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Abstract 

This paper addresses a dynamic cell formation problem (DCFP) including a multi-period planning horizon in which 

demands for each product in each period are different and uncertain. Because the demand uncertainty is considered as 

stochastic data by discrete scenarios on a scenario tree, a multi-stage nonlinear mixed-integer stochastic programming is 

applied so that the objective function minimizes machine purchase costs, the operating costs, both inter and intra-cell 

material handling costs, and the machine relocation costs over the planning horizon. The main goal of the current study 

is to determine the optimal cell configuration in each period in order to achieve the total minimum expected costs under 

the given constraints. The nonlinear model is transformed into a linear form. That is why GAMS can provide global 

optimal solutions in linear models. In order to find the optimal solutions, by using the GAMS for small and medium-

sized problems, the optimal solutions are obtained. They applied in two bounds, namely the Sum of Pairs Expected 

Values (SPEV) and the Expectation of Pairs Expected Value (EPEV). Also, according to the scenario-based model, the 

efficiency of two suggested bounds is shown in terms of the computational time. Finally, a practical case study is 

presented in detail to illustrate the application of the proposed model and it’s solving method. The results show the 

efficiency of using SPEV and EPEV for several random examples as well as the proposed case study.    

Keywords: Dynamic cell formation problem; Multi-stage stochastic programming; Expectation of pair expected value; 

Sum of pair expected values. 

1. Introduction 

Due to a competitive global market, the manufacturing firms are shifting from traditional configurations, such as flow 

shop and job shop to new configurations, such as a cellular manufacturing system (CMS) in the design of manufacturing 

systems. CMS is an industrial application group technology (GT) concept which includes not only the advantages of 

production volume and efficiency of flow shop, but also product variety and flexibility of a job shop.In a CMS, machines 

are divided into distinctive cells and similar parts in terms of manufacturing and design. However, CMS lead to several 

significant benefits, such as reduction in work-in-process inventory, set-up times, throughput times, material handling 

costs, simplified scheduling, and improved quality (Wemmerlöv, U. & Hyer, N. L., 1987; Shishebori, D. & Ghaderi, A., 

2015).  

In the literature, the designing of CMS is classified into four main problems and consists of 1) cell formation problems 

(CFP), 2) intra-cell and inter-cell layout problem, 3) group scheduling problem, and 4) resource allocation problem. As 

the first stage in a CMS problem, the CFP is to construct a set of machine cell and their corresponding part families so 

that the objective function could be optimized. In the preliminary studies associated with the CMS area known as classical 

CMS, it was assumed that product mix and part demand are constant over the planning horizon. While in a dynamic real-

life environment, a planning horizon can be divided into several smaller periods, where each period has various product 

mix and/or part demand. However, in a current period, the optimal solution for CFP may not be efficient and optimal for 

the next period (Safaei, N., et al., 2008; Shishebori, D., et al., 2015).  
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As a result, Rheault, M., et al., (1996) introduced the concept of the dynamic cellular manufacturing system (DCMS) to 

develop the optimal solution for each period concerned with the demand of the cell and overcome the disadvantages of 

classical CMS. In DCMS, the optimal solution of the CFP can be obtained by reconfigurations of a manufacturing cell 

for each period. Indeed, reconfiguration consists of a relocation of existing machines in the cellular system, adding new 

machines to cells, and removing of existing machines from cells. An example of reconfiguration of manufacturing cells 

at two successive periods is represented in Figure1.  

The structure of this paper is as follow. Section 2 includes a review of the literature of DCMS. A theoretical framework 

for multi-stage stochastic programming (MSP) is provided in Section 3. In Section 4, a mathematical model, based on 

various scenarios, is developed and in order to investigate the efficiency and accuracy of the proposed model, some test 

problems are presented in Section 5. Our conclusions remarks are given in Section 6.  

2. Literature of the review 

In this section, a brief description of the work done by previous authors about DCFP is presented. In general, they are 

classified the DCFP based on deterministic demands and uncertain demands. Then, the research gap and the motivation 

of the current study are clarified. 

 

2.1. DCFP with deterministic demands 

Chen, M., (1998) proposed an integer mathematical model for DCFP in which the objective function was minimizing 

the material handling cost, the machine costs, as well as the cell reconfiguration costs. Askin, R. G., et al., (1997) 

designed flexible cells by an interactive cell formation method. In principle, they tried to design a robust cell formation 

in terms of responsiveness to part demand and product mix as well as routing by four proposed phases. In other words, 

instead of presenting several optimal solutions for DCFP, they developed only one optimal solution which was 

sustainable against variation of demands. Taboun, S., M., et al., (1998) considered that a part can be subcontracted toward 

suppliers besides that can be produced within the given shop. Balakrishnan, J., & Hung Cheng, C., (2005) used two 

stages, where the first stage obtained the optimal cell configuration in a static environment and the second stage applied 

the dynamic programming using the optimal material handling cost of the first stage. They indicated that by increasing 

of reconfiguration costs, the job shop may be preferred to CMS. Tavakkoli-Moghaddam, R., et al., (2005) presented a 

mathematical model for DCFP, where the demands were dynamic, but they were deterministic. The alternative process 

plans and the variable number of cells were new concepts added into DCFP. In a relatively more comprehensive study, 

Defersha, F. M., & Chen, M., (2006) considered a model incorporating dynamic cell configuration, alternative routing, 

sequence of operations, multiple units of identical machines, machine capacity, workload balancing among cells, 

operation costs, subcontracting costs, tool consumption costs, set-up cost, and other practical constraints. Saidi-

Mehrabad, M., & Safaei, N., (2007) also considered a DCFP with this assumption that the number of formed cells is as 

a decision variable. A neural network approach (NNA) was applied to solve a NP-hard problem. NNA can be very 

efficient for the large-sized problems compared with commercial software GAMS. This was a remark conclusion for this 

study. Aryanezhad M. B., et al., (2009) developed a model to deal with simultaneous DCFP and worker assignment 

problem. They grouped the workers to worker levels concerning abilities to work with different machines, and machines 

to machine levels with regard to the properties of each machine. Moreover, promotion for workers was allowed. It means 

that each worker could be transferred to upper-level skill by training. With these assumptions and others common in 

DCFP, they formulated a single objective nonlinear integer programming model. After linearization of the model, it was 

solved by GAMS.  

Wang, X., et al., (2009) is the first study which considers the three-objective model. The objectives are minimizing the 

relocation costs, maximizing the utilization rate of machine capacity, and minimizing the total number of inter-cells 

moves. Bulgak, A. A., & Bektas, T., (2009) inserted a production planning into DCFP. Safaei, N., & Tavakkoli-

Moghaddam, R., (2009) also developed a simultaneous production planning and DCFP. Their model considered inter-

cell and intra-cell material handling, operation sequence, partial subcontracting, and lead time for ordered items. Two 

numerical examples were presented to verify the performance of the model. The results represented that inventory, 

subcontracting, and backorder can significantly affect the cell configuration over the horizon planning. Bajestani, M., et 

al., (2009) developed a two-objective model, where the first objective is minimizing operational costs like machine 

depreciation, inter-cell material handling and machine relocation costs, and the second objective is minimizing total cell 

load variation. A comprehensive model including DCFP, production planning, and worker assignment problem is seen 

in Mahdavi, I., et al., (2010). To illustrative the validity of the proposed model, two examples were solved by branch-

and-bound method using Lingo 8.0 Software. CPU time required to reach the optimal solution for relatively large-sized 

problems was computationally intractable. Further, Ghotboddini, M. M., et al., (2011) developed a two-objective model 

consisting of minimizing the sum of miscellaneous costs and maximizing the sum of minimum labor ratio for entire 

periods. Javadian, N., et al., (2011) developed a two objective model, where the total cells load variation and sum of the 

miscellaneous costs were to be minimized simultaneously. The miscellaneous costs consist of machine cost, internal part 

production, inter-cell and intra-cell material handling, backorder, inventory holding, and subcontracting. Saxena, L.K. 

