Abbasimehr, H., Shabani, M., & Yousefi, M. (2020). An optimized model using LSTM network for demand forecasting. Computers & industrial engineering, 143, 106435.
Armstrong, J. S. (Ed.). (2001). Principles of forecasting: a handbook for researchers and practitioners (Vol. 30). Springer Science & Business Media.
Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics, 114(2), 615-630.
Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019, December). Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In International Conference on Neural Information Processing (pp. 462-474). Springer, Cham.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Brownlee, J. (2017). How to Tune LSTM Hyperparameters with Keras for Time Series Forecasting.
Chang, P. C., Wang, Y. W., & Tsai, C. Y. (2005). Evolving neural network for printed circuit board sales forecasting. Expert Systems with Applications, 29(1), 83-92.
Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86-96.
De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International journal of forecasting, 22(3), 443-473.
Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1847979018808673.
Goodwin, P., Ord, J. K., Öller, L. E., Sniezek, J. A., & Leonard, M. (2002). Principles of Forecasting: A Handbook for Researchers and Practitioners: J. Scott Armstrong (Ed.), (2001), Boston: Kluwer Academic Publishers.
Hansen, J. V., & Nelson, R. D. (1997). Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE transactions on Neural Networks, 8(4), 863-873.
Husna, A., Amin, S. H., & Shah, B. (2021). Demand forecasting in supply chain management using different deep learning methods. In Demand forecasting and order planning in supply chains and humanitarian logistics (pp. 140-170). IGI Global.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jiang, F., Yang, X., & Li, S. (2018). Comparison of forecasting India’s energy demand using an MGM, ARIMA model, MGM- ARIMA model, and BP neural network model. Sustainability, 10(7), 2225.
J Rao, R. D., & Parikh, J. K. (1996). Forecast and analysis of demand for petroleum products in India. Energy policy, 24(6), 583-592.
Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675.
Kim, M., Choi, W., Jeon, Y., & Liu, L. (2019). A hybrid neural network model for power demand forecasting. Energies, 12(5), 931.
Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410-423.
Luo, C. S., Zhou, L. Y., & Wei, Q. F. (2013). Application of SARIMA model in cucumber price forecast. In Applied Mechanics and Materials (Vol. 373, pp. 1686-1690). Trans Tech Publications Ltd.
Mbarek, H. B., Layeb, S. B., Aissaoui, N. O., Jaoua, A., & Hadj-Alouane, A. B (2022, September). Predicting Patient Arrival Rates in a Multi-Specialty Outpatient Department. Proceedings of the 3rd Asia Pacific International Conference on Industrial Engineering and Operations Management, Johor Bahru, Malaysia.
McKinney, W., Perktold, J., & Seabold, S. (2011). Time series analysis in Python with statsmodels. Jarrodmillman Com, 96-102.
Mejri, I., Bouzid, A., Bacha, S., & Layeb, S. B. (2021, September). Forecasting Demand Using ARIMA Model and LSTM Neural Network: a Case of Detergent Manufacturing Industry. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 346-353). IEEE.
Ouerghi, A., Hasni, M., Jaidi, Z., & Layeb, S. B. (2019). A new combined linear-artificial neural network-based model for accurate inflation forecasting in Tunisia. International Journal of Decision Sciences, Risk and Management, 8(4), 220-233.
Ramanathan, U., & Muyldermans, L. (2010). Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK. International journal of production economics, 128(2), 538-545.
Remus, W., & O’Connor, M. (2001). Neural networks for time-series forecasting. In Principles of forecasting (pp. 245-256). Springer, Boston, MA.
Rosenberg, R. D. (1982). Forecasting derived product demand in commercial construction. Industrial Marketing Management, 11(1), 39-46.
Sen, P., Roy, M., & Pal, P. (2016). Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization. Energy, 116, 1031- 1038.
Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F. Y. (2019). Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6(3), 547-553.
Yu, Y., Choi, T. M., & Hui, C. L. (2011). An intelligent fast sales forecasting model for fashion products. Expert Systems with Applications, 38(6), 7373-7379.
Yildiz, H., DuHadway, S., Narasimhan, R., & Narayanan, S. (2016). Production planning using evolving demand forecasts in the automotive industry. IEEE Transactions on Engineering Management, 63(3), 296-304.