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Abstract 

A significant portion of Gross Domestic Production (GDP) in any country belongs to the 

transportation system. Transportation equipment, is supposed to be great consumer of oil products. 

In this paper a novel heuristic algorithm based on Clark and Wright Algorithm called Green Clark 

and Wright (GCW) for Green Vehicle Routing Problem is presented. The objective function is fuel 

consumption, drivers, and the usage of vehicles. Comparing obtained results by those of exact 

methods solutions for small-sized problems and Differential Evolution (DE) algorithm solutions 

for large-scaled problems, the results show efficient performance of the proposed GCW algorithm. 
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1. Introduction 

Using fossil fuels, transportation vehicle devices –dependent on how much fuel they need to 

consume- are supposed to be great producers of greenhouse gases (GHG) such as Carbon Dioxide 

(CO2) (Kirby et al. 2000). Transportation is considered an important section of logistics – a 

fundamental non-changeable element of economic development – which consumes fossil fuels 

and emits the environment to a large extent (Zachariadis et al. 2009). The Vehicle Routing 

Problem (VRP) plays a key role in logistic and distribution management; a main part of logistic 

total costs belongs to the vehicles (Lin et al. 2014). The costs have been, for a long time, 

considered just as an economic problem, but nowadays, environmental factors are also added to 

the problem due to the environmental emission concerns; therefore, it is important to find a model 

to reduce the fuel consumption while considering both driver and vehicle costs (Barbarosoglu and 

Ozgur, 1999). This paper develops a heuristic solution for the green VRP, the performance of 

which is evaluated through exact solutions in small-sized problems and Differential Evolution 

(DE) solutions for large-scaled ones. The results show an appropriate performance of this 

algorithm.  

 

2. Literature Review 

Effective factors for fuel consumption are categorized into 5 clusters: vehicle, environmental 

factors, traffic, driver, and the external factors. Among most important effective factors on the 

consumption of fuel the following are of special note: speed, road steep, driver, crowd, maximum 

load, and the fleet combination or size (Demir et al. 2014). Xiao et al. (2012) formulated the 

consumption of fuel and suggested the fuel consumption rate of limited-capacity VRP. Both load 

and the distance passed by the vehicle were considered as variables which determine the fuel 

costs. It has been assumed that in their formula that fuel consumption is a linear function of load. 

Kuo (2010) added the vehicle velocity to the time-based VRP model besides the factors of passed 

distance and the carried load and solved the model through a Simulated Annealing (SA) 

algorithm. Ubeda et al. (2011) conducted a case study to minimize the distance passed and the 

emission produced by the vehicles; the results show it is important for controlling the GHGs to 

consider the load carried back. Faulin et al. (2012) combined the limited capacity VRP with 

environmental factors such as noise, crowdedness, and infrastructures frazzle. Rakha et al. (2003) 

reported that there were many aspects such as approach, structure, and the required data from 

which the models of GHG emission and available energy consumption are different. The fuel 

consumption models are divided into two main categories: in microscopic models the 

environmental factors and the motor features define how much fuel is consumed, while in the 

macroscopic models the amount of fuel consumed by the vehicles in diverse situations is 

calculated upon regression models. In the following section, an overview of the models is given. 

  

Palmer (2007) combined the VRP model with CO2 emission and the travel duration. He checked 

what effect reducing the rate of Carbone Dioxide emission had on fuel consumption in different 

traffic situations with time-windows constraints through a momentary fuel consumption model. 

The results showed it was possible to reduce Carbone Dioxide emission by 5% . Banderia et al. 

(2013) introduced a method for obtaining the information about the emissions on multiple routes 

among which a driver should randomly select one. He used Vehicle Specific Power (VSP). Bektas 

and Laporte (2011) presented the emission VRP with and without time-windows and formulated a 
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to-be-minimized objective function of the costs of GHG emission, the operative cost of driver and 

the amount of consumed fuel through the Total Quality Emission Model. Demir et al. (2012) 

suggested Adaptive Large Neighborhood Search (ALNS) algorithm for emission VRP which had 

a high efficiency, especially in medium- and large-scaled instances. They also used the Total 

Quality Emission Model to solve a to-be-minimized two-objective-function problem of consumed 

fuel and the driving duration. Franceschetti et al. (2013) considered the consumed fuel, the 

amount of emitted Carbone Dioxide, and the driver costs in traffic-based situation and solved it by 

the Total Quality Emission Model. Koc et al. (2014) have studied the emission VRP under the 

heterogeneous fleet. 

