝑝-robustness, etc.). 

2. Choice of the appropriate representation of uncertain parameters (i.e. discrete set of scenarios or convex set). 

3. Proposal of the mathematical model and the algorithm for generating robust solutions. 

In the remainder of this section, we will present the main robustness criteria applied in the literature. We will then describe 

the different sets used in robust optimization to model uncertainties in the data and we will explain the Pareto principle 

of robustness. Finally, some applications of robust optimization to the problems of multimodal transport will be discussed.  

6.1 Robustness Criteria 

Several robustness criteria have been developed in the literature to measure the quality of robust solutions. These criteria 

can be divided according to (Aloulou et al., 2005) into two parts big families:  

● Approaches based on the optimization of a criterion: these approaches are based on the classical optimization 

criteria of worst-case scenarios such as absolute robustness (min-max), maximum regret (min-max regret), and 

relative regret (min-max relative regret). 

● Approaches based on robustness conditions: these approaches impose conditions to be met for a solution to 

be considered robust such as the 𝛼-robustness and the 𝜌-robustness. 

In the following subsections, we give a brief description of the most used criteria in the literature 

a) Absolute robustness  

A robust solution, according to this criterion, is the best worst-case solution in all possible scenarios. Consider a problem 

of minimizing an objective function 𝑓, with 𝑋 the set of possible solutions to this problem, and 𝑆 the set of all possible 

scenarios. The criterion of absolute robustness is defined by the following relationship: 

min
x∈X

max
s∈S

f(x, 𝑠) 

This criterion is often linked to the notion of risk where decision-makers seek to protect themselves against losses 

generated by a large change in data. Many works use this criterion as a robustness measure, we mention the works on the 

Shortest Robust Path (Gabrel and Murat, 2010) and the Robust Knapsack Problem (Kouvelis and Yu, 2013). 

b) Maximum regret 

Regret is the sense of loss experienced by a decision-maker when he learns of the existence of a preferable solution to a 

given scenario than the one that was applied. A robust solution, according to the maximum regret criterion, is the one that 

has the smallest worst deviation from the optimal solutions over all possible scenarios. Indeed, regret is defined in robust 

optimization as being the difference between the value of a solution and the value of the optimal solution in the same 

scenario, and maximum regret is the highest regret of a solution overall scenarios. A robust solution is then the solution 

with the smallest maximum regret. This criterion is defined by the following relation: 

min
x∈X

max
s∈S

 (f(x, s) − f(x∗, s)) 
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𝑥∗ ∈ 𝑋 is the optimal solution on the scenario 𝑠 ∈  𝑆 and 𝑓(𝑥∗, 𝑠) is its value in scenario 𝑠. 

 

c) Relative Regret 

The principle of relative regret is almost similar to maximum regret, the only difference resides in the fact that we replace, 

in the definition of regret, the minimization of the absolute deviations between the solutions and the optimal values by 

the minimization of the percentages of deviation from the optimal solution. The relation used to represent relative regret 

is as follows: 

min
x∈X

max
s∈S

(
𝑓(x, 𝑠) − 𝑓(x∗, 𝑠)

𝑓(x∗, 𝑠)
) 

The family of approaches based on the optimization of the worst-case criterion, presented above, is generally considered 

in the literature as a very conservative family. Indeed, studying the notion of robustness based on this criterion often leads 

to privileging a single aspect which is the protection against the worst scenarios, even if it is very improbable, in practice, 

that all the uncertain parameters reach their higher values simultaneously. On the other hand, a solution that protects 

against worst-case achievements is robust, but it is very bad when applied in other scenarios. 

d) 𝛼- Robustness 

This approach was presented for the first time by Aloulou et al. (2005), as a less conservative alternative to worst-case 

criterion-based optimization approaches, for problems where uncertain data are modeled using discrete scenarios. In this 

criterion, a parameter 𝛼 defines a tolerance threshold to limit the degree of conservatism of a solution. The first step of 

this approach consists of ordering the values of each solution 𝑥 ∈ 𝑋 over the set of scenarios 𝑆 in descending order, the 

resulting vector is called the “disutility vector” of the solution 𝑥. Then, a fictitious disutility vector for a solution 𝑥′ called 

“ideal solution”, whose coordinates represent the minimum costs on each row of the disutility vector matrix, is calculated. 

