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Abstract  

Population growth has led to more food demand, especially meat. Designing a supply chain, especially a meat one, is 

complicated due to the uncertainty of food demand and the perishability of meat. To this aim, we develop a multi-objective 

mixed-integer linear programming model. The developed model contains four echelons, i.e., farms, slaughterhouses, 

retailers, and customers. The first objective function minimizes the total costs, the second objective minimizes the 

distribution time, and the third objective minimizes the network's non-resiliency simultaneously. An enhanced version of 

the augmented ε-constraint method is employed to solve the suggested model, and a set of Pareto–optimal solutions is 

found. This study also explores the impact of using the robust possibilistic approach in modeling a supply chain network 

under uncertainty. Numerical experiments demonstrate that the robust optimization approach brings significantly superior 

outcomes in comparison to the conventional deterministic approach, and the model provides a practical and valuable tool 

for real-world supply chain challenges. 

Keywords: Meat Supply Chain; Resiliency; Uncertainty; Improved Augmented ε-Constraint; Multi-Objective 

Programming; Robust Possibilistic Approach. 

1. Introduction 

The food supply chain may be known as a set of facilities that harvest, produce, and distribute fruitage, verdure, Agri-

based, and animal-based products. Due to population growth, the demand for food has increased, which has made the 

food supply chain one of the factors of economic growth. Recently, the complexity of the food supply chain has increased 

due to increasing information and customer expectations about food freshness(Yu & Nagurney, 2013). One of the primary 

complications of the food supply chain is that its quality does not remain constant, and it tends to rot over time until it 

perishes (Jouzdani & Govindan, 2021). Moreover, customers tend to buy fresh products. Such challenges emphasize 

efficient management, which is critical for food supply profitability. 

Recently, resiliency has gained considerable attention since supply chains are prone to risk constantly. One can define 

resiliency as the capability of a network to decrease the possibility of disruptions and their results (Zhalechian et al., 

2018). So many disruption risks can endanger the supply chain network’s functionality. Developing a resilient supply 

chain has competitive benefits for companies. Resiliency also means the capability of a supply chain network to decrease 

the proximity of defying unpredicted events, respond fast to disruptions, and get back to its first state after the occurrence 

of disruption (Bottani et al., 2019). One can apply different resilience strategies to empower the network against 

disruption. We adopted three resiliency measures based on the structure of the network. For this purpose, the current paper 

applies major resiliency features, i.e., node complexity, flow complexity, and node criticality (Zahiri et al., 2020).  

http://www.ijsom.com/
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Optimal efficiency requires the simultaneous optimization of multiple objectives, which may appear to oppose each other. 

The meat supply chain, in particular, faces several challenges, including reducing costs while addressing the quality of 

products and improving network resiliency. To this aim, this paper tackles the challenges above by proposing a novel 

multi-objective mixed-integer linear programming model for a meat supply chain, which aims at optimizing three 

somewhat contradictory objective functions simultaneously, including 1) minimization of the total cost of the supply 

chain, 2) minimization of the distribution time, and 3) minimization of the non-resiliency of the network. This model can 

decide (1) the optimal flow rate of transported products in each echelon, (2) the optimum number of farms, 

slaughterhouses, and retailers, (3) the inventory of frozen products in retailers, and (4) critical nodes, as four main decision 

variables of the problem. We applied the Improved augmented ε-constraint method to solve the model. Based on this 

method, we generate Pareto optimal solutions to help decision-makers. An actual data set is used to prove the efficiency 

of the proposed model. 

 Several real-world assumptions have been considered and incorporated to ensure the proposed model is practical and 

valuable for real-world application. For instance, multi-transportation models have been considered, allowing for a more 

accurate representation of the actual transportation routes in the meat supply chain. Additionally, the model considers 

multiple manufacturing technologies with their related costs, resulting in a more realistic representation of the 

complexities of the meat supply chain.  

Uncertainty is inevitable. To design an effective supply chain, we must consider its implications, which will help decision-

makers effectively address the issues in real-world situations. We also have considered the impact of uncertainty in the 

proposed model. The robust possibilistic method is utilized to solve the model under uncertainty. This study examines the 

impact of incorporating or disregarding the robust possibilistic approach and resilience measures in modeling a supply 

chain network. The results reveal important insights that emphasize the practicality and usefulness of this approach, 

making it a valuable tool for addressing real-world supply chain challenges. 

Additionally, numerical experiments conducted on an actual case study of a meat supply chain demonstrate the efficiency 

and effectiveness of the proposed model. This model provides a comprehensive and highly effective approach to designing 

an optimal meat supply chain. Incorporating robust possibilistic methods ensures that decision-makers can effectively 

address uncertainty in the supply chain management process. 

This paper is divided into six sections: Section 2 dedicates to the review of the related literature. Section 3 provides the 

problem definition and the proposed model. Section 4 presents the solution approach based on the improved augmented- 

ε constraint and robust possibilistic method, and section 5 investigates implementation and evaluation. At last, the 

conclusion and future research are given in section 6. 

2. Literature Review  

This section reviews the most relevant articles on multi-objective optimization in food supply chains. Hasani et al. (2012) 

developed a multi-period, multi-product, and multi-echelon closed-loop supply chain for perishable goods under cost and 

demand uncertainty. To deal with parameter uncertainty, an interval-robust optimization technique is utilized. The results 

showed that the presence of uncertainty increases supply chain costs. The proposed model can control supply chain costs 

and ensure its agility. Govindan et al. (2014) proposed a multi-objective optimization model for a perishable food supply 

chain network considering sustainable distribution. Their study aims to minimize costs caused by greenhouse gas 

emissions. Because of the complicity of the proposed model, a novel hybrid metaheuristic algorithm is applied. Abtahi 

(2015) developed a bi-objective mathematical programming model for perishable products. The 1) objective reduces the 

total cost of the system, and the 2) objective reduces the difference between the highest and lowest transportation costs 

for distribution centers. The epsilon constraint and the NSGA-II are applied to solve the model. An & Ouyang (2016) 

presented a bi-level robust optimization model for a grain supply chain. The first objective maximizes profit, and the 

second minimizes post-harvest loss. To cope with the crop yield uncertainty, a robust program is applied. The two 

objectives are transformed into one, with complementarity constraints. A Lagrangian relaxation algorithm is proposed for 

solving the model. Case studies from Illinois and Brazil are provided to prove the applicability of the developed model. 