 

Jabali et al. (2012) studied the time-dependent VRP to analyze the influence of velocity limitation 

on the fuel consumption and the driving duration. They utilized the Methodology for calculating 

transportation emissions and energy consumption (MEET) which is assumed the macroscopic 

model [18]. Omidvar and Tavakkoli-moghaddam (2012) surveyed the VRP with alternative fuel 

by the help of the methodology for calculating the amounts of both emission and fuel 

consumption; their objective function minimized both of them. Maden et al. (2010) solved the 

time-dependent VRP in changing traffic status situations; the results showed a 7-percent decrease 

of Carbone Dioxide emission. Their model simultaneously minimized the driving duration and the 

GHG emissions based on the method of National Atmospheric Emissions Inventory (NAEI). 

 

3. Problem description 

Regarding the comparison of fuel consumption by Demir et. al., we found the Total Quality 

Emission Model had the nearest estimation to reality. The fuel consumption rate is calculated 

through the equation (1). 

(1) 
Pξ(kNV+ )

η
FR=

κ
 

 

Where  is the mass rate of fuel to air,  is the friction of vehicle motor,  and  are the motor’s 

velocity and movement, respectively;  and  are constants of diesel motor efficiency and fuel 

heat value, respectively; and  is momentary output power motor in terms of kilo Watt which is 

calculated through the equation (2). 

(2) tract
acc

tf

P
P= + P

η
 

 

Where  is the efficiency of moving axels of the vehicle,  is the required power for the 

accessories of the vehicle such as cooler devices etc. which is assumed to be zero, here;  is 

the required pulling force for the wheels in terms of kilo Watt which is calculated through the 

equation (3). 

(3) 
2

d r
tract

(Ma + Mgsinθ + 0.5C ρAv + MgC cosθ)v
P =

1000
 



Int J Supply Oper Manage (IJSOM)  
 

787 

 

Where  is the vehicle mass (including the load) in terms of kilo grams and  is the vehicle 

acceleration in terms of ; , , and  are the vehicle velocity in terms of , the road 

steep, and the gravity constant, respectively;  and  are the coefficients of air and rolling 

resistances, respectively; and  and  are the air density in terms of  and the vehicle 

frontal area in terms of . 

For the arc  with the length of , and  is the velocity of a vehicle. If the factors remained 

constant except for velocity in the equation (1), the consumed fuel (in terms of liter) can be 

calculated by the equations (4) and (5). 

(4) kNVλdF(v)=
v
 

(5) Pλγd
+

v
 

 

Where  and  can be obtained by the equations (6) and (7), respectively. 

(6) 
ξ

λ=
κψ

 

(7) 
tf

1γ=
1000η η

 

 

Where  is the convertor coefficient of fuel from  into . 

 is divided into two factors of  and  which are the empty vehicle mass and the cargo mass, 

respectively.  and  are coefficients which can be calculated by the equations (8) and (9). 

(8) rα= a + gsinθ + gC cosθ  

(9) dβ= 0.5C ρA  

 

The relative index of the arc  will be placed under the velocity, distance, load,  parameters 

of the arc. The equations (4) and (5) can be rewritten in the form of the equation (10) as follows 

(Demir, 2012): 

(10) 
3λ(kNV + wγαv + γαfv + βγv )d

F(v)=
v
 

 

The parameters are initialized for a medium (5-ton) vehicle. 

 

3.1. Mathematical Model 

The parameters, indices, and the variables are introduced in Table 1 before the model 

introduction. 
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Table 1. The introduction of the parameters 

Parameter Definition  Parameter Definition 

 The number of customers in a node   The demand of customer  

 The number of vehicles   

The wage of an hour 

driving 

 The customer  capacity   The capacity of vehicle  

 
The distance between customers  and    A big number 

 
The road steep between the customers  and    

Constance cost of any 

vehicle 

 

Parameter Definition 

 

A zero-one parameter which is one when the vehicle  is moving between the customers  and ; and 

zero if otherwise. 

 
The load which vehicle  carries between customers  and . 

 
A variable which barriers a sub-tour construction. 

 A zero-one variable which is one when the vehicle  is being used; zero if otherwise. 