A robust solution according to this approach is any solution in which the difference between its disutility vector and the 

fictitious disutility vector does not exceed the tolerance threshold 𝛼. 

e) 𝑏𝑤-Robustesse 

For Roy (2010), robustness is defined as an ability to resist “roughly” or “areas of ignorance” to protect oneself from 

impacts deemed regrettable in all possible scenarios. According to the author, classical min-max approaches do not fully 

answer this question since they only focus on minimizing the worst case. To overcome this drawback, Roy proposed a 

new robustness criterion called 𝑏𝑤 -robustness. In this approach two parameters are used: a constant 𝑤 which defines the 

value that the decision-maker does not want to exceed in all scenarios (compliance with this value must be guaranteed 

and represents a firm constraint of the problem), and a value 𝑏, with 𝑏 ≤ 𝑤 (for a minimization problem), which the 

decision-maker wants to achieve under the greatest number (or proportion) of scenarios. In other words, if 𝑓(𝑥, 𝑠) is the 

value of a solution 𝑥 on the scenario 𝑠, then the robust solution according to the bw-robustness criterion is the solution 

that maximizes the number of scenarios where 𝑓(𝑥, 𝑠) ≤ 𝑏, while ensuring that 𝑓(𝑥, 𝑠) ≤ 𝑤 ∀𝑠 ∈ 𝑆. Like the criteria of 

the min-max family, 𝑏𝑤 -robustness can also be presented in the form of absolute robustness, regret, or relative regret. 
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Other robustness criteria have also been used in the literature to determine the quality of a robust solution, such as p-

robustness, lexicographic min-max, pw-robustness, etc. A state of art on these criteria is presented in (Coco et al., 2014). 

6. Uncertainty Sets and Corresponding Robust Optimization Models 

In robust optimization, a set of uncertainties represents how the disturbances in the data are modeled. The structure of a 

set of uncertainties strongly influences the existence and the traceability of solutions. In this section, the most important 

sets of uncertainties and the corresponding robust optimization models are briefly presented. Let’s consider the following 

uncertain linear programming problem: 

minimize 𝑐 x
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝐴x ≤ 𝑏  

x ∈ X
 

Without loss of generality we assume, in what follows, that only the coefficients of the matrix A are subject to uncertainties 

and that their values belong to a set 𝑈 called the set of uncertainties. In the literature, four main forms of uncertainties set 

can be distinguished: 

● Finite and discrete set of scenarios: the uncertainties are represented by a set of possible scenarios, in 

this case 𝑈𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑖 , … , 𝑠𝑞}, with 𝑠𝑖 the values of possible realizations of uncertainties on the 

coefficients of matrix A in the scenario i. 

● Box: in this type of set of uncertainties, the uncertain coefficients 𝑎̃𝑖𝑗 of matrix A are assumed to belong 

to intervals of the form [𝑎𝑖𝑗 , 𝑎̂𝑖𝑗] where 𝑎𝑖𝑗 represents the nominal value and 𝑎̂𝑖𝑗  the maximum 

disturbance. Thus, the values of the uncertain parameters can be given by 𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜀𝑖𝑗𝑎̂𝑖𝑗 , with 𝜀𝑖𝑗 a 

random variable such that −1 ≤ 𝜀𝑖𝑗 ≤ 1. The interaction of disturbances forms a set of uncertainties in 

the form of a box. This set is often used to model worst-case realizations, and can be described as follows: 

𝑈𝐵={𝑎̃𝑖𝑗  |  𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜀𝑖𝑗𝑎̂𝑖𝑗 , |𝜀𝑖𝑗| ≤ 1} 

● Ellipsoidal: to reduce the degree of conservatism in Box sets, Ben-Tal and Nemirovski (1998) proposed 

an alternative set called the ellipsoidal set of uncertainties. This set introduces a parameter 𝛺 which makes 

it possible to reduce the uncertainty space by removing the extremities of the intervals and thus avoiding 

the worst case. This set is given by the following relation: 

𝑈𝐸={𝑎̃𝑖𝑗  | 𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜀𝑖𝑗𝑎̂𝑖𝑗 , ∑ 𝜀𝑖𝑗
2

𝑗 ≤ 𝛺𝑖
2 ∀𝑖} 

● Polyhedral: introduced by Bertsimas and Sim (2004), this type of set aims to ensure a compromise 

between the robustness and the performance of the solutions by proposing parameterizable modeling of 

uncertain data. This set uses a parameter 𝛤 called the robustness budget to control the number of data that 

will be subject to uncertainties: 

𝑈𝑃={𝑎̃𝑖𝑗  | 𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜀𝑖𝑗𝑎̂𝑖𝑗 , ∑ |𝜀𝑖𝑗|𝑗 ≤ 𝛤𝑖  ∀𝑖} 
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Figure I show the difference between the set of box, ellipsoidal and polyhedral uncertainties for a problem with two 

uncertain parameters. Based on these different sets, several robust modeling approaches have been proposed in the 

literature, namely: the Soyster approach, the Ben-Tal and Nemirovski approach, and the Bertsimas and Sim approach. 