Catalá et al. (2016) developed a multi-period mixed-integer linear programming model for the Apple supply chain. The 

first objective maximizes the profit, and the second minimizes the shortage. To solve the multi-objective model, the 

lexicographic method is adopted. A case in the Argentine region is studied to show the efficiency of the model. Bai & Liu 

(2016) developed a new robust optimization method for designing a multi-product supply chain network under fuzzy 



Designing a Resilient Multi-Objective Meat Supply Chain: A Robust Possibilistic Approach 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.11, NO.3  

369 
 

uncertainty. The objective function minimizes the costs, while demand and cost are uncertain parameters in the model. A 

case study of a food processing industry is provided to demonstrate the applicability of the model. Miranda-Ackerman et 

al. (2017) proposed a green multi-objective supply chain network for the processed food industry. As a case study, the 

orange supply chain was examined to prove the applicability of the model. Genetic Algorithms and Multiple-criteria 

Decision Making tools are applied to solve the proposed model.  Mohammed & Wang (2017) developed a multi-objective 

distribution planner with a fuzzy approach for a green meat supply chain, with goals of reducing overall costs, the amount 

of CO2 emissions and required time to distribute the product between each echelon, and increasing the delivery rate to its 

maximum. Tirkolaee et al. (2017) explored the application of a robust MILP model in addressing routing challenges 

associated with perishable products. The model's objective was to reduce total customer service time and lower costs, 

considering demand uncertainty. Findings from the study demonstrated that the proposed model was effective and could 

be practically applied to address the issue at hand. Jouzdani et al. (2018) proposed a multi-product, multi-transportation 

mode supply chain under uncertainty. To show the efficiency of the model, they studied the dairy products packaging 

network.  Sazvar et al. (2018) focused on a sustainable supply chain by developing a multi-objective linear mathematical 

model of a deteriorating agri-food product. The main objectives of that study were to (1) reduce overall costs, (2) reduce 

environmental degradation, and (3) maximize the levels of consumer health. The AUGMECON1 method was applied to 

resolve the suggested model. Onggo et al. (2019) studied a perishable agri-food supply chain and proposed a multi-period 

inventory-routing problem to reduce inventory, waste, transportation, and stock-out costs. A simheuristic algorithm is 

applied to solve the model. Jarernsuk & Phruksaphanrat (2019) developed a mathematical model for designing a 

perishable food supply chain network. The possibilistic approach is adopted to solve the model with imprecise parameters. 

A real case is studied which produces aromatic coconut to prove the efficiency of the model. Cheraghalipour et al. (2019) 

studied a two-level optimization model for the rice supply chain. The objective function minimizes the total cost. 

Metaheuristic, hybrid, and modified algorithms are adopted to solve the model. A real case in Iran is examined to get 

close to real-world use and prove the model’s applicability. Shishebori & Zare (2019) proposed a multi-objective, closed-

loop mushroom supply chain. The first objective minimizes the production and transportation costs, the second objective 

maximizes the total profit, and the third objective minimizes the total environmental impacts. The AUGMECON2 method 

is adopted for solving the mathematical model. A real case was studied to prove the efficiency of the proposed 

mathematical model. Darestani & Hemmati (2019) developed a two-objective model for a perishable supply chain under 

uncertainties like demand, different costs, and the capacity of distribution centers. The queue system was utilized to reduce 

wait time in distribution centers. The first objective reduces the total cost, and the second reduces greenhouse gas 

emissions. The robust method is adopted to deal with uncertainty. Imran et al. (2020) addressed a perishable food supply 

chain with multiple objectives. The model aims to minimize the cost of greenhouse gas emissions and maximize the 

priority index that ensures the social sustainability of the supply chain. The uncertainty of the costs is taken into account. 

Fuzzy programming was used to solve the mathematical model. Gholami-zanjani & Jabalameli (2020) proposed a two-

stage scenario-based mathematical model. To cope with uncertain parameters, three resiliency approaches (readiness, 

flexibility, and responsiveness) are adopted. Motevalli-taher et al. (2020) studied a sustainable wheat supply chain. The 

proposed model aims to 1) reduce network costs, 2) reduce water consumption, and 3) increase job opportunities. The 

goal programming method is applied to solve the model. The demand uncertainty is considered through simulation. A 

case is studied to prove the model’s capability. Mehrbanfar & Bozorgi-amiri (2020) developed a multi-objective model 

for a sustainable agriculture supply chain network with uncertain parameters. The 1) objective reduces the total costs, the 

2) objective reduces the greenhouse gas emissions, and the 3) objective increases the employment rate. The 

AUGMECON1 method is applied to solve the model. The possibilistic programming approach is utilized to solve the 

model under uncertainty. The results of a real case study in Iran showed an 11.2% drop in the unemployment rate. 

Yakavenka et al. (2020) focused on sustainable network design for perishable supply chains. The first objective minimizes 

the total cost, the second minimizes the delivery time, and the third minimizes the carbon footprint. The goal programming 

method, minimax, and weighted sum are used to solve the model. A case of a fruit importer is studied to show the 

efficiency of the proposed model. Goli et al. (2020) addressed a perishable closed-loop supply chain mathematical model. 

The model aims to reduce costs, 𝐶𝑂2 emissions, and improve the social aspect of the supply chain. The model accounts 

for production and delivery lead times to manage perishability risks. This model's optimization is achieved by adopting a 

novel hybrid algorithm designed to efficiently solve the complex equations involved. Results from testing and comparing 

the hybrid algorithm with AUGMECON1 indicate that the former algorithm produces accurate results. Ali et al. (2021) 

proposed a multi-objective MINLP mathematical model for the dairy supply chain, considering perishability, and 

uncertainty with the aim of reducing costs and wastage. Moreover, the developed model reduces the deterioration loses, 

while provides the deterioration rate. Fuzzy programming approach is adopted to cope with inherent uncertainty of the 

supply chain. Results reflect a substantial reduction in the overall cost. Gilani & Sahebi (2021) developed a multi-objective 
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mathematical model for designing the green pistachio supply chain network under uncertainty. The 1) objective increases 

profit, and the 2) objective function reduces environmental emissions. The AUGMECON1 method and the RPP-I model 

are adopted to solve the model with certain and uncertain parameters. A real case in Iran is studied. The results show a 

performance growth of 36.67%. Gholami-Zanjani et al. (2021) studied a multi-objective model for the meat supply chain. 

Sample average approximation and Lexicographic Weighted Tchebycheff methods are used to solve the proposed model. 