 

The problem model is defined as following: 

 

(11) 

speed

n n K
ij

c

i=0 j=0,j i k=1

c
minz=f kNVλ



    

n n K
k

c ij r ij ij ij

i=0 j=0,i j k=1

+ f .λ.γ.g(sin(grade )+C .cos(grade ))c .w.X


    

n n K
k

c ij r ij ij ij

i=0 j=0,i j k=1

+ f .λ.γ.g(sin(grade )+C .cos(grade ))c .f


    

n n K
2

c ij d

i=0 j=0,j i k=1

+ f λγc (0.5C Aρ)(speed)


    

n K
ij

i=1 k=1

c
+ dp.

speed
K

k

k=1

+ vp.l  

(12) j 1,..., n, j i    
n K

k
ij

i=0 k=1

X =1  

(13) k 1,...K   
n

k
0j k

j=1

X l  
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(14) k 1,..., k   
n n

k
ij k

i=0 j=0

X BM*l  

(15) j 0,..., n;k 1,...,K    

n n
k k
ij jm

i=0 m=0

X - X =0 
 

(16) i, j 0,..., n, j 0;k 1,...,K     i

n
k k k

ij mi ij

m=0

f f -dem -BM(1-X )
 

(17) i, j 0,..., n, j 0;k 1,...,K     i

n
k k k

ij mi ij

m=0

f f -dem +BM(1-X )
 

(18) j 1,..., n;k 1,...,K    

n

i

m 0

n
k k k

0j mi 0j

i=1

f = (dem * X )*X


 
 

(19) j 1,..., n;k 1,...,K    
k

0j kf capacity

 

(20) i, j 0,..., n, j 0;k 1,...,K   
 

k k k
i j iju +1 u +BM(1-X )

  

kt
0u =0

 

(21) i, j 0,...n;k 1,...,K     k
ijX 0,1

    
 kl 0,1

   

 

 

The equation (11) in the model is to-be-minimized objective function of six sections: the first 

section is the cost of consumed fuel, the second objective is the cost of fuel which would be 

consumed due to the vehicle weight, third one is the cost of fuel which would be consumed due to 

the load the vehicle carries, the fourth section is the cost of fuel which would be consumed due to 

the vehicle velocity, the fifth one calculates the driver costs [21], and the sixth section of the 

objective function includes the cost of using the vehicle. The constraint (12) to (15) assures 

visiting the customers through using the vehicles. The equations (16) to (19) shows the load 

carried between two customers and the load carried when the vehicle exits from the central stock. 

The 20th equation is the constraint which assures preventing from a sub-tour construction. The 

equation (21) defines the variables types. 

 

4. Solution method 

This section introduces the algorithms used for the proposed method. 

 

4.1. Green Clark and Wright Algorithm 

Clark and Wright (1964) presented an algorithm for VRP which was based on saving concept 

(Lysgaard, (1997)). The paper Takes accounts of fuel consumption reduction in VRP and propose 

a solution inspired by a heuristic algorithm, called GCW with the following steps: 

Step 1: assign a vehicle to each node. 
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Step 2: Calculate the savings earned by the connection of every pairs of the nodes by the help of 

the equation (22) where this amount is noted as  for the arc . 

(22) 
0i i0 0j j0 0i ij j0 i0 0j ij(sum + sum ) + (sum +sum )- (sum + sum +sum )=sum +sum -sum  

 

If one opens the equation (22), it gets as the equation (23): 

(23) 

f i0 0j ij

f i0 i0 0j 0j ij ij

f 0j 0j j ij ij j 0i 0i j

2

f i0 0j ij

i0 0j ij

c kNVλ (dis + dis - dis )

speed

+c λγW (α dis + α dis - α dis )

+c λγ (α dis dem - α dis dem - α dis dem )

+c λγβ (dis + dis - dis )speed

dis + dis - dis
+p( )

speed

 

The equation (23) shows the optimum velocity (causing minimum driver and fuel cost) by the 

variable  which is obtained by differentiating (in terms of velocity) from the equations 

holding velocity, driver costs and fuel costs. The equations (24) and (25) show the procedure. 

(24) 
c

c

v

ij ij

ij2 2

=0
( )

- f kNVλc c
+ 2f βγλc v- dp = 0

v v





 

(25) 

1

3
*

c

KNV dp
v = +

2βγ 2βλγf

 
 
 

 

 

Step 3: sort the savings calculated in step 2 in descending order. 

Step 4: start from the beginning of the list, one should connect two nodes if the sum of their 

demands is less than the vehicle capacity and otherwise, skip to the next one, until a tour (with more 

than one node) is constructed. If No tours is constructed in this step, The next step will be skipped. 

Step 5: do the sub-steps 5-1 and 5-2 for all the nodes which do not belong to the tour: 

  5-1: assign the node to both beginning and end of the tour, separately, and calculate the saving 

earned by each one. 

