Assessment of a Hybrid Machine Learning Algorithm in Healthcare Management for Predicting Diabetes Disease

Document Type : Research Paper

Authors

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

Abstract

Diabetes Mellitus is one of the most chronic diseases in all over the world. Every year, many people die due to this disease in all countries. Therefore, identifying early detection methods for this disease can reduce its mortality. Today, many diseases can be diagnosed and prevented from progressing by using data mining techniques and machine learning algorithms. In this paper, diabetes prediction has been aimed by comparing the efficiency of several classical machine-learning techniques. For this reason, for the sake of diabetes prediction algorithms such as Naïve Bayes, Logistic Regression (LR), Multi-Layer Perceptron (MLP), Sequential Minimal Optimization (SMO), J48, Random Forest (RF), Regression Tree (RT) algorithms and a new hybrid algorithm based on Multi-Verse Optimizer (MVO) and Multi-Layer Perceptron (MLP) algorithms are employed for this evaluation based on Accuracy (ACC) Indicator and Area under Curve (AUC) criteria. Numerous and diverse methods and algorithms have been used to predict diabetes. Each of these algorithms has been effective in predicting diabetes with a different level of accuracy. Our goal in this research is to introduce a new combined algorithm that has the highest level of accuracy in predicting diabetes compared to the old frequent algorithms so that it can help people in the timely treatment of this disease. In the structure of the MLP algorithm, the backpropagation algorithm is used for training. This article uses the MVO algorithm to train the MLP instead of the backpropagation algorithm, which built the hybrid algorithm called MVO-MLP. The accuracy results and the area under the ROC diagram Indicated that the proposed hybrid algorithm increases the accuracy by 107% compared to the MLP algorithm with the default structure. The outcomes of the accuracy of the new model are also higher than other algorithms used in this article