Different examples have been implemented to prove the applicability of the model and the solution method. Aazami et 

al. (2021) proposed a two-objective model for perishable products with uncertain parameters. The 1) objective maximizes 

the total profit, and the 2) objective minimizes the emissions. The effect of freshness and price is considered through a 

demand function. Three strategies are applied to encourage the customers e.g. (return of perished products, discount, and 

credit policies). The robust optimization method is adopted to solve the model under uncertainty. The numerical results 

of the case study showed a 37.5% growth in profit. Jouzdani & Govindan (2021) developed a multi-objective model for 

dairy products to reduce costs, power consumption, and traffic congestion associated with supply chain operations. A case 

is studied to prove the capability of the model. Kazemi et al. (2021) focused on a two-objective model for the rice supply 

chain under uncertainty. The 1) objective minimizes the total cost, and the 2) objective minimizes soil erosion. To solve 

the model, an extended goal programming approach is applied. Stochastic programming is adopted to deal with the 

uncertain parameters of the model. Afshar et al. (2022) proposed a bi-objective supply chain. The first objective reduces 

the expected cost, and the second objective increases the total quality of the supply chain. The result of examining a real 

case in the dairy industry study showed the efficiency of the model. The AUGMECON1 method is applied to solve the 

model. Meidute-kavaliauskiene et al. (2022) studied a multi-objective, multi-product, multi-period mathematical model 

for designing a perishable food supply chain network under uncertainty.  The first objective reduces the total costs, the 

second objective reduces greenhouse gas emissions, the third objective reduces delivery time, and the fourth objective 

function reduces the back-order level.  A hybrid approach based on Benders decomposition and Lagrangian Relaxation 

is adopted to solve the model.  A real dataset is utilized to prove the applicability of the model. Jolai & Fathollahi-fard 

(2022) focused on designing a multi-objective closed-loop olive supply chain network. The 1) objective minimizes the 

total cost, the 2) objective minimizes pollution and carbon emissions, and the 3) objective maximizes the job opportunities. 

The model is solved on a small scale using the epsilon constraint method. Meta-heuristic algorithms are used to solve the 

model at a larger scale. A real case is studied to prove the applicability of the model. Salehi-amiri et al. (2022) studied a 

closed-loop avocado supply chain network with two objectives. The first objective reduced the total cost, and the second 

objective increased job employment. The LP -Metric method is adopted to solve the bi-objective model. A real case is 

studied in Puebla, Mexico, to validate the efficiency of the proposed model. The results showed that the demand has the 

most effect on the model. According to Table 1. Few studies considered a resilient meat supply chain under uncertainty. 

The contribution of this paper is compared to the discussed studies. 

Assessing the impact of uncertainty in the parameters of the mathematical models will significantly impact the 

performance of the supply chain network and aid decision-makers in solving and dealing with real-world problems 

(Mohebalizadehgashti et al., 2020). To address the uncertainty of the model, we employed robust possibilistic 

programming (RPP-I). Numerical experiments and sensitivity analysis on a given case study are provided to prove the 

model's applicability and solution methodology. The literature review indicates that minimal research has considered a 

robust possibilistic approach in the meat industry as an uncertainty-handling method. In this study, we have developed a 

mixed-integer multi-objective linear programming model for a multi-product, multi-period, multi-transport, multi-echelon 

supply chain network design. The developed model includes four echelons, i.e., farms, slaughterhouses, retailers, and 

customers. This paper is the extended version of the article by Mohebalizadehgashti et al. (2020). We applied the data 

and case study of the primary reference of this paper to prove the capability and efficiency of the model. 

In detail, the main contribution of this paper that differentiates it from the previous papers are as follows: 

 Two novel objectives are added to the basic model, i.e., minimizing the delivery time and improving the 

resiliency of the proposed model.  

 Adding many real-world assumptions, such as 1) taking into account the multi-transportation models, 2) 

inventory is allowed to be kept in retailers, and the cost of inventory holding is added to the model, and 3) 

the multi-manufacturing technologies with their related costs are considered. 

 The multi-objective model is solved using the AUGMECON2 method, which can provide more efficient 

solutions. 

 Using the robust possibilistic optimization method (RPP-I version) to cope with uncertainty in the main 

parameters of the model and achieve a robust solution. 
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Table 1. Review literature on the food supply chain 

Study Product Problem structure 
Objective 

function 

Decision 

variables 
Uncertainty modeling Solution method 

Hasani et al. (2012) Perishable food  MP, MPt, CP MC AC, OQ, IL, Sl Interval robust optimization LINGO8 

Govindan et al. (2014) Perishable food  MP, MV, Mte MC, ME AC, OQ  Metaheuristic 

Abtahi (2015) Perishable food  SP, MV, CP MC AC  Epsilon constraint, NSGA-II 

Catalá et al. (2016) Apple MP, MPt, CP MTP, MS IL, OQ, NF  Lexicographic  

Bai & Liu (2016) Food  SP, MPt, CP MC OQ Robust optimization  

An & Ouyang (2016) Grain SP, CP ML,MTP OQ, P, AC Robust optimization Lagrangian relaxation algorithm  

 Miranda-Ackerman et al. 

(2017) 
Juice SP, CP 

MC, ME 
OQ, AC  Genetic Algorithms 

Mohammed & Wang (2017) Meat  SP, CP 
MC, ME, 

MDR, MDT 
OQ AC, NF Fuzzy programming 

LP metrics, Goal programming, Epsilon 

constraint 

Tirkolaee et al. (2017) 
Perishable 

product 
SP,CP,MV MC,MDT AC,D,T   

Jouzdani et al. (2018) Dairy  MP, MV,CP MC OQ, AC 
Scenario-based robust 

optimization 
 

Sazvar et al. (2018) 
deteriorating 

agri-food  
MP, MPt, ICP 

MC, ME, MS 

OQ, IL, PF, SL, 

CQ 
 AUGMECON1 

Darestani & Hemmati (2019) Perishable food  MP, MPt, CP MC, ME OQ, IL, AC, DR Robust optimization 
Comprehensive criterion, Weighted 

sum, Torabi-Hassini 

Cheraghalipour et al. (2019) Rice  MP, MPt, CP MC OQ, AC  Metaheuristic & hybrid algorithm 

Shishebori & Zare (2019) Mushroom  MP, MPt, CP MC, ME, MTP OQ, SP  AUGMECON2 

Jarernsuk & Phruksaphanrat 

(2019) 
 Coconut MP, UCP MTP OQ, AC Possibilistic Programming   

Onggo et al. (2019) Agri-food MP, MV, CP MC OQ, AC, IL, CD  Simheuristic algorithm 

