Ahmad, A., Mustapha, A., Zahadi, E. D., Masah, N., & Yahaya, N. Y. (2011). Comparison between neural networks against decision tree in improving prediction accuracy for diabetes mellitus. In Digital Information Processing and Communications: International Conference, ICDIPC 2011, Ostrava, Czech Republic, July 7-9, 2011, Proceedings, Part I (pp. 537-545). Springer Berlin Heidelberg.Ahmad, F., et al., Intelligent medical disease diagnosis using improved hybrid genetic algorithm-multilayer perceptron network. Journal of Medical Systems, 2013. 37(2): p. 1-8.
Ahmed, T. M. (2016). Using data mining to develop model for classifying diabetic patient control level based on historical medical records. Journal of Theoretical and Applied Information Technology, 87(2), 316.
Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., Said, R. A., ... & Ahmad, M. (2022). Prediction of diabetes empowered with fused machine learning. IEEE Access, 10, 8529-8538.Alam, T.M., et al., A model for early prediction of diabetes. Informatics in Medicine Unlocked, 2019. 16: p. 100204.
Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The lancet, 373(9677), 1773-1779.
Butwall, M., & Kumar, S. (2015). A data mining approach for the diagnosis of diabetes mellitus using random forest classifier. International Journal of Computer Applications, 120(8).
Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications, 35(22), 16157-16173.
Chang, V., Ganatra, M. A., Hall, K., Golightly, L., & Xu, Q. A. (2022). An assessment of machine learning models and algorithms for early prediction and diagnosis of diabetes using health indicators. Healthcare Analytics, 2, 100118.
Cox, M. E., & Edelman, D. (2009). Tests for screening and diagnosis of type 2 diabetes. Clinical diabetes, 27(4), 132-138.
Dharmarathne, G., Jayasinghe, T. N., Bogahawaththa, M., Meddage, D. P. P., & Rathnayake, U. (2024). A novel machine learning approach for diagnosing diabetes with a self-explainable interface. Healthcare Analytics, 5, 100301.
Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9(01), 1-16.
Ganie, S. M., & Malik, M. B. (2022). An ensemble machine learning approach for predicting type-II diabetes mellitus based on lifestyle indicators. Healthcare Analytics, 2, 100092.
Goyal, M., Malik, R., Kumar, D., Rathore, S., & Arora, R. (2020). Musculoskeletal abnormality detection in medical imaging using GnCNNr (group normalized convolutional neural networks with regularization). SN Computer Science, 1(6), 1-12.
Gowthami, S., Reddy, R. V. S., & Ahmed, M. R. (2024). Exploring the effectiveness of machine learning algorithms for early detection of Type-2 Diabetes Mellitus. Measurement: Sensors, 31, 100983.
Himsworth, H. P., & Kerr, R. B. (1939). Insulin-sensitive and insulin-insensitive types of diabetes mellitus.
Hina, S., Shaikh, A., & Sattar, S. A. (2017). Analyzing diabetes datasets using data mining. Journal of Basic & Applied Sciences, 13, 466-471.
Islam, M. M., Rahman, M. J., Roy, D. C., & Maniruzzaman, M. (2020). Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 217-219..
Iyer, A., Jeyalatha, S., & Sumbaly, R. (2015). Diagnosis of diabetes using classification mining techniques. arXiv preprint arXiv:1502.03774.
Kalyankar, G. D., Poojara, S. R., & Dharwadkar, N. V. (2017, February). Predictive analysis of diabetic patient data using machine learning and Hadoop. In 2017 international conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC) (pp. 619-624). IEEE.
Kangra, K., & Singh, J. (2023). Comparative analysis of predictive machine learning algorithms for diabetes mellitus. Bulletin of Electrical Engineering and Informatics, 12(3), 1728-1737.
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal, 15, 104-116.
Khaleel, F. A., & Al-Bakry, A. M. (2023). Diagnosis of diabetes using machine learning algorithms. Materials Today: Proceedings, 80, 3200-3203.
Khan, D. M., & Mohamudally, N. (2011). An integration of K-means and decision tree (ID3) towards a more efficient data mining algorithm. Journal of Computing, 3(12), 76-82.
Krishnamoorthi, R., Joshi, S., Almarzouki, H. Z., Shukla, P. K., Rizwan, A., Kalpana, C., & Tiwari, B. (2022). [Retracted] A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques. Journal of healthcare engineering, 2022(1), 1684017.
Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 40-46.
Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice, 87(1), 4-14.
Shetty, D., Rit, K., Shaikh, S., & Patil, N. (2017, March). Diabetes disease prediction using data mining. In 2017 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1-5). IEEE.
Lu, H., Uddin, S., Hajati, F., Moni, M. A., & Khushi, M. (2022). A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus. Applied Intelligence, 52(3), 2411-2422.
Lukmanto, R. B., Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46-54.
Marcano-Cedeño, A., Torres, J., & Andina, D. (2011, May). A prediction model to diabetes using artificial metaplasticity. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 418-425). Berlin, Heidelberg: Springer Berlin Heidelberg.
El Massari, H., Sabouri, Z., Mhammedi, S., & Gherabi, N. (2022). Diabetes prediction using machine learning algorithms and ontology. Journal of ICT Standardization, 10(2), 319-337.
Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27, 495-513.
Nithya, B., & Ilango, V. (2017, June). Predictive analytics in health care using machine learning tools and techniques. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 492-499). IEEE.
Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: a review of current trends. Oman medical journal, 27(4), 269.
Patil, B. M., Joshi, R. C., & Toshniwal, D. (2010). Hybrid prediction model for type-2 diabetic patients. Expert systems with applications, 37(12), 8102-8108.
Polat, K., & Güneş, S. (2007). An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital signal processing, 17(4), 702-710.
Rawat, V., Joshi, S., Gupta, S., Singh, D. P., & Singh, N. (2022). Machine learning algorithms for early diagnosis of diabetes mellitus: A comparative study. Materials Today: Proceedings, 56, 502-506.
Samsel, K., Tiwana, A., Ali, S., Sadeghi, A., Guergachi, A., Keshavjee, K., ... & Shakeri, Z. (2024). Predicting depression among canadians at-risk or living with diabetes using machine learning. medRxiv, 2024-02.
Theerthagiri, P., Ruby, A. U., & Vidya, J. (2022). Diagnosis and classification of the diabetes using machine learning algorithms. SN Computer Science, 4(1), 72.
Wilson, R. A., & Keil, F. C. (1999). The MIT encyclopedia of the cognitive sciences. A Bradford book..
Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., & Tang, H. (2018). Predicting diabetes mellitus with machine learning techniques. Frontiers in genetics, 9, 515.