  5-2: choose the node with the most saving. If all the earnings for the non-assigned nodes are 

negative, go to step 2. 

Step 6: if all the nodes are assigned, go to step 7. 

Step 7: the algorithm is stopped and the rout of each vehicle is reported. 

To improve the solution gained by GCW, a 2-opt neighborhood developer is used (Agarwal et al. 

2004). A two-opt neighborhood of the tour  includes all the tours  which can be obtained by 

eliminating the arcs  and , and adding the arcs  and . 
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4-2- Differential Evolution Algorithm 

Differential Evolution Algorithm is a metaheuristic method which uses  members, each of 

which is a -dim vector. The candidate solution can be written as   

. The initial population should cover as much solution space as possible. For instance, 

th parameter of th member in the replication  is calculated by equation (26). 

(26)  l u
i i i ix x (j) x (j) x (j),i=1,...,N;j=1,...,D   

(27) l u
i i ix (j)=x (j)+rand(0,1).x (j)  

The lower and upper bounds of th parameter are noted by  and , respectively. The 

initial population size is set as . 

 

Mutation: for every unique member  of the population (a target vector) a mutation vector is 

constructed through the equation (28) where , , and  are three randomly selected 

members which are different and are not the parents themselves. 

     (28)  , 1 1 2 3 , 1 2 3i G r r rv x F x x i r r r        

 is the scale constant in the interval . The mutated vector is called the test vector. If the 

obtained number is within the interval , the relative cell would be zero, and otherwise, one 

(Storn, 1997). The resulting number could be less than zero or greater than 1. If the number is 

greater than 1, a mirror procedure is applied on the number and it is subtracted from one. If it is less 

than zero, the absolute value is obtained.  in this paper is found best to be 0.7 by the help of try 

and error. 

 

Crossover: once the mutation is done, the crossover operator makes the target and mutation 

vectors to reproduce the offspring vector. Uniform crossover combines the target vector  and 

the test vector  as follows: 

     (29)  
 

( (0,1) )

or( )

( )

i
randi

i

rand CR
v j if

j ju j

x j otherwise

 
 

  




 

 

Where  is the crossover constant which varies within the interval .  is a random index 

to insure at least a different element between the offspring vector and its parents. The best value of 

this parameter has been found to be 0.6 by try and error. 

 

Selection: in minimizing problems the following function choose one between the offspring and 

parent vectors (Storn, 1997). 
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      (30) 
    ,

,

i i i

i

i

u if f u f x
x

x otherwise


 

 


 

The triple conditions above-mentioned would be continued till the ending condition which is 50 

times of replication. 

 

5. Results 

The numerical results are presented here, by explaining the small- and large-sized instance 

problems generating, solving and results comparing. Each problem is solved 5 times by the 

algorithm and the resulted mean values of time and the objective function are reported. 

 

5.1. Instances 

To generate the large size instances, Augerat test problems (set one) are used. The customers 

coordinates are the same as what in initial problem are. The maximum number of available vehicles 

are two times more than the optimum number of required vehicles of the initial test problem. The 

capacity of the vehicles are supposed to be 100 units which are multiplied by 50 in order to be 

converted into 5 tons; the same thing happens to the demands. To generate small size problems, 

some of the customers from a random large-scaled instance are selected. 

 

5.2. Small Sized Problems 

The results of solving small-sized instances are illustrated in table 2, in which the columns are 

problem definition (problem number – customers’ quantity – maximum available number of 

vehicles), mean solution and the solving duration of the exact method, and the same values of 

each heuristic methods with the percentage of error respectively. For example, 1-3-2 means the 

first problem has 3 customers and can have at most 2 vehicles. To solve the problems exactly the 

Cplex method were utilized and the solutions of proposed methods are compared to exact 

solutions. 

Table 2. Comparison of small-sized solutions by two algorithms 

GCW  DE  Exact  
Problem 

Definition 
Error 

(%) 

time (s) Obj. 

Func. 

 Error 

(%) 

time (s) Obj. 