Gholami-zanjani & Jabalameli 

(2020) 
Food  MP, Mte, CP 

MTP 
OQ, AC, IL Robust optimization  

Motevalli-taher et al. (2020) Wheat MP,MPt, CP MC, MW, MS IL, OQ, WC, SL Simulatio[n  Goal programming  

Mehrbanfar & Bozorgi-amiri 

(2020)  
Agri-food MP, MPt, CP 

MC, ME, MS 
OQ, AC Possibilistic Programming  AUGMECON1 

Yakavenka et al. (2020) Fruit SP, MV, CP MC, ME, MDT OQ, AC  
Goal programming, Weighted sum, 

Minimax 

Imran et al. (2020) 
Perishable food  

MP, MPt, MV, Mte, 

CP MC, ME, MPI 
OQ, AC, IL 

Multi-objective fuzzy 

programming 
 

Goli et al. (2020) 
Perishable 

product 
MP,MPt,MV,CP 

MC,ME,MS 
OQ,IL,AC 

- 
AUGMECON1, Hybrid approach 

Gilani & Sahebi (2021) Pistachio  MP, Mte, CP 
MTP, ME 

OQ, AC, IL, 

NF,AOC 
Robust possibilistic  AUGMECON2 

Ali et al. (2021) Dairy  MP,MPt,CP MC,ML AC,IL,OQ,DR,NT Fuzzy programming LINGO 18.0 

Gholami-Zanjani et al. (2021) Meat  
MP, MPt, MV, 

CP,RE 
MI, ME 

OQ, IL, AC, RP, 

SL 
 

Sample average approximation, 

Lexicographic Weighted Tchebycheff 

Aazami et al. (2021) 
ready-to-eat 

foodstuff  
MP, CP MTP, ME 

OQ, IL, AC, PF, 

DR, RR 
Robust optimization 

The weighted sum method, Epsilon 

constraint, AUGMECON1, Goal 

programming, Lexicographic 

Jouzdani & Govindan (2021) Dairy  MP, MPt, MV, CP 
MC, ME, MSI 

OQ, IL, AC, NF 
Chance constraint 

programming 

Revised Multi-Choice Goal 

programming 

Kazemi et al. (2021) Rice  SP, MPt, CP MC , ME OQ Stochastic programming  Extended goal programming 

Afshar et al. (2022) Dairy  MP, MPt, CP MC, MCS OQ, IL, AC  AUGMECON1 

Meidute-kavaliauskiene et al. 

(2022)  
Perishable food  MP, MPt, CP 

MC, ME, 

MDT, MBL 
OQ, AC Stochastic programming  Hybrid approach 

Jolai & Fathollahi-fard (2022) Olive  MP, CP MC, ME, MS OQ, IL, AC  Metaheuristic  

Salehi-amiri et al. (2022) Avocado  MP, Mte, CP MC, MS OQ, AC  LP -Metric  

This paper Meat  
MP, MPt, MV, Mte, 

CP, RE MC, MD, MDT 
OQ, IL, AC Robust possibilistic  AUGMECON2 
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* CP: capacitated; ICP: incapacitated; RE: resiliency; MP: multi-period; SP: single-period; MPt: multi-product; MV: multi-vehicle; 

Mte: multi-technology; MC: minimizing cost; ME: minimizing environmental effect; MTP: maximizing total profit; MS: maximizing 

social impact; ML: minimizing loss; MDR: maximizing delivery rate; MDT: minimizing delivery time; MW: minimizing the water 

consumption; MPI: maximizing profit index; MI: maximizing income; MBL: minimize back order level; MCS: maximizing customer 

satisfaction; MPI: maximizing priority index; AC: allocation coverage; IL: inventory level; SL: shortage level; OQ: order quantity; 

NF: number of facilities; PF: product flow; AOC: the amount of capacity; RR: return rate; RP: reorder point; SP: selling price; WC: 

water consumption; CD: customer demand; DR: deterioration rate; NT: number of trucks, D: distance, T: time. 

3. Problem Definition 

This study represents a multi-period, multi-product, and multi-modal transport supply chain network that simultaneously 

minimizes the supply chain network's cost, arrival time, and non-resiliency. Fig. 1 indicates a four-echelon meat supply 

chain consisting of farms, slaughterhouses, retailers, and customers. The first echelon is the farms, where animals are 

nurtured and sent to slaughterhouses. In slaughterhouses, animals are slaughtered and prepared as processed meat. The 

meat is then sent to wholesalers who sell it and deliver it to the areas of need/customers. The strategic choice of the model 

is to decide which farms and retailers to partner with, where to open a slaughterhouse, and what manufacturing technology 

to use to prepare processed meat. The sets, parameters, and decision variables of the proposed model are as follows: 

Farm Slaughterhouse Retailer Customer 

 
Figure 1. Meat supply chain network 

 

Sets 

i Set of possible farm locations 

j Set of possible slaughterhouse locations 

k Set of possible retailer locations 

c Set of customers 

l Set of products l including livestock and meat 

v Set of transportation modes 

n Set of technology 

t Set of periods 

Parameters 

𝑝𝑖𝑙𝑡  The cost of purchasing livestock l (per ton) from farm i in period t  

𝑚𝑐𝑗𝑙𝑡𝑛 Manufacturing cost of livestock l (per ton) with technology n at the slaughterhouse at location j in period t  

ℎ𝑐𝑙𝑡  The unit cost of holding inventory of product l (per ton) at the end of period t 

𝑚𝑖 The fixed cost of cooperating with the farm at location i 

𝑤𝑗  The fixed cost for opening the slaughterhouse at location j 
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𝑎𝑘 The fixed cost for selling products via retailer at location k 

𝑒𝑖𝑗 The distance between the farm at location i and the slaughterhouse at location j 

𝑑𝑗𝑘 the distance between the slaughterhouse at location j and the retailer at location  k 

𝑔𝑘𝑐 The distance between the retailer at location k and customer c 

𝑓𝑖𝑗𝑙𝑡𝑣  The unit cost of transporting livestock l from the farm at location i to the slaughterhouse at location j in 

period t with transport mode v  

ℎ𝑗𝑘𝑙𝑡𝑣𝑛 The unit cost of transporting processed meat l  with manufacturing technology n from the slaughterhouse 

at location  j to the retailer at location k in period t with transport mode v  

𝑚𝑘𝑐𝑙𝑡𝑣  The unit cost of transporting processed meat l from the retailer at location k to customer c in period t with 

transport mode v  

𝑣𝑙𝑣  The velocity of transportation type v 

𝑑𝑒𝑐𝑙𝑡  Demand for meat l in period t (in Tons) of customer c  

𝑞𝑖𝑙  Maximum capacity of supplying livestock l (in Tons) at the farm  at location i  

𝑢𝑗𝑛𝑙 Maximum capacity of supplying processed meat l (in Tons) at the slaughterhouse at location j with 

manufacturing technology n for processed meat l (in Tons) 

𝑜𝑘𝑙  Maximum capacity of supplying processed meat l (in Tons) at the retailer at location k 

𝜉 Penalty factor for critical farms, slaughterhouses, retailers, and customers 

𝛽 Penalty factor for the complexity of farm, slaughterhouse, retailer, and customer nodes. 