& Jain, P.K., (2012) proposed an integrated model of DCFP and supplied chain design with consideration of different 



A Multi-stage Stochastic Programming Approach in a Dynamic Cell Formation Problem with ... 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.1 69 

 

issues, such as multi-plant locations, multiple markets, multi-time periods, reconfiguration, etc. They added other costs, 

such as facility/plant to market transportation cost, machine procurement cost, machine maintenance overhead cost, 

machine repair cost, and production loss cost due to machine breakdown to the objective function of the model. Kia, R., 

et al., (2012) developed a group layout design model of DCMS with assumptions of alternative process routing, lot 

splitting, and flexible reconfiguration. An intra-cell layout for machines within manufacturing cells was investigated in 

this paper. Bagheri, M., & Bashiri, M., (2014) also considered a DCFP with inter-cell layout problem and worker 

assignment in a dynamic environment. They assumed that there are some candidate locations to be a manufacturing cell. 

Kia, R., et al., (2014) present a mixed-integer programming model for multi-floor layout design of cellular manufacturing 

systems in a dynamic environment. Zohrevand et al. (2016) considered a multi-objective DCFP with respect to human-

related issues and stochastic nature of this problem. Recently, researchers have focused on the sustainable DCFP, where 

the total production waste (e.g., energy, chemical material, row material, CO2 emissions, etc.) plays a critical role in 

addressing the problems. As an example, Niakan, F., et al., (2016) proposed a bi-objective mathematical model of DCFP 

in which the first objective in this model is to both production and labor costs and the second objective is to minimize 

the total production waste. Mahmoodian, V., et al., (2017) presented a novel intelligent particle swarm optimization 

algorithm for the cell formation problem. Rabbani, M., et al., (2019) provided a new multi-objective mathematical model 

for DCMS with regard to machine reliability and alternative process routes. It is remaindered that optimization techniques 

have been used in a wide variety of applications, e.g., oil and gas (Shakhsi-Niaei, M., et al., 2013), facility location and 

network design (Shishebori, D., 2014; Rabbani, M., et al., 2017; Esmaeilbeigi, R., 2017), risk management (Rezaei, K., 

et al., 2009), performance measurement, and productivity management (Koushki, F., 2018).  

   

2.2. DCFP with uncertain demands  

Arzi, Y., et al., (2001) proposed a model of DCFP so as the demand of part types is uncertain. They tried to reduce the 

planned capacity of each cell for coping with the lumpiness of demands. For this reason, they used the mean, variance, 

and covariance of demands in capacity-time of machines constraint. Safaei, N., et al., (2008) developed a model of DCFP 

in which demand of part types and capacity of machines are uncertain. These two uncertain parameters have been 

assumed that follow piecewise fuzzy numbers as coefficients in the objective function and the technological matrix. 

Farughi, H., & Mostafayi, S., (2016) presented a robust optimization in a DCFP considering the labor utilization.  

Egilmez, G., et al., (2017) also formulated a stochastic cell formation problem with a newly proposed stochastic genetic 

algorithm (SGA) approach considering stochastic demand and processing times, thus capacity requirements. Other 

studies related to DCFP with uncertain demands can be found in Moslemipour, G., (2018), and Wang, T., & Tang, J., 

(2018). 

 

2.3. Research gap and the motivation 

The previous researchers have considered the effect of demand uncertainties in DCFP at the same time. In other words, 

the decisions associated with the problem in order to deal with uncertainties have been made simultaneously before the 

uncertain demands are met (at one stage). On the other hand, it is sometimes necessary that some decisions in each stage 

are made after visiting the uncertain demands. In such conditions, some decisions should be made before and others after 

determining the uncertain demands (at several stage).   

In this paper, a multi-stage stochastic programming is proposed for the multi-objective integrated model of DCFP and 

production planning with uncertain demand. The uncertain demand brought up as a discrete time stochastic process 

during the planning horizon with finite support. This information structure can be interpreted as a scenario tree. The goal 

of multi-stage stochastic programming is to determine a solution for the proposed model which can be implemented in 

a production environment that takes into account the possible demand scenarios and minimizes the expected costs 

associated to DCFP and production planning.  

3. Multi-stage stochastic programming  

 A multi-stage stochastic programming (MSP) approach (Kall, P., & Wallace, W., 1994, Birge, R., & Louveaux, F., 

1997, Kall, P., & Mayer, J., 2005) was proposed to address multi-period optimization models with dynamic stochastic 

data during the time. In MSP, the decisions are made in several decision stages. The decision maker takes some action 

in the first stage, after which a random event occurs that affects the outcome of the first-stage decision. Afterwards, a 

recourse decision can be made in the second stage to compensate for any negative effect that might have been experienced 

as a result of the first-stage decision. When the uncertain parameter has a discrete time stochastic process with finite 

probability space, the uncertainty can be represented with a scenario tree as shown in Figure1. For each uncertain 

parameter, each scenario tree has five specifications. The first specification is a stage which denotes the stage of the time 

when new information is available to the decision maker. Thus, the stages do not necessarily correspond to time periods. 

The second is nodes which represent a possible state of scenario, associated with a set of uncertain parameter in the 

corresponding stage. 
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Figure 1. An example for scenario tree 

 

The first node as root node of the tree is the current state of the scenario, and the node in the last stage as leaf node is the 

final state of the scenario. The third is the branches for scenario tree denoting the scenarios for the next stage. The fourth 

is the value of that uncertain parameter and the last is the probability of realization for that value of an uncertain 

parameter. A scenario is a path starting from the root node and ending at a leaf node. The scenario tree represented in 

Fig. 1 has 15 nodes. Node 1 is as root node and nodes 8-15 are as leaves nodes. Furthermore, the value and the probability 

of realizing uncertain parameter are given in parentheses. There are 8 different scenarios 𝑆1 − 𝑆8 (8 different paths 

from root node to leaf nodes). Each of scenarios occurs with a probability equal to the product of probabilities for nodes 

existing in that path. For example, the probability for the first possible scenario is equal to product of probabilities of 

nodes 1, 2, 4, and 8 (𝑃𝑠1
= 𝑝1 × 𝑝2 × 𝑝4 × 𝑝8). A review of the approaches for generating the scenario trees for 

MSP, based on the underlying random data processes has been developed in Dupačová, J, et al., (2000). 

 

4. Model development  

In this section, an integrated model of DCFP and production planning with two objectives is proposed. It is assumed that 

uncertain demand is brought up as a discrete time stochastic process during the planning horizon with a finite support. 

This problem is formulated under the following assumptions: (1) Each part type includes a number of operations that 

must be processed as numbered, respectively, (2) The processing time for all operations of a part type on different 

machine types are known and deterministic in advance, (3) Each machine has known and stable capabilities and time-

capacity throughout the planning horizon, (4) The constant cost of each machine is known. This cost includes 

maintenance, other over-head, rent, and overall service cost for each machine. Thus, the buying or selling cost is not 

considered. (5) The variable cost of each machine type is known in advance. This cost is dependent on the workload 

allocated to the machine. (6) The demand for each part type in each period is discrete data with known value and 

probability in advance. In other words, there is a scenario tree for each part type. (7) The relocation cost for each machine 

type from one cell to another is known. All of the machines are able to be moved toward any cell. This cost is the sum 

of uninstalling, shifting, and installing costs. The time needed for relocation is assumed to be zero. (8) The decision 

stages correspond to periods. It is assumed that information about the demand of each period becomes available at the 

beginning of the period. (9) Parts are moved in a batch between and within cells. Moreover, inter and intra-cell batches 

related to the part types have different sizes and costs. It is assumed that the distance between each pair of cells and each 

pair of machines at each cell is the same. (10) All machine types are multi-purposed. Likewise, each operation of part 

can be performed on various machine types with different processing times. (11) The maximum number of cells can be 

formed in each period is known in advance. (12) The maximal and minimal cell size is known in advance. (13) Holding 

and backorders inventories are allowed between periods with known costs. (14) Partial subcontracting is allowed. In 

other words, the total or portion of the demand of the part types can be subcontracted at each period. Also, the time-gap 

between releasing and receiving orders (lead time) is fixed and known in advance. 
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4.1. Notation 

Indices: 

i        Index for part types (i=1,…,I) 
j        Index for operations which belong to part i (j=1,…,Oi)  
m     Index for machine types (m=1,…, M) 
c       Index for manufacturing cells (c=1,…,C) 
s       Index for scenarios (s=1,…, S) 
t       Index for time periods (t=1,…,H) 
 

4.2. Input parameters 

I             Number of part types  

Oi          Number of operations for part i  
M          Number of machine types 

C            Number of cells which are formed  

Dits        Demand for part i in period t in scenario s     

Bi
inter

    Batch size for inter-cell movement of part i 

Bi
intra

    Batch size for intra-cell movement of part i  

γinter      Inter-cell movement cost per batch 

γintra       Intra-cell movement cost per batch. To justify the CMS, it is assumed that    (
γintra

Bi
intra ) < (

γinter

Bi
inter ). 