Func. 

 time (s) Optimum 

Solution 

 

0 0.11 40.56  0 0.67 40.56  1 40.56  1-3-2 

0 0.14 59.42  0 0.85 59.42  2 59.42  2-5-2 

0 0.14 92.84  0 1.27 92.84  28 92.84  3-6-2 

0 0.2 87.87  0 1.5 87.87  50 87.87  4-6-3 

0 0.35 93.89  0.35 1.83 94.22  55 93.89  5-7-2 

0.17 0.28 113.48  0 2.3 113.28  397 113.28  6-7-3 

0 0.16 117.64  0 1.61 117.64  430 117.64  7-8-2 

0 0.25 115.60  0 1.81 115.60  527 115.60  8-9-2 

0 0.29 104.27  0 1.23 104.27  598 104.27  9-10-2 

0 0.23 143.48  0 2.71 143.48  4565 143.48  10-8-3 

0.017 0.215   0.035 1.57   665.3   Mean 
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As shown in fig. 1, GCW algorithm and Differential Evolution algorithm cannot solve problems 6 

and 5 optimally (with error means of 0.017 and 0.035), respectively. Fig. 1 illustrates the solution 

time of the algorithms. 

 

 

Figure 1. Solving duration for small-sized instances 

 

 

The right vertical axis in fig. 1 belongs to exact method solution time and the left one show the 

metaheuristic ones. Regardless of time-consuming solutions of exact method, the duration 

increases exponentially by size increasing, while the similar relation for the metaheuristic 

methods is linear. 

 

5.3. Large size problems 

The results of 27 lage size test problems are illustrated in table 3. 

 

As shown in table 3, GCW algorithm solves the test problems better than DE algorithm; their 

error means are 1.78% and 2.27%, respectively. The convergent status of DE is obtained later 

than GCW. Furthermore, GCW has better solutions than DE in 15 problems among 25 ones. Fig. 

2 illustrates the error means of the problems solved by two algorithms. 
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Table 3. Comparison of large-scaled solutions by two algorithms 

GCW  DE  
P 

E (%) time (s) Obj.   E (%) time (s) Obj.   

7.01 9.44 433.08  0 63.86 404.7  1-31-5 

0 8.8 345.61  2.94 69.01 355.78  2-32-5 

5.61 9.3 403.71  0 41.38 382.24  3-32-6 

0 9.28 354.25  5.15 49.56 372.5  4-33-5 

5.56 9.17 426.6  0 83.35 403.78  5-35-5 

4.29 9.21 381.44  0 90.97 363.55  6-36-5 

0.88 9.09 485.01  0 13.48 480.77  7-36-6 

0 8.69 366.43  8.51 16.04 397.64  8-37-5 

2.75 9.17 444.19  0 25.19 432.29  9-38-5 

3.25 9.04 462.75  0 71.12 447.01  10-38-6 

6.95 9.29 530.91  0 142.99 496.39  11-43-7 

0 9.11 527.71  2.27 139.37 539.69  12-44-7 

3.33 9.3 582.12  0 117.91 563.31  13-44-7 

0 9.43 493.85  3.8 157.23 512.63  14-45-7 

3.02 12.04 591.55  0 170.19 574.17  15-47-7 

0 9.38 563.48  8.16 28.38 609.49  16-52-7 

0 9.48 611.88  3.38 20.96 632.57  17-53-7 

0 9.22 576.22  5.63 39.62 608.7  18-54-9 

1.46 9.31 566.15  0 245.76 557.96  19-59-9 

0 9.71 666.53  6.12 420.63 707.33  20-60-9 

0 9.21 713.67  2.23 106.05 729.61  21-61-8 

0 9.75 699.29  1.79 215.13 711.84  22-62-9 

0 9.92 854.54  1.07 358.66 863.69  23-62-10 

0 9.55 674.64  2.38 57.26 690.76  24-63-9 

0 11.29 708.77  3.99 44.37 737.07  25-64-9 

3.11 9.8 676.94  0 99.95 656.49  26-68-9 

0 10.03 954.39  4.1 116.76 993.58  27-79-10 

1.78 9.51   2.27 107.63   Mean 

 

 

As shown in fig. 2, the error in DE increases by size increasing. The efficiency of GCW is 

evaluated better than DE (maximum error of GCW is 7.01% which occurs for problem 1, while 

the maximum error of DE is 8.51% which occurs for problem 8). 
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Figure 2. Error in large size problems 

 

6. Conclusion 

The paper introduces a heuristic method for GVRP. The objective function includes the reduction 

of fuels costs, driver costs, and the costs of vehicle usages. To evaluate the performance of 

proposed algorithm in small-size and large-size problems, the results are compared with those 

obtained by exact method and DE algorithm, respectively. GCW and Differential Evolution (DE) 

algorithms showed 0.017% and 0.035% error, respectively in small size problems. Solving 27 

large size problems, GCW algorithm showed a better performance than DE in preciseness (1.78% 

against 2.27%) and CPU time. The solving duration of GCW algorithm is averagely 10 times 

better than DE algorithm which shows generally an acceptable performance. 
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