 

7.1 

Soyster’s 

approach    

Soyster 

(1973) 

proposed 

a linear 

optimization model to build a feasible solution for all the realizations of uncertainties belonging to the set box 𝑈𝐵. 

Soyster's robust model was formulated as follows: 

Minimize 𝑐x

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎̃𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏 ∀ 𝑎̃𝑖𝑗 ∈

x ∈ X

 𝒰𝐵, 𝑖 = 1, … , 𝑚 

This formulation is also known as the column uncertainty formulation. This approach, like the min-max criteria, aims to 

protect against the worst-case scenario. Moreover, Soyster shows that for problems where the variables 𝑥𝑗 are not negative 

the model is equivalent to: 

Minimize 𝑐x

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑(𝑎𝑖𝑗+𝑎̂𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ 𝑏, ∀

x ≥ 0

𝑖 = 1, … , 𝑚 

Soyster's approach is an absolute guarantee against all possible realizations of uncertainties, it reduces the resolution of 

the problem under uncertainties to the resolution of a deterministic problem in which all the uncertain parameters take 

their values in the worst case. However, despite the guarantee of feasibility that this approach offers, it is often considered 

very conservative in the literature. Indeed, Ben Tal and Nemnirovski (1999) point out that because of the protection 

against the worst case there is a huge loss of optimality in the other scenarios. 

 

 

(a) Box  (b) Ellipsoidal (c) Polyhedral 
 

Figure I. Illustration of the most used sets of uncertainties. 



Rouky, Boukachour, Boudebous, El Hilali Alaoui 
 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.10, NO.2  

234 

 

7.2 Ben-Tal and Nemirovski’s approach 

To overcome the drawbacks of Soyster's approach, Ben-Tal and Nemirovski (1999) proposed a new approach based on 

the use of the ellipsoidal set of uncertainties 𝑈𝐸. This approach decreases the degree of conservatism by allowing a weak 

violation of the worst-case values on the constraints. Indeed, on each constraint i of the problem, the random parameters 

𝜀𝑖𝑗 which define the values of maximum deviations are supposed to belong to a set 𝐸(𝛺𝑖) = {𝜀𝑖𝑗|  ∑ 𝜀𝑖𝑗
2

𝑗 ≤ 𝛺𝑖
2, 𝜀𝑖𝑗 ∈

[−1,1]} and the corresponding robust model is given by: 

Minimize 𝑐x

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ a𝑖𝑗xj + max
εij∈𝐸(Ω𝑖)

{âijεijxj}

n

j=1

≤ 𝑏 , ∀ i = 1. . . m 

x ≥ 0

 

This model of uncertainties is also known in the literature by the name “line model”, because of parameters  𝛺𝑖 that are 

defined to control the degree of conservatism on each constraint i of the studied problem. 

7.3 Bertsimas and Sim’s approach 

Bertsimas and Sim (2004) proposed an approach similar to the approach of Ben-Tal and Nemirovski to find a compromise 

between the performance of solutions and their robustness. The difference between the two approaches lies only in the 

set of uncertainties considered. Indeed, the approach of Bertismas and Sim is based on the polyhedral set of uncertainties 

assuming that the random parameters 𝜀𝑖𝑗 are defined on a set of the form 𝜙𝑖(Γ𝑖) = {𝜀𝑖𝑗|  ∑ |𝜀𝑖𝑗|𝑛
𝑗=1 ≤ Γ𝑖  , 𝜀𝑖𝑗 ∈ [−1,1]}. 

The robust model corresponding to this approach is given by: 

Minimize 𝑐x

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ a𝑖𝑗xj + max
εij∈ 𝜙𝑖(Γ𝑖)

{âijεijxj}

n

j=1

≤ 𝑏   ∀ i = 1. . . m 

x ≥ 0

 

This approach is also known as the "robustness budget approach" since it uses a parameter 𝛤 which controls the amount 

of data that will be subject to uncertainty. Thus, a robust solution according to the approach of Bertsimas and Sim is 

defined as a solution that protects against all situations in which at most the values of 𝛤𝑖  coefficients on each constraint i 

of the studied problem are disturbed. 