αm          Constant cost of machine type m in each period ($) 

βm          Variable cost of machine type m for each unit time ($)  

δm           Relocation cost of each machine type m ($) 

Tm           Time-capacity of machine type m in each period (hour) 

prs           Probability of occurrence of scenario s  

UB           Maximal cell size  

LB            Minimal cell size  

ptjim        Processing time required to perform operation j of part type i on machine type m (hour) 

ajim          If operation j of part type i can be done on machine type m equals to 1; otherwise 0 

λi             Unit cost of subcontracting part type i ($) 

ηi             Inventory carrying cost per unit part type i during each period ($)  

ρi             Backorder cost per unit part type i during each period ($)  

l               Lead time where l ≤ H-1 

Z              Large positive number 

 

4.3. Decision variables 

Nmcts        Number of machine type m assigned to cell c in period t for scenario s 

Kmcts
+
       Number of machine type m added in cell c in period t for scenario s 

Kmcts
-
        Number of machine type m removed from cell c in period t for scenario s 

xjimcts       If operation j of part type i is done on machine type m in cell c in period t for scenario s equals to 1; 

otherwise 0 

Pits             Number of part type i produced in period t for scenario s  

yits             If Pits>0 equals to 1; otherwise 0 

Sits             Number of part type i subcontracted in period t for scenario s 

Inits
+
          Inventory level of part type i at the end of period t for scenario s 

Inits
-
           Backorder level of part type i at the end of period t for scenario s 

 

4.4. Mathematical model 

By using the above notations, the proposed model (I) can be written as follows:  
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model (I): 

min       Z= ∑ pr
s
[∑ ∑ ∑ Nmctsαm

C

c=1

M

m=1

H

t=1

S

s=1

                                                                                                                                          (1a) 

+ ∑ ∑ ∑ ∑ ∑ β
m

Pitspt
jim

xjimcts                                                                                                                                             (1b)

M

m=1

Oi

j=1

I

i=1

C

c=1

H

t=1

 

+ 1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
inter

⌉ γinter

C

c=1

|∑ x(j+1)imcts- ∑ xjimcts

M

m=1

M

m=1

|

Oi-1

j=1

I

i=1

H

t=1

                                                                                                     (1c) 

+ 1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
intra

⌉ γintra

C

c=1

( ∑|x(j+1)imcts-xjimcts|

M

m=1

- |∑ x(j+1)imcts- ∑ xjimcts

M

m=1

M

m=1

|

Oi-1

j=1

I

i=1

H

t=1

)                                                  (1d) 

+ 1
2⁄ ∑ ∑ ∑ δm(Kmcts

+

M

m=1

+Kmcts
-

C

c=1

)

H

t=1

                                                                                                                                             (1e) 

+ ∑ ∑ (η
i
Inits

++

I

i=1

H

t=1

ρ
i
Inits

-+λiSits)                                                                                                                                       (1f) 

 

Subject to: 

∑ ∑ ajimxjimcts= y
its

          ∀j,i,M
m=1

C
c=1 t,s                                                                                                        (3) 

∑ ∑ Pitspt
jim

xjimcts ≤ TmNmcts              ∀m,c,t,s    

Oi

j=1

I

i=1

 

 

  (4) 

∑ Nmcts ≤ UB               ∀c,t,s           

M

m=1

 

 

  (5) 

∑ Nmcts ≥ LB               ∀c,t,s           

M

m=1

 

 

  (6) 

 

Nmc(t-1)s+Kmcts
+-Kmcts

-= Nmcts       ∀m,c,t,s 

 

(7) 

 

Inits
+-Inits

-= Ini(t-1)s
+-Ini(t-1)s

-+Pits+Si(t-l)s-Dits      ∀i,t,s 

 

(8) 

 

IniHs
+= 0                  ∀i,s 

 

(9) 

 

IniHs
-= 0                  ∀i,s 

 

(10) 

 

Pits ≤ Zy
its 

                   ∀i,t,s 

 

(11) 

 

Pits ≥ y
its 

                   ∀i,t,s 

 

(12) 

 

y
its 

, xjimcts ∈{0,1}, Nmcts,Kmcts
+,Kmcts

-, Pits, Sits,Inits
+,Inits

-, Wmicts,Amicts≥0 

∀ i,j,m,c,t,s 

 

(13) 

The objective function of the model (I) consists of six terms. Term (1a) is the constant cost for all of the machines used 

in all cells over the planning horizon in all scenarios. This cost is obtained by the product of the number of machine type 
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𝑚 allocated to cell 𝑐 in period 𝑡 and their associated costs. Term (1b) is the variable cost of machines used in all cells 

during the planning horizon in all scenarios. This cost is the sum of the product of the workload assigned to each machine 

type in each cell and their associated cost. Term (1c) is the inter-cell material handling costs for all scenarios. This term 

is the sum of the product of the number of inter-cell transfers resulting from two consecutive operations which have to 

be processed in two distinctive cells and cost of transferring an inter-cell batch of each part type (γinter). Term (1d) 

computes the total intra-cell material handling cost for all scenarios. It is the sum of the product of the number of intra-

cell transfers resulting from two subsequent operations, which should be processed in only one cell and cost of 

transferring an intra-cell batch of each part type (γintra). Because each inter/intra-cell movement is calculated twice, the 

coefficients 1/2 are embedded in terms (1c) and (1d) (Safaei, Saidi-Mehrabad, and Jabal-Ameli 2008). Term (1e) is 

associated with cell reconfiguration cost for all scenarios. Likewise, it is the sum of the number of product of relocated, 

added, or removed machines and their costs. The coefficient 1/2 is also embedded in relocation cost because it is taken 

into account twice in calculations (Safaei, N., et al., 2008). Term (1f) is the production planning costs including inventory 

carrying, backorder, and subcontracting costs in all scenarios. The first, second, and third part is the sum of the product 

inventory level for each part type at the end of the given period and associated cost, backorder level for each part type at 

the end of the given period and related costs, and the number of subcontracted parts and associated cost, respectively. 

Eq. (3) assures that each operation in each period for each scenario is assigned to only one machine and one cell, if a 

portion of the part demand should be produced in the period. Eq. (4) guarantees that machine capacities are not exceeded. 

Eq. (5) and Eq. (6) state that the maximum and minimum cell size should not be violated. Eq. (7) generates a balance for 

the number of machines in the current period. It means that the number of machines in the current period is equal to the 

number of machines in the previous period, plus the number of machines being moved in, and minus the number of 

machines moved out. Eq. (8) is a known constrain in production planning problems called balance inventory constraint. 