𝛼 Penalty factor for the flow complexity across f and a, a and r, and r and c nodes. 

𝑈𝑏𝑓,𝑡 The certain threshold for the sum of total inflows and outflows for farm  f in period t. 

𝑈𝑛𝑠,𝑡 The certain threshold for the sum of total inflows and outflows for slaughterhouse j in period t. 

𝑈𝑎𝑟,𝑡 The certain threshold for the sum of total inflows and outflows for retailer r in period t. 

M a relatively large number 

Decision Variables 

𝑋𝐴𝑖𝑗𝑙𝑡𝑣  Amount of livestock l (in Tons) delivered to the slaughterhouse at location j from the farm at location i in 

period t with transport mode v  

𝑋𝑅𝑗𝑘𝑙𝑡𝑣𝑛 Amount of processed meat l (in Tons) with manufacturing technology n delivered to  the retailer at the 

location k from the slaughterhouse at the location j in period t with transport mode v  

𝑋𝐶𝑘𝑐𝑙𝑡𝑣  Amount of processed meat l (in Tons) delivered to customer c from the retailer at location k in period t with 

transport mode v  

𝐼𝑛𝑙,𝑡 The inventory (in Tons) of processed meat l at the end of period t  

𝑆𝑖 Equals 1 if a farm at location i is chosen; else, it equals 0. 

𝑌𝑗𝑛 Equals 1 if the slaughterhouse at location j with manufacturing technology n is established; else, it equals 

0. 

𝑍𝑘 Equals 1 if the retailer at location k is chosen; else, it equals 0. 

𝐹𝐴𝑖𝑗𝑡 Equals 1 if the farm at location i is assigned to slaughterhouse j in period t; else, it equals 0. 
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𝐴𝑅𝑗𝑘𝑡 Equals 1 if the slaughterhouse at location j is assigned to the retailer at location k in period t; else, it equals 

0. 

𝑅𝐶𝑘𝑐𝑡 Equals 1 if the retailer at location k is assigned to customer c in period t; else, it equals 0. 

𝑆́𝑖 Equals 1 if the farm at location i is critical; else, it equals 0. 

𝑌́𝑗𝑛 Equals 1 if the slaughterhouse at location j with manufacturing technology n is critical; else, it equals 0. 

𝑍́𝑘 Equals 1 if the retailer at location k is critical; else, it equals 0. 

Mathematical Model 
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The objective function (1) tends to reduce the total costs of the network. The first part of the objective aims to reduce the 

purchase and transport costs of the farms. Meanwhile, the second and third parts include the transportation cost of products 

between the successive echelons. The rest is also related to the fixed costs of opening facilities. The second objective (2) 

minimizes the total distribution time in the network. The third objective (3) minimizes the non-resiliency (or maximizing 

resiliency) of the proposed model. The first part is related to node critically, the second part deals with flow complexity, 

and the third is related to node complexity. Constraints (4)-(6) ensure the capacity constraints of farms, slaughterhouses, 

and retailers, respectively. Constraint (7) indicates the equality of input and output of meat in slaughterhouses. Constraint 

(8) shows the inventory level of meat in slaughterhouses. Constraint (9) tends to satisfy customer demand. Constraint (10) 

ensures that only one technology type of manufacturing can be used in each slaughterhouse. Constraints (11)-(13) are 

allocation decision constraints, which assure that the connection between each pair of nodes is recognized as long as a 

flow exists in the associated links. Constraints (14)-(16) are the non-criticality state for farms, slaughterhouses, and 

retailers, respectively, ensuring that if the summation of outflows and inflows of a node of farms, slaughterhouses, and 

retailers exceeds a threshold, it is considered critical. Constraints (17) and (18) describe binary and non-negative variables. 

3.1. Robust Optimization 

Due to the inconsistency and instability of some critical parameters (including the demand, cost of purchase from farms, 

cost of sale through the retailer, cost of cooperation with farms, and cost of opening the slaughterhouse with different 

manufacturing technology) in the proposed model, we applied robust possibilistic approach to cope with uncertainty. Two 

factors play a significant role in robust decision-making, i.e., optimality robustness and feasibility robustness. The former 

focuses on the proximity of the value of the objective function to the optimal value, while the latter focuses on the 

feasibility of solving the optimization problem for (almost) all possible values of uncertain input parameters. (Pishvaee et 

al., 2012b). There are three robust optimization approaches, namely: 1) the hard-worst case approach, 2) the soft-worst 

case approach, and 3) the realistic approach. The hard worst-case ignores the possibility of infeasible answers and 

considers all uncertain parameters of the model with their worst-case values. This approach concentrates on feasibility 

robustness the most and optimality robustness the least. The soft worst-case minimizes the most unfavorable value of the 

objective function while not satisfying (all) their extreme worst-case constraints. At last, the third approach focuses on 

finding an explicit and implicit logical compromise among the robustness, cost of robustness, and other objective 

functions. This approach controls the scale of feasibility and optimality (Mousazadeh et al., 2018). For detailed 

information on robust optimization, see Pishvaee et al. (2012b). Furthermore, the recent studies by Mondal & Roy (2021) 

provided new insights into the adoption of robust optimization and fuzzy programing in supply chains while tackling 

challenges posed by real-world situations. Consider the proposed model's compact shape, excluding the second and third 

objective functions as follows: 
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𝑆𝑚 ≤ 𝐻  

𝐵 ≤ 1 

 𝑦 ∈  {0, 1} 

The parameters c, d, and f correspondingly represent the fixed opening costs, transport costs, purchase costs, and 

demands. As shown, E, S, and H are matrix constraint factors. Moreover, n and m represent the binary and 

continuous variables. B is a binary variable. We applied the expected value operator and the necessity measure 

to handle chance constraints, including indefinite parameters. In this paper, the trapezoidal probability 

distributions (see Fig. 2) are used to model uncertain parameters, which can be defined as four distinguished 

points, e.g., 𝜉 = (𝜉(1),  𝜉(2),  𝜉(3) ,  𝜉(4)).  