7.4 Pareto Robustness 

The standard robust optimization approaches, described previously, are based on the use of a single criterion, to determine 

a robust solution to an optimization problem over all the realizations of the possible uncertainties. However, in many 

applications, this solution is seldom unique, as there may be several robust optimal solutions, and some may confer more 

benefits to the decision-maker than others. Indeed, even if all the robustly optimal solutions have the same objective 

function value on the optimized criterion (min-max for example), these solutions do not necessarily have the same 

performance in the other scenarios. According to Iancu and Trichakis (2014), standard approaches are not desirable in 

practice because they lead to sub-optimal performance and do not facilitate the choice of the decision-maker. To solve 
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these problems, Iancu and Trichakis proposed a new concept called Pareto robustness, which is inspired by the principle 

of Pareto optimality used in multi-objective optimization. The purpose of Pareto robustness is to find solutions that are 

robustly efficient in the sense of Pareto, i.e., robustly feasible solutions where no improvement on the value in a scenario 

can be made without sacrificing performance in another. In other words, robust Pareto solutions are solutions for which 

there are no other robustly feasible solutions that have a performance at least equal on all scenarios 𝑠 ∈ 𝑈𝑆 and strictly 

better on at least one of these scenarios. The representation of robust Pareto solutions facilitates decision making, in the 

sense that it allows the decision-maker to explore the possible trade-offs between all the scenarios before deciding how 

they should be prioritized. 

8. Overview of Robustness Applications in Multimodal Transport 

To ensure the performance of the multimodal supply chain, analysis of the robustness of solutions proposed in the face 

of various disruptions in data of the system studied must be carefully examined at each decision level. Robust optimization 

has been applied extensively over the past few years. Ordóñez and Zhao (2007) studied the problem of designing transport 

networks with uncertainties on travel times and demands. The authors propose a robust formulation of the problem based 

on the use of the set of polyhedral uncertainties. Mudchanatongsuk et al. (2008) considered a similar problem with 

uncertain transport costs and demands. Two robust formulations, based on polyhedral and ellipsoidal sets, have been 

developed and a column generation approach has been proposed to solve lagrangian relaxation on large instances. In 

Pishvaee et al. (2011), the authors addressed a loop supply chain network design problem with uncertainties about costs 

and demands. A deterministic model was first developed to design the network, then the robust counterpart of the model 

was proposed using the approach of Ben-Tal and Nemirovski. The qualities of solutions obtained by the deterministic 

and robust models were compared in several scenarios with different datasets.  

The problems of locating hubs under uncertainties have also been widely studied in the literature, a full state of the art on 

these problems is available in (Correia and da Gama, 2015). Merakh and Yaman (2016) studied the problem of P-hub 

with multiple allocation and uncertain demands. The authors use a pipe uncertainty model and a hybrid model to 

characterize demand uncertainties. The former considers that the only information available is an upper limit of the total 

rate adjacent to each node, while the latter incorporates lower and upper limits on each Origin / Destination flow. The 

authors present robust formulations and a Benders decomposition algorithm to solve the two problems for instances up 

to 150 nodes. Ghaderi and Rahmaniani (2016) have dealt with the problem of P-hub with unique allocation and 

uncertainties on requests and handling times. The robust problem is modeled to minimize the maximum regret criterion 

and hybrid metaheuristics are proposed to solve it. Zetina et al. (2017) presented robust counterparts to the problem of 

locating hubs based on the approach of Bertsimas and Sim. Three cases of realization of uncertainties were considered: 

(1) uncertainties on demands, (2) uncertainties on transport costs, and (3) both sources of uncertainties at the same time. 

For each case, a robust formulation was presented and solved using a Branch-and-Cut algorithm.  

Abassi et al. (2019) studied the intermodal freight transport problem considering uncertainties in terminals’ capacities 

and costs. Uncertainties were mitigated using a discrete set of scenarios and regret minimization criteria. To solve the 

problem a Simulated Annealing approach combined with an exact method is proposed. Mayer et al. (2020) investigate 

the sustainable food grain transportation problem with uncertain supply and intentional disruptions. A mixed-integer non-

linear robust optimization model was proposed with as objective the minimization of total relative regret associated with 

the total cost and a Particle Swarm Optimization with a Differential Evolution approach was used for the resolution.  The 
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robust Location-Arc Routing (RLAR) with time windows and uncertain demand is studied in (Kahfi et al, 2021). A Multi-

Objective Dragonfly Algorithm (MODA) and Non-dominated Sorting Genetic Algorithm (NSGA-II) were proposed to 

solve the problem. 