This constraint means that the inventory level minus backorder level of each part at the end of each period for each 

scenario is equal to the inventory level of the part at the end of the previous period plus the quantity of production and 

subcontracting minus the part demand and backorder level in the current period for the same scenario. Eqs. (9) and (10) 

state that the inventory and backorder level for each part type in each scenario for the last period of planning horizon is 

equal to zero. Eqs. (11) and (12) ensure that if a portion of the demand for part type 𝑖 in scenario 𝑠 is produced in the 

given period, the binary variable 𝑦𝑖𝑡𝑠  is equal to 1 and otherwise it is 0. Non-negativity and binary definitions of 

variables have been given in Eq. (13).     

 

4.5. Linearization  

As it can be seen, the proposed mathematical model includes several nonlinear terms. Because the nonlinear models are 

usually harder to be solved to optimality, a linearization method is used to transform the nonlinear model to linear ones. 

Our proposed model is nonlinear due to the existing absolute terms (1𝑐) (1𝑑), and the product of decision variables 

in terms (1𝑏), (1𝑐) (1𝑑), and Eq. (4).  For each stage, a limited number of demand scenarios are taken into account 

(e.g., high, average, low). In each state, the amount of demand is known. In order to linearize the absolute term(1𝑐), 

two auxiliary variables, such as Wjict
1

 and Wjict
2

 are needed. Consequently, the absolute term (1𝑐) is transformed as 

follows: 

 

1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
inter

⌉ γinter

Oi-1

j=1

|∑ x(j+1)imcts- ∑ xjimcts

M

m=1

M

m=1

|

I

i=1

C

c=1

H

t=1

=      

 

1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pit

Bi
inter⌉ γinterOi-1

j=1 (Wjicts
1 +Wjicts

2 )I
i=1

C
c=1

H
t=1                                                                                                (1c') 

In addition, constraint (16) must be added to the model as follows:  

      ∑ x(j+1)imcts- ∑ xjimcts
M
m=1

M
m=1 =  Wjicts

1 -Wjicts
2            ∀j,i,c,t,s                                                                                       (16)                     

 

Despite the above technique, Eq. (16) is nonlinear because there is the product of two variables Pits and Wjicts
1 +Wjicts

2
. 

For this purpose, we should define another auxiliary variable, such as φjicts
1  as follows:  

 1 2⁄ ∑ ∑ ∑ ∑ ⌈
Pits

Bi
inter⌉ γinterOi-1

j=1 (Wjicts
1 +Wjicts

2 )I
i=1

C
c=1

H
t=1 = 1 2⁄ ∑ ∑ ∑ ∑ ⌈

φjicts
1

Bi
inter⌉ γinterOi-1

j=1
I
i=1

C
c=1

H
t=1                                             (1c'')                                         

 

The following constraints (17) and (18) must be added to the model (I):  

 

φ
jicts
1  ≥ Pits-Z(1-Wjicts

1 -Wjicts
2 )              ∀j,i,c,t,s                                                                                                   (17) 
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φ
jicts
1  ≤ Pits+Z(1-Wjicts

1 -Wjicts
2 )              ∀j,i,c,t,s                                                                                                (18) 

In order to linearize the integer part function in term (1c''), the integer variable Ljicts
1

 defined in term (1c'''
) and two 

constraints (19) and (20) are required as follows: 

 1 2⁄ ∑ ∑ ∑ ∑ ⌈
φjicts

1

Bi
inter⌉ γinterOi-1

j=1
I
i=1

C
c=1

H
t=1 = 1

2⁄ ∑ ∑ ∑ ∑ Ljicts
1  γinterOi-1

j=1
I
i=1

C
c=1

H
t=1  (1c''') 

Ljicts 
1 ≤  

φjicts
1

Bi
inter                       ∀j,i,c,t,s                                                                                                                           (19) 

Ljicts 
1 ≥ 

φjicts
1

Bi
inter -1                    ∀j,i,c,t,s                                                                                                                          (20) 

Similar to the above calculation, for linearizing the term (1d), two auxiliary variables Ojimcts
1

 and Ojimcts
2

 are defined. 

The transformed term (1d'
) is as follows: 

1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
intra⌉ γintraOi-1

j=1 ( ∑ |x(j+1)imcts-xjimcts|M
m=1 -I

i=1
C
c=1

H
t=1      

|∑ x(j+1)imcts- ∑ xjimcts

M

m=1

M

m=1

| ) = 

1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
intra

⌉ γintra

Oi-1

j=1

{∑(Ojimcts
1 +Ojimcts

2 )-(

M

m=1

Wjicts
1 +Wjicts

2 ) }  

I

i=1

C

c=1

H

t=1

                                                                               (1d
'
) 

Where the following constraint should be inserted into the model:  

Ojimcts
1 +Ojimcts

2 = x(j+1)imcts-xjimcts             ∀j,i,m,c,t,s                                                                                                   (21) 

Now, we define φjicts
2  as an auxiliary variable and use in following term: 

1
2⁄ ∑ ∑ ∑ ∑ ⌈

Pits

Bi
intra⌉ γintra

Oi-1

j=1

{∑(Ojimcts
1 +Ojimcts

2 )-(

M

m=1

Wjicts
1 +Wjicts

2 ) }  

I

i=1

C

c=1

H

t=1

       

= 1
2⁄ ∑ ∑ ∑ ∑ ⌈

𝜑𝑗𝑖𝑐𝑡𝑠
2

𝐵𝑖
𝑖𝑛𝑡𝑟𝑎⌉ 𝛾𝑖𝑛𝑡𝑟𝑎𝑂𝑖−1

𝑗=1
𝐼
𝑖=1

𝐶
𝑐=1

𝐻
𝑡=1                                                                                                                          (1d

''
) 

Where the following constraints must be added to the model (I):  

φ
jicts
2  ≥ Pits-Z(1- ∑ (Ojimcts

1 +Ojimcts
2 )+(M

m=1 Wjicts
1 +Wjicts

2 ))∀j,i,c,t,s                                                                     (22) 

φ
jicts
2  ≤ Pits+Z(1- ∑ (Ojimcts

1 +Ojimcts
2 )+(M

m=1 Wjicts
1 +Wjicts

2 ))∀j,i,c,t,s                                                                    (23) 

Finally, we define the integer variable Ljicts
2

 and replace in term (1d''
) with integer part function as follows:  

1
2⁄ ∑ ∑ ∑ ∑ ⌈

φjicts
2

Bi
intra⌉ γintraOi-1

j=1
I
i=1

C
c=1

H
t=1 = 1

2⁄ ∑ ∑ ∑ ∑ Ljicts
2  γ

intraOi-1
j=1

I
i=1

C
c=1

H
t=1                                                                                           (1d

'''
) 

Also, the following constraints are necessary to be added to the model: 

Ljicts
2  ≤ 

φjicts
2

Bi
intra                             ∀j,i,c,t,s                                                                                                                     (24) 

Ljicts
2  ≥ 

φjicts
2

Bi
intra -1                           ∀j,i,c,t,s                                                                                                                  (25) 

Term (1b) and Eq. (4) by defining ψjimctsas an auxiliary variable and two following constraints is linearized:  

      ∑ ∑ ∑ ∑ ∑ β
m

Pits pt
jim

xjimcts

Oi

j=1

I

i=1

C

c=1

M

m=1

H

t=1

= ∑ ∑ ∑ ∑ ∑ β
m

 

Oi

j=1

I

i=1

C

c=1

M

m=1

H

t=1

ψ
jimcts

                                                                     (1b
'
) 

∑ ∑ pt
jim

ψ
jimcts 

≤ TmNmcts              ∀m,c,t,s  
Oi

j=1
I
i=1                                                                                         (26) 

ψjimcts≥ Pits-Z(1-xjimcts)            ∀j,i,m,c,t,s                                                                                                                    (27)  

𝜓𝑗𝑖𝑚𝑐𝑡 ≤ 𝑃𝑖𝑡 + 𝑍(1 − 𝑥𝑗𝑖𝑚𝑐𝑡𝑠)            ∀𝑗, 𝑖, 𝑚, 𝑐, 𝑡, 𝑠                                                                                           (28) 

Now, the linear mathematical model (II) can be written as follows:  

 