 

 
Figure 2. The trapezoidal possibility distribution of fuzzy parameter 𝜉 

Due to the similarity of approaches, we eliminated the second and third objectives without losing the model's generality. 

Based on the above descriptions, the basic model of Possibilistic Chance-Constrained Programming (BPCCP) can be 

defined as follows: 

Min E[z] = 𝐸[𝑐̃]𝑚 + [𝑑̃]𝑛 

s.t. 

𝑁𝑒𝑐{𝐸𝑚 ≥ 𝑓} ≥ 𝛼 

𝑆𝑚 ≤ 𝐻  

𝐵 ≤ 1 

𝑦 ∈  {0, 1}   

𝑥 ≥ 0 

0.5 < 𝛼 < 1 

(20) 

And the crisp model can be modeled as follows:  

Min E[z] = 𝐸[
𝑐(1)+𝑐(2)+𝑐(3)+𝑐(4)

4
]𝑚 + [

𝑑(1)+𝑑(2)+𝑑(3)+𝑑(4)

4
]𝑛 

s.t. 

𝐸𝑚 ≥ (1 − 𝛼)𝑓3 + 𝛼𝑓4 

𝑆𝑚 ≤ 𝐻  

(21) 
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𝐵 ≤ 1 

𝑦 ∈  {0, 1}   

𝑥 ≥ 0 

0.5 < 𝛼 < 1 

As aforementioned, the chance-constrained should be satisfied with a confidence level greater than 0.5. The confidence 

level is considered a parameter here. Decision-makers can select the level of confidence here. The model (21) minimizes 

the expected value (average) of the objective function, and the deviation of the objective function value is not considered 

here, which can cause a severe problem in real situations. Due to referred reasons, we applied the RPP-I model to deal 

with uncertainty, which is formulated as follows: 

Min E[z] + 𝛾(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 𝛿[𝑓(4) − (1 − 𝛼)𝑓(3) − 𝛼𝑓(4)] 

s.t. 

𝐶𝑥 ≥ (1 − 𝛼)𝑓(3) + 𝛼𝑓(4) 

𝑆𝑥 ≤ 𝑁  

𝐵 ≤ 1 

𝑦 ∈  {0, 1}   

𝑥 ≥ 0 

0.5 < 𝛼 < 1 

(22) 

Similar to the BPCCP model, the first part of the objective minimizes the expected value of the objective function. The 

set of two extremes, i.e., (𝑍𝑚𝑎𝑥 , 𝑍𝑚𝑖𝑛) is shown in the second term, which concerns the optimality robustness of the final 

solution by reducing the deflection from two extrema. The 𝛾, is the impotence coefficient for the other terms of the 

objective. The 𝑍𝑚𝑎𝑥 , 𝑎𝑛𝑑 𝑍𝑚𝑖𝑛 are defined as follows: 

𝒁𝒎𝒂𝒙 =  𝒄(𝟒)𝒎 + 𝒅(𝟒)𝒏 

𝒁𝒎𝒊𝒏 =  𝒄(𝟏)𝒎 + 𝒅(𝟏)𝒏 
(23) 

The third term is related to the optimality robustness of the solution vector. 𝛿[𝑓(4) − (1 − 𝛼)𝑓(3) − 𝛼𝑓(4)] determines the 

confidence level of chance constraint. The 𝛿 is the penalty unit of a possible violation of the constraint. The minimum 

confidence level of chance constraints is a decision variable in this model. The RRP-1 model looks for a logical trade-off 

between the three explained parts. For more details on the Basic Possibilistic Chance-Constrained Programming (BPCCP) 

and the Robust Possibilistic Programming (RPP-I) model, see Pishvaee et al., (2012). Related data for solving the model 

using RPP-I is included in Appendix A. 

4. Solution Approach 

To resolve the multi-objective model, an enhanced version of the augmented 𝜀-constraint method (AUGMECON2), by 

Mavrotas & Florios (2013) is applied. This method optimizes one of the (most important) objective functions and adds 

the other objectives to the constraints as follows:  

min (𝑓1(𝑦) − 𝑒𝑝𝑠 ∗ (
𝑡2

𝑟2
⁄ ∗ 100 + ⋯ +

𝑡𝑝
𝑟𝑝

⁄ ∗ 10−(𝑝−2)( 

𝑠𝑡: 

𝑓𝑘(𝑦) + 𝑡𝑘 = 𝑒𝑘 

𝑘 = 2, 3, … , 𝑝        𝑦 ∈ 𝑇;    𝑇𝑘 ∈ 𝑅+ 

(24) 



Pasha and Mousazadeh 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.11, NO.3  

378 

 

In which, y is the choice vector, T is the surface of the solution to the problem, and 𝑓𝑘(𝑥) is the second and third objective 

function of the model. Plus, 𝑒𝑝𝑠 is a very small number (between 10−3 and 10−6), 𝑠𝑘 is the excess variable,𝑟2,𝑟3, …, 𝑟𝑝 

are the ranges of the 2nd, 3rd, …, pth objective function, 𝑒𝑘 are the right and sight (RHS) values of the objective function. 

If the (p-1) objective function constraints are binding i.e. (Sk=0 for k=2, 3,…, p), the optimal solution is guaranteed. 

5. Implementation and Evaluation 

In this section, the applicability of the model is studied on a numerical example. The related data are collected from 

Mohebalizadehgashti et al., (2020), and the real data has been considered for other data. For instance, the distance between 

different facilities is calculated by Google Maps. The real locations of farms, slaughterhouses, and retailers are provided 

in Fig 3. Also, the other related data is provided in Table 2. to Table 4, and more complementary data are provided in 

Appendix A. It should be noted that the dimension of |I|, |J|, |K|, |C|, |L|, |T| equals 15, 12, 21, 20, 2, and 2 successively. 

The proposed mathematical model is coded and solved by GAMS 24.1.2 software using a Core i5 system with 4 GB of 

RAM. 