At intermodal terminals, Bruns et al. (2014) studied the problem of determining train loading plans by considering 

different types of uncertainties. Two approaches have been presented to include uncertainties: strict robust load plans, in 

which it is assumed that the solution cannot be changed once implemented, and robust and adjustable load plans that 

allow the planner to react once the uncertain parameters become known. The robust formulations associated with the two 

approaches allow an efficient resolution of the problem. Fotuhi and Huynh (2017) proposed a new robust model based 

on the maximum regret criterion for the extension of an intermodal network. The objective of the model is to identify 

critical rail links to be upgraded, locations to establish new intermodal terminals, and existing terminals to be developed 

while considering uncertainties about demands. A Hybrid Genetic Algorithm that uses Column Generation to determine 

freight flows has been developed to solve the proposed model. 

Robust modeling of the repositioning empty containers problem has been proposed in (Erera et al., 2009). The proposed 

model is based on the approach of Ben-Tal and Nemirovski and the uncertainties arise mainly from forecasts of future 

supplies and demands for assets. The authors established the conditions for the feasibility of a repositioning plan and the 

recovery measures in response to the uncertainties. Tsang and Mak (2015) addressed the problem of repositioning empty 

containers by assuming that container demands are uncertain. Robust modeling of the problem has been proposed and 

several tests have been carried out to evaluate its performance. 

Shang et al. (2016) proposed an interesting application of robust optimization for the joint resolution of berth allocation 

and berth crane scheduling problems in a container terminal. The authors considered the uncertainties in ship arrival dates 

and container handling times. The problem was modeled following the approach of Bertsimas and Sim, and a genetic 

algorithm was proposed for the resolution of larges instances. Rouky et al. (2018) addressed the Rail Shuttle Routing 

Problem (RSRP) in Le Havre port with uncertainties on service and travel times. A robust formulation of the problem, 

based on the Bertsimas and Sim approach, was proposed and a Robust Ant Colony Optimization (RACO) was developed 

for the resolution. Park et al. (2021) studied the Berth Scheduling Problem to minimize the sum of the baseline schedule 

costs and the expected recovered schedule costs. Uncertainty on vessels’ arrival times was modeled using a finite set of 

discrete scenarios and a Particle Swarm Optimization approach was proposed to solve the problem. Guo et al. (2021) 

proposed a Berth Allocation with vessel handling time uncertainty considering the impact of weather conditions. An 

efficient Particle Swarm Optimization algorithm embedded with a machine learning approach is devised for solving the 

berth allocation in large-scale problem cases. Rodrigues and Agra (2021) investigated the Integrated Berth Allocation 

and Quay Crane Scheduling with uncertain vessel arrival times. The problem is modeled as a two-stage robust mixed-

integer program and a decomposition algorithm is proposed for solving the problem.  
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Table 4 Summary of Some Related Research and Applications of robust optimization to Multimodal Transportation Problems 

Reference Problem Uncertainty 

Type 

Uncertainty 

mitigation 

Solution 

Method 

Objective 

Ordóñez and Zhao 

(2007) 

Transport 

Network 

Expansion 

Travel time, 

Demand 

Polyhedral set Solver Decide capacity 

expansions for a transit 

network. 

Mudchanatongsuk 

et al. (2008) 

Transport 

Network 

Design 

Transport 

cost, Demand 

Polyhedral 

and 

Ellipsoidal 

sets 

Column 

Generation  

Whether increased or not 

the arcs capacity and the 

arcs flow to route 

commodities at minimum 

transportation and 

investment cost. 

Erera et al. (2009) Empty 

Containers 

Repositioning 

Supply and 

Demand 

Ben-Tal and 

Nemirovski 

model 

Solver Minimize the cost of 

repositioning empty 

containers. 

Pishvaee et al. 

(2011) 

Supply Chain 

Network 

Design 

Transport cost 

and Demand 

Ben-Tal and 

Nemirovski  

Solver 

 

Minimizes the total cost, 

which includes fixed 

opening centers costs and 

transportation costs 

 

Bruns et al. 

(2014) 

Train Loading 

Plans 

Demand Bertsimas and 

Sim, Ben-Tal 

and 

Nemirovski 

Solver Choose wagon settings 

and assign load units to 

wagons of a train such 

that the utilization of the 

train is maximized, and 

setup and transportation 

costs in the terminal are 

minimized. 