Keywords


Ahmad, A., Mustapha, A., Zahadi, E. D., Masah, N., & Yahaya, N. Y. (2011). Comparison between neural networks against decision tree in improving prediction accuracy for diabetes mellitus. In Digital Information Processing and Communications: International Conference, ICDIPC 2011, Ostrava, Czech Republic, July 7-9, 2011, Proceedings, Part I (pp. 537-545). Springer Berlin Heidelberg.Ahmad, F., et al., Intelligent medical disease diagnosis using improved hybrid genetic algorithm-multilayer perceptron network. Journal of Medical Systems, 2013. 37(2): p. 1-8.
Ahmed, T. M. (2016). Using data mining to develop model for classifying diabetic patient control level based on historical medical records. Journal of Theoretical and Applied Information Technology87(2), 316.
Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., Said, R. A., ... & Ahmad, M. (2022). Prediction of diabetes empowered with fused machine learning. IEEE Access10, 8529-8538.Alam, T.M., et al., A model for early prediction of diabetes. Informatics in Medicine Unlocked, 2019. 16: p. 100204.
Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The lancet373(9677), 1773-1779.
Butwall, M., & Kumar, S. (2015). A data mining approach for the diagnosis of diabetes mellitus using random forest classifier. International Journal of Computer Applications120(8).
Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications35(22), 16157-16173.
Chang, V., Ganatra, M. A., Hall, K., Golightly, L., & Xu, Q. A. (2022). An assessment of machine learning models and algorithms for early prediction and diagnosis of diabetes using health indicators. Healthcare Analytics2, 100118.
Cox, M. E., & Edelman, D. (2009). Tests for screening and diagnosis of type 2 diabetes. Clinical diabetes27(4), 132-138.
Dharmarathne, G., Jayasinghe, T. N., Bogahawaththa, M., Meddage, D. P. P., & Rathnayake, U. (2024). A novel machine learning approach for diagnosing diabetes with a self-explainable interface. Healthcare Analytics5, 100301.
Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications9(01), 1-16.
Ganie, S. M., & Malik, M. B. (2022). An ensemble machine learning approach for predicting type-II diabetes mellitus based on lifestyle indicators. Healthcare Analytics2, 100092.
Goyal, M., Malik, R., Kumar, D., Rathore, S., & Arora, R. (2020). Musculoskeletal abnormality detection in medical imaging using GnCNNr (group normalized convolutional neural networks with regularization). SN Computer Science1(6), 1-12.
Gowthami, S., Reddy, R. V. S., & Ahmed, M. R. (2024). Exploring the effectiveness of machine learning algorithms for early detection of Type-2 Diabetes Mellitus. Measurement: Sensors31, 100983.
 Himsworth, H. P., & Kerr, R. B. (1939). Insulin-sensitive and insulin-insensitive types of diabetes mellitus.
Hina, S., Shaikh, A., & Sattar, S. A. (2017). Analyzing diabetes datasets using data mining. Journal of Basic & Applied Sciences, 13, 466-471.
Islam, M. M., Rahman, M. J., Roy, D. C., & Maniruzzaman, M. (2020). Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 217-219..
Iyer, A., Jeyalatha, S., & Sumbaly, R. (2015). Diagnosis of diabetes using classification mining techniques. arXiv preprint arXiv:1502.03774.
Kalyankar, G. D., Poojara, S. R., & Dharwadkar, N. V. (2017, February). Predictive analysis of diabetic patient data using machine learning and Hadoop. In 2017 international conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC) (pp. 619-624). IEEE.
Kangra, K., & Singh, J. (2023). Comparative analysis of predictive machine learning algorithms for diabetes mellitus. Bulletin of Electrical Engineering and Informatics, 12(3), 1728-1737.
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal, 15, 104-116.
Khaleel, F. A., & Al-Bakry, A. M. (2023). Diagnosis of diabetes using machine learning algorithms. Materials Today: Proceedings80, 3200-3203.
Khan, D. M., & Mohamudally, N. (2011). An integration of K-means and decision tree (ID3) towards a more efficient data mining algorithm. Journal of Computing3(12), 76-82.
Krishnamoorthi, R., Joshi, S., Almarzouki, H. Z., Shukla, P. K., Rizwan, A., Kalpana, C., & Tiwari, B. (2022). [Retracted] A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques. Journal of healthcare engineering2022(1), 1684017.
Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering2, 40-46.
Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice87(1), 4-14.
Shetty, D., Rit, K., Shaikh, S., & Patil, N. (2017, March). Diabetes disease prediction using data mining. In 2017 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1-5). IEEE.
Lu, H., Uddin, S., Hajati, F., Moni, M. A., & Khushi, M. (2022). A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus. Applied Intelligence52(3), 2411-2422.
Lukmanto, R. B., Nugroho, A., & Akbar, H. (2019). Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science157, 46-54.
Marcano-Cedeño, A., Torres, J., & Andina, D. (2011, May). A prediction model to diabetes using artificial metaplasticity. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 418-425). Berlin, Heidelberg: Springer Berlin Heidelberg.
El Massari, H., Sabouri, Z., Mhammedi, S., & Gherabi, N. (2022). Diabetes prediction using machine learning algorithms and ontology. Journal of ICT Standardization10(2), 319-337.
Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications27, 495-513.
Nithya, B., & Ilango, V. (2017, June). Predictive analytics in health care using machine learning tools and techniques. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 492-499). IEEE.
Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: a review of current trends. Oman medical journal27(4), 269.
Patil, B. M., Joshi, R. C., & Toshniwal, D. (2010). Hybrid prediction model for type-2 diabetic patients. Expert systems with applications37(12), 8102-8108.
Polat, K., & Güneş, S. (2007). An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital signal processing17(4), 702-710.
Rawat, V., Joshi, S., Gupta, S., Singh, D. P., & Singh, N. (2022). Machine learning algorithms for early diagnosis of diabetes mellitus: A comparative study. Materials Today: Proceedings56, 502-506.
Samsel, K., Tiwana, A., Ali, S., Sadeghi, A., Guergachi, A., Keshavjee, K., ... & Shakeri, Z. (2024). Predicting depression among canadians at-risk or living with diabetes using machine learning. medRxiv, 2024-02.
Theerthagiri, P., Ruby, A. U., & Vidya, J. (2022). Diagnosis and classification of the diabetes using machine learning algorithms. SN Computer Science4(1), 72.
 Wilson, R. A., & Keil, F. C. (1999). The MIT encyclopedia of the cognitive sciences. A Bradford book..
Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., & Tang, H. (2018). Predicting diabetes mellitus with machine learning techniques. Frontiers in genetics9, 515.