Table 2. Values of parameters of the model 

Parameters Corresponding value Parameters Corresponding value 

𝑚𝑖 10,000 𝑞𝑖1 = 𝑞𝑖2 15 Ton 

𝑤𝑗  20,000 𝑢𝑗11 = 𝑢𝑗12 15 Ton 

𝑎𝑘 1,000,000 𝑢𝑗21 = 𝑢𝑗22 17 Ton 

𝑝𝑖1𝑡 1,649.5 𝑜𝑘1 = 𝑜𝑘2 15 Ton 

𝑝𝑖2𝑡 5574.6 ℎ𝑐𝑙1 =  ℎ𝑐𝑙2 15 

𝑚𝑘𝑐𝑙𝑡𝑣 0.005 ℎ𝑗𝑘𝑙𝑡𝑣𝑛 0.005 

Table 3. shows the demand for different types of meat per ton in every period. Two kinds of products, i.e., lamb and 

cow, have been chosen for this study. 

 

Table 3. The demand of each customer (zone) for either of the products in each period 

ID Demand  ID Demand  ID Demand  ID Demand  

1 27.316 6 0.716 11 1.594 16 0.074 

2 5.369 7 0.318 12 1.331 17 0.03 

3 3.838 8 1.016 13 1.317 18 0.086 

4 2.332 9 0.974 14 1.299 19 0.158 

5 2.172 10 1.414 15 1.049 20 0.217 

 

Table 4. Fixed cost of opening each slaughterhouse with different technologies 

ID Technology 1 Technology 2 ID Technology 1 Technology 2 ID Technology 1 Technology 2 

1 1,000,000 900,000 5 900,000 900,000 9 900,000 900,000 

2 900,000 1,000,000 6 700,000 600,000 10 900,000 900,000 

3 800,000 900,000 7 1,000,000 1,100,000 11 900,000 1,200,000 

4 1,100,000 900,000 8 900,000 700,000 12 900,000 900,000 
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Figure 3. Location of farms, slaughterhouses, and retailers 

5.1. Computational Results 

To show the effect of considering uncertainty in the input data, in this section, first, the model is solved under certainty, 

then the RPP-I counterpart is solved, and the achieved results are analyzed and compared in detail. 

Table 5. shows the achieved results of solving the deterministic (certain data) model using the AUGMECON2 method. 

Also, the lexicographic pay-off table method is applied to find the PIS (Positive Ideal Solution) and NIS (Nadir Ideal 

Solution) values of each objective function. The corresponding values of PIS and NIS and the range of each objective 

function are also provided in Table 5. It is worth noting that the first objective function (minimizing cost) is chosen as 

the primary objective, and the other objectives are considered as new constraints via the AUGMECON2 method. 

Accordingly, only the range of the 2nd and 3rd objectives are divided into five equal intervals, and then their relative 

steps (right-hand side values in the AUGMECON2 method) are calculated and provided in Table 6. 

Table 5. Lexicographic pay-off table of the certain model 

Objectives Type Obj1 Obj2 Obj3 

Obj1 Minimization 8,321,454 226.7 23 

Obj2 Minimization 16,031,550 98.9 44 

Obj3 Minimization 8,621,460 178.8 23 

PIS values 8,321,454 98.9 23 

NIS values 16,031,550 226.7 44 

Range (NIS-PIS) 7,710,096 127.8 21 

Steps (5 equal Intervals) - 31.95 5.21 
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Table 6. Grid points of the deterministic model 

Objectives Type 
Grid points 

1 2 3 4 5 

Obj2 Min 226.69 194.75 162.80 130.85 98.91 

Obj3 Min 44.00 38.75 33.50 28.25 23.00 

Table 7. Pareto optimal solutions of the certain model 

ID Obj1 Obj2 Obj3 

No. of 

selected 

farms  

No. of 

selected 

retailers   

No. of opened 

slaughterhouses 

(Manuf. Tech.) 

No. of 

critical 

farms   

No. of critical 
slaughterhouses   

No. of 

critical 

retailers  

CPU 

time 

(sec) 

1 8,321,484.1 226.7 23 4 4 1(1), 3 (2)  3 3 4 30 

2 8,521,480.3 194.8 23 4 4 2(1), 2(2) 3 3 4 67 

3 9,041,458.5 162.8 24 4 5 1(1), 3(2) 3 3 3 208 

4 15,751,440.0 130.9 28 5 5 3(1), 8(2) 3 2 3 11 

5 16,031,550.0 98.9 44 12 12 3(1), 9(2) 2 2 2 4 

Five efficient Pareto optimal solutions are found among 25 possible combinations of right-hand side values of the second 

and third objective functions. These points are represented graphically in Fig 4. The results demonstrate that the model's 

performance varies based on these objective functions. The results of the model show that optimizing for the cost 

function leads to the lowest overall cost; however, this approach sacrifices time and non-resiliency. Conversely, 

prioritizing time optimization yields faster processing times but at a higher cost and reduced non-resiliency. Lastly, 

prioritizing non-resiliency optimization leads to a higher level of resiliency at a greater cost and longer processing time. 

These findings suggest that when seeking a balanced and effective solution, careful evaluation and optimization of each 

objective function is necessary, tailored to the specific needs and constraints of the project. By presenting such 

information, decision-makers can make more informed trade-offs between cost, time, and non-resilience.  Their exact 

values, including the number of selected farms/opened slaughterhouses/ selected retailers and the number of critical 

farms/critical slaughterhouses/critical retailers are also provided in Table 7. 

 
Figure 4. Pareto optimal solution 

On the other hand, similar to the following steps in the abovementioned calculations, the model is solved using the RPP-

I model, and the achieved results are provided in Table 8. as follows.  
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Table 8. Lexicographic pay-off table of the RPP-I model 

Objectives Type Obj1 Obj2 Obj3 

Obj1 Minimization 11,458,750 299.8 28.0 

Obj2 Minimization 22,018,800 130.0 45.0 

Obj3 Minimization 11,458,790 259.6 26.5 

PIS values 11,458,750 130.0 26.5 

NIS values 22,018,800 299.8 45.0 

Range (NIS-PIS) 10,560,050 169.8 18.5 

Steps (5 equal Intervals) - 42.45 4.63 

Similarly, the Pareto efficient solution (four solutions) of solving the RPP-I model using AUGMECON2 is provided in 

Fig 5., and Table 9. The Fig 5 displays the results of three unique objective functions with the aim of minimizing cost, 

time, and non-resiliency, respectively. It is evident from these findings that the performance of the model varies depending 

on which objective function is prioritized. 