Tsang and Mak 

(2015) 

Empty 

Containers 

Repositioning 

Demand Absolute 

robustness  

 

Solver Identifying optimal 

repositioning schedule to 

rebalance empty 

containers with minimal 

cost 
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Merakh and 

Yaman (2016) 

P-hub 

Location  

Demand Polyhedral set Benders 

Decomposition 

Minimize the total 

transportation cost. 

Shang et al. 

(2016) 

Integrated 

Berth 

Allocation 

and Quay 

Crane 

Assignment 

Quay carne 

productivity 

Bertsimas and 

Sim 

Genetic 

Algorithm and an 

Insertion 

Heuristic 

Minimize the total 

weighted handling time 

and the waiting time for 

all vessels within the 

planning horizon 

Fotuhi and Huynh 

(2017) 

Intermodal 

Network 

Extension 

Demand and 

Supply 

Maximum 

regret 

Hybrid Genetic 

Algorithm 

Identify locations for new 

intermodal terminals and 

existing terminals to 

expand so that the costs of 

total transportation and 

lost sales are minimized 

for normal and disrupted 

situations. 

Zetina et al. 

(2017) 

Uncapacitated 

Hub Location 

Demand and 

Transportation 

cost 

Bertsimas and 

Sim 

Branch-and-cut 

Algorithm 

Minimize the total setup 

cost of the hubs and the 

total transportation cost 

Rouky et al. 

(2018) 

Rail Shuttle 

Routing 

Transfer time 

and Travel 

time  

Bertsimas and 

Sim 

Ant Colony 

algorithm 

Improve the performance 

of the container transfer 

system in the Le Havre 

port, by minimizing the 

total empty travel time of 

locomotives and 

protecting against delays 

Abasssi et al. 

(2019) 

Intermodal 

Freight 

Transport 

Capacity and 

transportation 

cost  

Maximum 

regret 

Simulated 

Annealing 

approach 

Minimize the total cost 

which comprises the 

usage costs of selected 

terminals in addition to 

the unimodal and the 

intermodal transportation 

costs. 
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Mayer et al. 

(2020) 

Sustainable 

Food Grain 

Transportatio

n 

Supply Relative 

regret 

Particle Swarm 

Optimization 

 

Minimize the total 

intermodal transportation 

cost of food grain.  

Kahfi et al. (2021) Location-Arc 

Routing 

Demand Bertsimas and 

Sim 

Multi-Objective 

Dragonfly 

Algorithm and 

Non-dominated 

Sorting Genetic 

Algorithm 

find the best compromise 

on minimizing costs and 

waiting time of the 

vehicles. 

Guo et al. (2021) Berth 

Allocation 

Vessel 

handling time 

Finite set of 

discrete 

scenarios 

Particle Swarm 

Optimization 

Evaluation of vessel 

handling time under 

different weather 

conditions. 

Park et al. (2021) Berth 

Scheduling  

Vessel arrival 

time 

Finite set of 

discrete 

scenarios 

Particle Swarm 

Optimization 

Minimize the sum of the 

baseline schedule costs 

and the expected 

recovered schedule costs. 

Rodrigues and 

Agra (2021) 

Integrated 

Berth 

Allocation 

and Quay 

Crane 

Scheduling 

Vessel arrival 

time  

Bertsimas and 

Sim 

Decomposition 

algorithm 

Minimize the total 

completion time of the 

worst-case scenario. 

7. Conclusion 

Multimodal transport is a very complex system characterized by the diversity of its operations, lack of information and 

the presence of a multitude of actors often have conflicting goals. For these reasons, multimodal operators are nowadays 

in search of effective operational strategies, allowing them to reduce the impact of uncertainties and meet established 

performance and service targets. Deterministic optimization models cannot overcome the complexity because they are 

usually built on a very abstract level neglecting the uncertain and dynamic behavior of real-world systems. To meet these 

needs, optimization under uncertainty has emerged as an important area of modern operations research. This article was 

devoted to the study of the different optimization techniques under uncertainties used in the literature and their 

applications to multimodal transport systems. First, an overview of these different techniques was presented. Then, we 

focused on robust optimization approaches, for which a detailed description and a state of the art on their application for 
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solving multimodal transport problems were presented.  The analysis presented in this paper aims to help researchers to 

select the appropriate approach for a given uncertain multimodal problem. 
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