Model (II):  
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min       Z                                                             

= ∑ pr
s

S

s=1

((1a)  

+ ∑ ∑ ∑ ∑ ∑ β
m

 pt
jim

Oi

j=1

I

i=1

C

c=1

M

m=1

H

t=1

ψ
jimcts

+ 1
2⁄ ∑ ∑ ∑ ∑ Ljicts

1  γinter

Oi-1

j=1

I

i=1

C

c=1

H

t=1

+ 1
2⁄ ∑ ∑ ∑ ∑ Ljicts

2  γ
intra

Oi-1

j=1

I

i=1

C

c=1

H

t=1

+(1e)+(1f)) 

Eqs.(3), Eqs.(5)-(28); 

 

It has to be noted that in order to improve the efficiency of the model, in addition to the constraints defined in the 

developed mathematical model, non-anticipativity constraints are necessary as well. These conditions require the groups 

of scenarios with identical values for the uncertain parameters up to a certain period must yield the same decisions up to 

that period. Mathematically, the conditions can be represented via equal flows on a certain set of variables. For example, 

this condition for variable Nmcts is as follows: 

 

Nmcts=Nmctr                                                                                                                                                        (29) 

    

For scenarios s and r, inheriting an identical past up to time. The conditions stipulate that decision variables must be 

equal to each other as long as they have a common historical past until the t in the planning horizon {0, 1, …, H-1}. 

While these constraints are extremely numerous, solution algorithms take advantage of their simple form including a 

pair of +1 and -1 for each row.  

 

5. Experimental and computational results 

 

Assume a shop with three part types so that each part type has three processes, three machines, two cells, and three 

periods. The comprehensive information about this shop has been represented in Table 1. In this experience, we assume 

that the uncertain demand evolves as a discrete time stochastic process during the planning horizon with a finite support. 

This information can be interpreted as a scenario tree (see Figure2). For each stage, two numbers of demand scenarios 

are taken into account (high and low). As a result, there are eight scenarios in this example and because it has been 

assumed that the probability of occurrence of each demand scenario in each stage is 0.5; therefore, the probability of 

each scenario is equal to 0.5×0.5×0.5=0.125. We know that three variables Nmcts, Kmcts
+

, Kmcts
-
 are control variables 

and other variables xjimcts, Pits , y
its

, Sits , Inits
+

, Inits
-
 are state variables. The control variables are those which should 

be determined before the occurrence of scenarios while state variables are determined after the occurrence of scenarios 

in each period. Thus, the non-anticipativity constraints in Table 2 can be added into the model for this example.  

 
Table 1. The comprehensive information for the first example 

Machine info.  I1 I2 I3 

Tm 

(𝒉𝒐𝒖𝒓) 
αm$ β

m
$ δm$ 1 2 3 1 2 3 1 2 3 

500 
180

0 
8 900 M1 0.93 0.55  0.64 0.48  0.71  0.89 

500 
140

0 
10 800 M2  0.91 0.56 0.89 0.39 0.76  0.77  

500 
220

0 
6 600 M3 0.89  0.45   0.79 0.85 0.62 0.87 

Dit 

low 

Period 1  600   950   450 

Period 2  800   0   300 

Period 3  150   340   0 

high 

Period 1  800   1100   550 

Period 2  1000   100   750 

Period 3  550   620   250 

Bi
inter 

Bi
intra 

λi 

η
i
 

ρ
i
 

I0 

35   40   25 

6   8   9 

40   25   51 

13   14   16 

18   21   20 

100   100   100 

γinter=50 γintra=5 l=1 UB=4 LB=1 
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Table 2. The non-anticipativity constraints associated with computational example 

Nmc1s=Nmc1r                 ∀ 1≤s<r≤8 
 

y
i2s

=y
i2r

                        ∀  1≤s<r≤2 

Kmc1s
+=Kmc1r

+            ∀  1≤s<r≤8 
 

y
i2s

=y
i2r

                        ∀  3≤s<r≤4 

Kmc1s
-=Kmc1r

-             ∀  1≤s<r≤8 y
i2s

=y
i2r

                        ∀ 5≤s<r≤6 

xjimc1s=xjimc1r             ∀  1≤s<r≤4 y
i2s

=y
i2r

                       ∀  7≤s<r≤8 

xjimc1s=xjimc1r             ∀  5≤s<r≤8 Si2s=Si2r                       ∀  1≤s<r≤2 

 

Pi1s=Pi1r                    ∀  1≤s<r≤4 
 

Si2s=Si2r                       ∀  3≤s<r≤4 

Pi1s=Pi1r                    ∀  5≤s<r≤8 Si2s=Si2r                       ∀  5≤s<r≤6 

y
i1s

=y
i1r

                     ∀  1≤s<r≤4 Si2s=Si2r                       ∀  7≤s<r≤8 

yi1s=yi1r                       ∀  5≤s<r≤8 Ini2s
+=Ini2r

+                ∀  1≤s<r≤2 

Si1s=Si1r                   ∀  1≤s<r≤4 Ini2s
+=Ini2r

+               ∀  3≤s<r≤4 

Si1s=Si1r                   ∀  5≤s<r≤8 Ini2s
+=Ini2r

+               ∀  5≤s<r≤6 

Ini1s
+=Ini1r

+            ∀  1≤s<r≤4 Ini2s
+=Ini2r

+               ∀  7≤s<r≤8 

Ini1s
+=Ini1r

+            ∀  5≤s<r≤8 Ini2s
-=Ini2r

-                 ∀  1≤s<r≤2 

Ini1s
-=Ini1r

-              ∀  1≤s<r≤4 Ini2s
-=Ini2r

-                ∀  3≤s<r≤4 

Ini1s
-=Ini1r

-              ∀  5≤s<r≤8 Ini2s
-=Ini2r

-                ∀  5≤s<r≤6 

Nmc2s=Nmc2r            ∀ 1≤s<r≤4 Ini2s
-=Ini2r

-                 ∀  7≤s<r≤8 

Nmc2s=Nmc2r            ∀ 5≤s<r≤8 Nmc3s=Nmc3r               ∀ 1≤s<r≤2 

Kmc2s
+=Kmc2s

+       ∀  1≤s<r≤4 Nmc3s=Nmc3r                ∀ 3≤s<r≤4 

Kmc2s
+=Kmc2s

+       ∀  5≤s<r≤8 Nmc3s=Nmc3r                ∀ 5≤s<r≤6 

Kmc2s
-=Kmc2s

-         ∀  1≤s<r≤4 Nmc3s=Nmc3r                ∀ 7≤s<r≤8 

Kmc2s
-=Kmc2s

-         ∀  5≤s<r≤8 Kmc3s
+=Kmc3s

+           ∀  1≤s<r≤2 

xjimc2s=xjimc2r         ∀  1≤s<r≤2 Kmc3s
+=Kmc3s

+           ∀  3≤s<r≤4 

xjimc2s=xjimc2r              ∀  3≤s<r≤4 Kmc3s
+=Kmc3s

+           ∀  5≤s<r≤6 

xjimc2s=xjimc2r              ∀  5≤s<r≤6 Kmc3s
+=Kmc3s

+           ∀  7≤s<r≤8 

xjimc2s=xjimc2r              ∀  7≤s<r≤8 Kmc3s
-=Kmc3s

-             ∀  1≤s<r≤2 

Pi2s=Pi2r                    ∀  1≤s<r≤2 
 

Kmc3s
-=Kmc3s

-             ∀  3≤s<r≤4 
 

Pi2s=Pi2r                    ∀  3≤s<r≤4 Kmc3s
-=Kmc3s

-             ∀  5≤s<r≤6 

Pi2s=Pi2r                    ∀  5≤s<r≤6 
 

Kmc3s
-=Kmc3s

-             ∀  7≤s<r≤8 

Pi2s=Pi2r                    ∀  7≤s<r≤8  
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For this simple example, model (II) without non-anicipativity constraints was coded on GAMS software (Solved by 

NEOS Website) and the obtained results are represented in Table 3. According to Table 3, the optimal objective function 

value for this example without non-anicipativity constraints is 112918.745. Notably, the obtained results without respect 

to non-anicipativity constraints are applicable because the values of the variables are different for scenarios which have 

the same history. In other words, there are the various values for variables in each scenario without considering the non-

anicipativity constraints, and since companies do notknow exactly which scenario will occur so these results are invalid. 

On the other hand, the non-anicipativity constraints are added to model 2 and results are represented in Table 4. The 

objective function with non-anicipativity constraints is 119645.645 so that the computational time is about 32 minutes. 

These results can be performed in practice and they are valid. Also, it is observed that the objective function is increased 

by applying the non-anicipativity constraints to the model and this is logical. Table 3 and Table 4 represent the effect of 

non-anicipativity constraints on the obtained optimal variables and objective function.   

 

Certainly, the computational times increase with increasing the number of part types, machine types, cells, periods, and 

scenarios. In order to investigate the variations of computational times with respect to variations of the number of parts 

and machine types, cells, periods and scenarios, it is necessary to generate several new examples. These examples are 

generated based on the above example with new random parameters in Table 5. In this table, the term "𝑈" implicates 

the uniform distribution. Changes in computational times (minutes) are indicated in Figure 3 for several examples. It can 

be observed in Fig. 3 that the computational time has an exponential growth than increasing of number of parts, machines, 

and periods. This growth rate is higher for the number of periods than others. Also, the computational time versus the 

number of cells has almost a linear growth. Consequently, an efficient approach is needed for solving the large-sized 

examples in terms of computational time to be optimal or near-optimal solutions. 

 
Table 3. The optimal results obtained for the computational example without considering the non-anicipativity constraints 

Scenario  t=1 t=2 t=3 

I1 I2 I3 I1 I2 I3 I1 I2 I3 

 Pits 500 850 350 800  300 150 273 340 

 Sits          

s=1 Inits
+ (100*) (100*)  (100*)       

Inits
-          

Dits 600 950 450 800 0 300 150 340 0 

Pits 554 850 350 746  300 550  250 

Sits     620     

s=2 Inits
+ (100*) (100*)  (100*) 54      

Inits
-          

Dits 600 950 450 800 0 300 550 620 250 

s=3 Pits 746 850 335 746 100 671 158 340 94 

Sits          

Inits
+ (100*) (100*)  (100*) 246      

Inits
-   15 8  94    

Dits 600 950 450 1000 100 750 150 340 0 

s=4 Pits 746 850 335 746 100 671 558 301 335 

Sits   9  319     

Inits
+ (100*) (100*)  (100*) 246      

Inits
-   15 8  85    

Dits 600 950 450 1000 100 750 550 620 250 

s=5 Pits 744 1000 463 800  287  340  

Sits    106      

Inits
+ (100*) (100*)  (100*) 44  13    

Inits
-          

Dits 800 1100 550 800 0 300 150 340 0 
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Table 3. Continued 

Scenario  t=1 t=2 t=3 

I1 I2 I3 I1 I2 I3 I1 I2 I3 

s=6 Pits 700 1000 450 800  300 550 434 250 

Sits    186      

Inits
+ (100*) (100*)  (100*)       

Inits
-          

Dits 800 1100 550 800 0 300 550 620 250 

s=7 Pits 746 1000 496 909  704 195   

Sits  100   340     

Inits
+ (100*) (100*)  (100*) 46  46    

Inits
-    45      

Dits 800 1100 550 1000 100 750 150 340 0 

s=8 Pits 746 1000 507 954  669 550 434 274 

Sits  100   186     

Inits
+ (100*) (100*)  (100*) 46  57    

Inits
-      24    

Dits 800 1100 550 1000 100 750 550 620 250 

* The initial inventory 

Table 4. The optimal results obtained for the computational example with considering the non-anicipativity constraints 

Scenario  t=1 t=2 t=3 

I1 I2 I3 I1 I2 I3 I1 I2 I3 

 Pits 502 850 350 798  300 150 154  

 Sits     186     

s=1 Inits
+ (100*) (100*)  (100*)       

Inits
-          

Dits 600 950 450 800 0 300 150 340 0 

Pits 502 850 350 798  300 550 434 250 

Sits     186     

s=2 Inits
+ (100*) (100*)  (100*)       

Inits
-          

Dits 600 950 450 800 0 300 550 620 250 

s=3 Pits 502 850 350 746 100 671 402 136 79 

Sits     204     

Inits
+ (100*) (100*)  (100*)       

Inits
-    252  79    

Dits 600 950 450 1000 100 750 150 340 0 

s=4 Pits 502 850 350 746 100 671 802 416 329 

Sits     204     

Inits
+ (100*) (100*)  (100*)       

Inits
-    252  79    

Dits 600 950 450 1000 100 750 550 620 250 

s=5 Pits 746 869 450 753 131 300 150 154  

Sits 1    186     

Inits
+ (100*) (100*)  (100*)       

Inits
-  131        

Dits 800 1100 550 800 0 300 150 340 0 
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Table 4. Continued 

Scenario  t=1 t=2 t=3 

I1 I2 I3 I1 I2 I3 I1 I2 I3 

s=6 Pits 746 869 450 753 131 300 550 434 250 

Sits 1    186     

Inits
+ (100*) (100*)  (100*)       

Inits
-  131        

Dits 800 1100 550 800 0 300 550 620 250 

s=7 Pits 746 869 450 746 231 671 346 136 79 

Sits 1   11 204     

Inits
+ (100*) (100*)  (100*)       

Inits
-  131  207  79    

Dits 800 1100 550 1000 100 750 150 340 0 

s=8 Pits 746 869 450 746 231 671 746 416 329 

Sits 1   11 204     

Inits
+ (100*) (100*)  (100*)       

Inits
-  131  207  79    

Dits 800 1100 550 1000 100 750 550 620 250 

* The initial inventory 

Table 5. The parameter setting for random examples 

Parameters Value Parameters Value 

Tm 350 λi 
 

U(0,100) 

αm U(1000,2500) η
i
 

 

U(10,20) 

β
m

 U(2,14) ρ
i
 

 

U(10,50) 

δm U(500,100) γinter 50 

pt
jim

 U(0,1) γintra 5 

Dit(low) U(0,1500) l 1 

Dit(high) Dit(low)+(0,1000) UB 2 

Bi
inter 
 

U(0,50) LB 1 

Bi
intra U(0,10)   

 

In the literature, one approach resolving the computational time problem for large-sized examples is using the known 

bounds, such as the Sum of Pairs Expected Value (SPEV), the Expected Value of the Reference Scenario (EVRS), and 

the Expectation of Pairs Expected Value (EPEV). In this context, we use the SPEV and EPEV as a lower and upper 

bounds, respectively. To study more about these two bounds and their algorithms, the authors refer readers to Birge, J. 

R., & Louveaux, F., 1(997), Maggioni, F., et al. (2012) , and Maggioni, F., et al. (2014). The comparisons between the 

optimal objective function and two bounds SPEV and EPEV for several examples are shown in Table 6. The Value of 

Stochastic Solution (VSS), the Expected Value of Sum of Pair (EVSP), VSS% and EVSP% are calculated as Eqs. (30)-

(33): 
 

VSS = EPEV-optimal objective function                                                                                                                         (30) 

EVSP = optimal objective function-SPEV                                                                                                                         (31) 

VSS% = 
VSS

EPEV
×100                                                                                                                                                        (32) 

EVSP% = 
EVSP

optimal objective function
×100                                                                                                                     (33) 

 

In fact, VSS and EVSP show the costs incurred to the system due to simplifying the uncertain problem (model 2 together 

nonanticipativity constraints) into a problem with several pairs-scenario problems. These two values can help, whether 

the company should trust to optimal solutions obtained in problems associated with finding two bounds SPEV and EPEV. 

In other words, the higher values for VSS% and EVSP% means that using the obtained solutions in SPEV and EPEV 

cannot be reliable and vice versa. In Table 5, the maximum and minimum value for VSS% and EVSP% are 2 and 19 , 

respectively. We recommend that for large-sized examples where to find the optimal solutions are time-consuming, 

solutions obtained by two bounds can be utilized if VSS% and EVSP% are less than or equal 10. This range can be 

logical for every company with respect to the authorities' opinion. 
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Moreover, the computational times in obtaining two bounds are represented in Figure 4. By comparing the computational 

times until desirable results for optimal and two bound objective functions in Fig 3 and Fig 4, respectively, it is concluded 

that the solving times for two bounds are less than the objective function. Also, the quality of bounds is almost suitable 

for most of the examples. As a result, using two bounds instead of the optimal objective function can be reasonable 

especially for large-sized problems. 

 

Figure 2. The scenario tree for the computational example 

 

 

Figure 3. The variations of computational times versus variations of (a) number of part types; (b) number of machine types; (c) 

number of cells and (d) number of periods 
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Table 6. The results related to VSS% and EVSP% for the generated random examples 

No. of 

example 

𝐈/𝐌/𝐂/𝐒/𝐇 SPEV Optimal 

objective 

function 

EPEV VSS 

 

 

EVSP VSS% EVSP% 

1 1/3/2/8/3 52345 56732 59132 2400 4387 4 8 

2 2/3/2/8/3 65464 81678 88546 6868 16214 8 19 

3 3/3/2/8/3 101230 119645 127617 14699 11688 6 15 

4 4/3/2/8/3 115670 123440 129100 5660 7770 4 6 

5 5/3/2/8/3 134571 150467 179543 29076 15896 16 10 

6 6/3/2/8/3 167789 184534 207685 23151 16745 11 9 

7 7/3/2/8/3 169990 196756 201345 4589 26766 2 13 

8 3/1/2/8/3 121456 134560 146780 12220 13104 8 10 

9 3/2/2/8/3 111398 133451 149876 26425 12053 18 10 

10 3/4/2/8/3 93459 104599 119320 14721 11140 12 10 

11 3/5/2/8/3 94541 102304 109110 6806 7763 6 8 

12 3/6/2/8/3 99345 110345 131964 21619 11000 16 10 

13 3/7/2/8/3 103450 112891 115433 2542 9441 2 8 

14 3/3/3/8/3 101230 112918 127617 14699 11688 11 10 

15 3/3/4/8/3 101230 112918 127617 14699 11688 11 10 

16 3/3/5/8/3 101230 112918 127617 14699 11688 11 10 

17 3/3/6/8/3 101230 112918 127617 14699 11688 11 10 

18 3/3/7/8/3 101230 112918 127617 14699 11688 11 10 

19 3/3/2/2/1 29804 36659 38319 1660 6855 4 19 

20 3/3/2/4/2 64583 71550 78330 6780 6967 9 10 

21 3/3/2/16/4 173473 181226 211334 30108 7753 14 4 

22 3/3/2/32/5 191342 234678 290304 55626 43336 19 18 

23 3/3/2/64/6 264322 289241 341121 51880 24919 15 9 

24 3/3/2/128/7 301231 337674 357890 20216 36443 6 11 

 

6. A practical case study 

 

R-S.Arvin is a manufacturing company located in Robat-Karim, Tehran, Iran. This company produces several parts used 

in automobiles for Iran-Khodro as the biggest producer of automobile in Iran. Also, this company utilizes a CMS to 

acquire the essential flexibility for handling the demand uncertainty in different months and to reduce the transportation 

costs within the company. The number of the used cells in this company is four and the planning horizon is equal to four 

periods equivalent to four seasons in year. The produced parts (20 parts) together with some other information are 

presented in Table 7. Further, the current machines in the company together with their information as well as the demand 

of parts for the low and high state in four different seasons in the year are given in Table 8 and Table 9, respectively. 

The planning horizon is one year including four seasons that each season has the different demand. Moreover, γinter, 

γintra, l, LB and UB are 10, 2, 1, 1 and 7, respectively.  

This company has no information about the demand state of parts at the beginning of each season. But, it should be 

decided on the number of machines assigned to cells in all periods for all scenarios, the number of machines added in 

cells in all periods for all scenarios, and number of machines removed from cells in all periods for all scenarios (three 

variables Nmcts, Kmcts
+
, Kmcts

-) before the demand state is determined. Thus, when the demand state is determined, 

other variables consisting of variables xjimcts, Pits , yits, Sits , Inits
+
, Inits

-
 should be determined at the end of each 

season. 

 

Solving the case study problem by the model (Π) together with associated nonanticipativity constraints in GAMS 

software didn’t find even one feasible solution for about three days (4320 minutes). This can be a challenge in solving 

this case study. Therefore, this problem was solved to obtain VSS% and EVSP% for case study. As an example, the 

optimal solutions related to cell formation for two bounds SPEV and EPEV for the certain scenario (low, low, low, low) 

are given in Table 10 and Table 11 respectively.  
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Figure 4. The variations of computational times versus variations of (a) number of part types; (b) number of machine types; (c) 

number of cells and (d) number of periods; for finding two bounds 

 

 

After solving the case study modal by two bounds, the values of SPEV and EPEV are equal to 14245674 and 15437903. 

Because the optimal objective function obtained by the model (II) and non-anticipativity constraints, could not be found 

in a logical computational time, thus the calculation of VSS% and EVSP% is impossible. But, we can obtain a range for 

VSS% and EVSP%. The maximum and minimum values for optimal objective function are obtained by model (II) and 

non-anticipativity constraints are equal to SPEV and EPEV (14245674 and 15437903). Therefore, the range for VSS and 

EVSP can be obtained as follows. The minimum value for VSS is equal to VSSmin= 15437903-15437903=0 and the 

maximum one is equal to VSSmax= 15437903-14245674=1192229. Also, the minimum and maximum values for EVSP 

are equal to EVSPmin=14245674-14245674=0 and EVSPmax= 15437903-14245674=1192229. Thus, the ranges for VSS% 

and EVSP% are found (0, 7) and (0, 8) respectively. Since the error values are under 10 percent, we can conclude that 

using the two bounds models can be useful for solving this certain proposed case study. The obtained results mean that 

the company can incur maximum 1192229 errors in the objective function value in order to obtain the near-optimal 

solutions in a justifiable computational time. 
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Table 7. The parts list together with some information about parts for R-S.Arvin company 

No. of 

parts 

Name Processing routes (processing times (min)) 𝑩𝒊
𝒊𝒏𝒕𝒆𝒓 𝑩𝒊

𝒊𝒏𝒕𝒓𝒂 𝝀𝒊 𝜼𝒊 𝝆𝒊 

1 Multi-way 

mounting bracket 

M1-M4-M9-M5 (0.7-0.65-0.3-0.5) 100 10 8    1.0 2.0 

2 Bumper Bracket M2-M8-M4-M5 (0.3-0.9-0.5-0.2) 150 10 6    1.0 3.0 

3 Closed dome M1-M12-M4-M5 (0.5-0.4-0.3-0.4) 300 50 3 0.5 1.0 

4 Split clamp M1-M12-M5 (0.5-0.9-0.4) 500 100 3 0.5 3.0 

5 Polk Hub M1-M6-M3 (0.2-0.5-0.4) 1000 100 2 0.4 0.5 

6 Foundation type 1 M2-M3-M10-M12-M5 (1.5-0.8-0.2-0.5-0.7) 50 5 10 2.0 4.0 

7 Differential Handle M1-M3 –M7 (0.3-0.3-0.2) 1000 100 3 0.5 0.5 

8 Fastener M2-M3-M5 (0.2-0.4-0.3)  500 100 2 0.2 0.5 

9 Dyaq shock M2-M3-M9-M11-M5 (2-0.7-0.7-0.3-0.4) 50 5 12 3.0 5.0 

10 Nissan Ram M2-M4-M8-M12 (1.4-0.4-0.6-0.7) 40 2 15 5.0 7.0 

11 Valve M2-M7-M5 (0.2-0.8-1.5) 2000 500 2 0.2 0.3 

12 Oil-consuming M1-M3-M5-M11 (0.4-0.4-2.6-0.3-0.2) 1000 100 4 1.0 1.0 

13 Copley Duster M2-M7-M4 (0.7-0.7-0.5) 1000 50 5 2.0 2.5 

14 In-box Metal  M1-M3-M5 (0.4-0.4-0.5) 500 20 3 0.2 0.5 

15 Sealing Washer M2-M12 (1.3-0.6) 200 10 10 3.0 3.0 

16  Semi-Crust M1-M4-M5 (0.4-0.6-0.8) 1000 100 3 1.0 1.0 

17 Lachaki M2-M7-M11-M9 (0.8-1.2-1-0.5) 100 5 11 1.0 5.0 

18 Domical M2-M12 (0.9-1.8) 100 5 15 1.0 5.0 

19 Paulus Washer M2-M4-M3-M5 (0.5-0.4-0.3-0.4) 1000 200 2 0.2 1.0 

20 Piniom washer M1-M3-M5 (0.4-0.7-0.3) 1000 100 2 0.1 3.0 

Table 8. The machines list together with some information about machines for R S.Arvin company 

No. of 

machines 
Name 𝑻𝒎 (hour) 𝜶𝒎$ 𝜷𝒎$ 𝜹𝒎$ 

Corresponding 

cell 

Current 

volume 

1 Guillotine 4 mm 350 100 2.0 200 1 1 

2 Guillotine 6 mm 350 110 3.5 250 1 1 

3 Press 15 tone 350 80 2.5 180 2 1 

4 Press 30 tone 350 90 3.0 280 2 1 

5 Magnetic drill 350 40 1.5 80 3 1 

6 Press 60 tone  350 100 1.8 410 2 1 

7 Press 100 tone 350 115 2.2 580 2 1 

8 Press 180 tone  350 140 2.4 730 4 1 

9 Column drill 350 35 2.0 120 3 1 

10 Milling machine 350 60 2.5 400 3 1 

11 Press 250 tone 350 180 3.5 900 4 1 

12 Press 400 tone 350 200 4.0 1250 4 1 

Table 9. The demand information in the different seasons in year for  R-S.Arvin company 

No. of 

parts 

Low demand High demand 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

1 9000 10400 5600 8700 12500 15000 7800 11300 

2 18500 14600 27900 22400 27400 23400 35600 30300 

3 11200 9400 18700 19200 15200 12300 24500 25400 

4 32500 26700 39000 36700 48900 32500 56800 51100 

5 17500 16700 23400 19900 30400 23800 30200 27600 

6 5900 3300 8800 7100 11800 7800 16700 13400 

7 4700 3000 8000 6700 6300 4100 9600 8800 

8 50000 39900 67400 70900 90000 68200 82300 85600 

9 21600 16700 33300 26700 29400 24600 46800 35000 

10 8200 8600 6600 4900 10700 11800 8700 6300 

11 100000 83500 113600 125900 141000 115700 167800 180000 

12 32100 23400 35800 31200 39400 28500 47100 45500 

13 16200 11300 16700 15000 22300 19100 24600 23900 

14 48300 40300 43700 30000 61300 50100 58900 41200 

15 12300 13900 5700 3200 15900 17500 11300 6700 

16 18900 12800 23700 28900 24300 18900 35600 36100 

17 12500 9000 15900 13400 19400 15600 22300 20100 

18 12600 10600 16700 14000 19500 17800 29900 25600 

19 39000 40000 44500 40300 53000 57200 63100 59800 

20 76000 81000 80300 83400 91000 100900 93400 120100 
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Table 10. The optimal cell formation obtained  for case study for the model relevant to SPEV in scenario (low, low, low, low) 

Period No. of cells The assigned machine types (the optimal number of machines) 

Spring 1 M1(1)- M2(2)- M5(2)- M12(2) 

2 M3(2)-M7(2)- M9(1)- M10(1) 

3 M1(1)- M2(1)- M4(3)- M12(1) 

4 M11(2)- M5(1)- M6(1)- M8(1) 

Summer 1 M1(2)- M2(1)- M7(2) 

2 M3(2)- M5(3)- M10(2) 

3 M1(2)- M2(1)- M9(1)- M12(1) 

4 M4(2)- M6(1)-M8(1)- M11(2) 

Autumn 1 M1(1)- M2(3)- M7(2) 

2 M3(2)- M9(2)- M10(2)- M11(1) 

3 M1(2)- M2(1)- M5(2)- M12(2)  

4 M4(2)- M5(1)- M6(1)-M8(1) 

Winter 1 M2(3)- M7(2)- M10(1) - M11(1) 

2 M3(2)- M9(2)- M7(2) 

3 M1(2)- M5(3)- M12(2)  

4 M4(2)- M6(1)-M8(2) 

Table 11. The optimal cell formation obtained for case study for the model relevant to EPEV in scenario (low, low, low, low) 
Period No. of cells The assigned machine types (the optimal number of machines) 

Spring 1 M1(2)- M2(2)- M5(3) 

2 M3(3)-M8(2)- M9(1)- M10(1) 

3 M1(2)- M7(2)- M12(2) 

4 M4(3)- M6(1)- M11(3) 

Summer 1 M1(1)- M2(1)- M4(2)- M5(3) 

2 M3(2)- M8(1)- M7(2)- M10(2) 

3 M1(2)- M2(2)- M9(1)- M12(1)  

4 M3(1)- M4(1)- M6(2)- M11(2) 

Autumn 1 M1(2)- M2(3)- M5(2) 

2 M3(3)- M7(2)- M10(2) 

3 M1(1)- M2(2)- M9(1)- M12(2)  

4 M4(2)- M5(2)- M6(1)-M8(1)- M11(1) 

Winter 1 M1(2)- M2(2)- M5(2)- M7(1) 

2 M3(2)- M9(2)- M5(2)- M7(1) 

3 M1(1)- M2(2)- M12(2)- M8(2)  

4 M4(2)- M6(2)-M11(2)- M10(1) 

 

7. Conclusions 

  

This paper develops a dynamic cell formation problem (DCFP), where there are several periods with the different 

quantity of uncertain demand in each period. In other terms, the demand is both dynamic and uncertain for each period. 

Also, because some companies have deficient information thought historical data about the demand in each period so 

they can determine several scenarios for demands. However, to determine the optimal cell configuration in each period 

in order to achieve the total minimum expected costs is the  goal. A mixed-integer nonlinear mathematical model, despite 

the scenario-based and dynamic demand of parts, has been developed. Further, a multi-stage stochastic programming 

(MSP) is used to cope with uncertainty of demand. The nonlinear model is transformed into a linear model and it is 

solved by GAMS software for small and medium-sized examples. The validation of model is proved in a random 

computational example with considering several conditions, such as with and without the non-anticipativity constraints 

and theirs results in Tables 3 and 4. In order to solve the large-sized examples, we recommended using the generated 

plans by two bounds SPEV and EPEV when two error values VSS% and EVSP% are less than or equal to 10 percent. In 

addition, we proved that the computational time for solving the two models associated with SPEV and EPEV were much 

less than the multi-stage stochastic model together with nonanticipativity constraints. Finally, a practical case study as a 

large-sized example was presented. The recommended method was used and the maximum error equal to 7% and 8% 

were obtained for VSS% and EVSP% respectively. In this case, in order to decrease the computational time, using the 

two bound plan instead of the multi-stage stochastic plan, the maximum cost was incurred equal to 1192229 for R-S-

Arvin company. This can be a managerial implication for authorities in manufacturing companies. For further studies, 

to develop an efficient solving method for large-sized scenario-based DCFP examples, such as benders decomposition 
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method (exact method) or meta-heuristic methods (approximate methods like GA, ACO, SA, TS and etc.) can be as a 

future research. In additions, considering the distribution functions for demands can be an open work for the future.   
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