 

Figure 5. Pareto optimal solution 

 

Table 9. Pareto optimal solutions of the RPP-I model 

ID Obj1 Obj2 Obj3 

No. of 

selected 
farms 

No. of 

selected 
retailers 

No. of opened 

slaughterhouses 
(Manuf. Tech.) 

No. of 

critical 
farms 

No. of critical 

slaughterhouses 

No. of 

critical 
retailers 

α 
CPU time 

(sec) 

1 11,458,810 257.4 27.0 5 5 1 (1), 3 (2) 4 4 4 0.709 6 

2 11,997,290 215.0 27.0 5 5 2 (1), 3 (2) 4 4 4 0.573 205 

3 21,537,530 172.6 29.5 6 6 7 (2) 2 3 3 0.500 66 

4 21,977,550 130.9 28.0 9 15 3 (1), 9 (2) 2 2 2 0.500 5 

As can be seen in Table 9., as the number of selected farms, retailers, and opened slaughterhouses increases, the value of 

the 1st objective function also increases. By increasing the number of active nodes and arcs, as the flow will become 

divided into more nodes and arcs, the number of critical nodes in all echelons decreases. Also, the achieved points of the 

RPP-I model (Table 9.) compared to the deterministic model (Table 7.) have a higher (worst) value in all the objective 

functions. The main reason is that the model adopts a more conservative approach when using the RPP-I model, which 

tends to have less optimality robustness while more feasibility robustness is expected (See Table 14.). These observations 
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provide valuable insights for decision-makers when managing the trade-offs between efficiency and efficacy, aiming to 

determine the best course of action for the logistics supply chain.  

Among the five different Pareto optimal solutions, point number 2 performs well in all three objectives, i.e., satisfies 1st 

objective function at around 96%, 2nd objective function at about 60%, and 3rd objective function about 98%. Detailed 

information on the selected solution is provided in Table 10. 

Table 10. Detailed information on the selected efficient solution 

Echelon Active Nodes Critical Nodes % of Critical Nodes 

Selected farm 5, 8, 9, 12 5, 8, 12 75% 

Selected retailers 4, 9, 16, 19, 20 4, 9, 16 60% 

Opened slaughterhouses 1, 6, 11 (Tech 2) 7 (Tech 1) 6, 7, 11 75% 

5.2. Sensitivity Analysis 

The demand parameter is the main driver in designing a supply chain network. For lower demand, fewer selected farms, 

retailers, and open slaughterhouses would be appropriate, but facing the higher demands would create a more expanded 

(sometimes more decentralized) supply chain network. The results of performing sensitivity analysis on the different 

values of the demand are provided in Table 11. and Fig 6. 

In detail, Table 11. displays the result of changing the demand parameter on the value of objective functions, number of 

selected and opened facilities, number of critical facilities, and value of minimum confidence levels of minimizing each 

objective function. When the RPP-I model is solved under 25% of the default value of the demand, two farms and nine 

retailers are selected, and one slaughterhouse is opened. Though, when the model is solved with the maximum level of 

demand (triple the amount), fourteen farms and eighteen retailers are selected, twelve slaughterhouses are opened, and 

eleven farms, ten slaughterhouses, and eleven retailers are considered critical nodes. Also, in the highest level of demand, 

the values of 𝛼 for the first objective decrease to 0.5, which is the lowest possible value, as the model tends to maintain 

the solution as feasible as possible. The graphical representation of the effect of changes in demand value on each objective 

function is provided in Fig. 6. 

Table 11. Result of changes in demand 

Parameter 

values 
Obj1 Obj2 Obj3 

No. of 

selected 

farms 

No. of 

selected 

retailers 

No. of opened 

slaughterhouses 

(Manuf. Tech.) 

No. of 

critical 

farms 

No. of critical 

slaughterhouses 

No. of 

critical 

retailers 

𝜶𝟏 𝜶𝟐 𝜶𝟑 

0 × demand - - - - - - - - - - - - 

0.25 × demand 8,215,885.6 20.3 8.5 2 9 1 1 1 1 1.00 0.5 0.5 

0.5 × demand 9,313,657.0 40.2 14.5 3 13 2(2) 2 2 1 1.00 0.5 0.5 

0.75 × demand 10,317,460.0 81.7 20.5 4 4 3(2) 3 3 3 1.00 0.5 0.5 

1 × demand 11,458,750.0 130.0 26.5 5 5 1(1), 3(2) 5 4 4 1.00 0.5 0.5 

1.25 × demand 12,875,050.0 189.1 33.0 6 6 5(2) 6 5 5 1.00 0.5 0.5 

1.5 × demand 14,016,340.0 258.0 39.0 7 7 2(1), 4(2) 7 6 6 1.00 0.5 0.5 

1.75 × demand 15,432,680.0 341.5 44.5 8 8 7(2) 8 6 8 0.86 0.5 0.5 

2 × demand 16,945,180.0 422.0 50.0 12 16 8(2) 8 8 6 1.00 0.5 0.5 

2.25 × demand 18,251,760.0 517.8 55.5 13 18 11(2) 8 8 9 0.50 0.5 0.5 

2.5 × demand 19,462,210.0 622.4 60.5 13 17 1(1), 10(2) 9 9 9 0.50 0.5 0.5 

2.75 × demand 20,878,450.0 717.1 66.0 14 18 1(1), 11(2) 11 10 11 0.50 0.5 0.5 
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Figure 6. Sensitivity analysis on the value of demand 

 

5.3. Managerial Insight 

 In this part, some managerial insights are provided. First, analyzing the degree of contrast between the 1st and 2nd 

objective functions would be precious. For this reason, the resilience measure is eliminated from the objective functions, 

and the model is transformed into a bi-objective model. The result of solving the bi-objective model under optimization 

of each objective function separately (as a single objective model) is provided in Table 12., in which the total costs, total 

delivery time, and total amount of shipped products are shown and compared. As could be seen, if one solves the model 

under optimization of the 1st objective functions, a drastic decrease will occur in cost-related terms, excluding the 

transportation costs. Indeed, when the model is solved considering the minimization of total distribution time (2nd 

objective), the total transportation time and total transportation cost get their minimum values.  

 

Table 12. Solving the model under each objective functions separately 

Objectives Type Obj1 Obj2 
Transportation 

cost 

Holding 

cost 

Opening 

costs 

Cost of 

working 

with farms 

Cost of 

working 

with 

retailers 

Obj1 Min 8,421,464.6 250.1 112.6 0.0 3,100,000 40,000 80,000 

Obj2 Min 16,671,480.0 97.6 64.4 60.0 10,900,000 150,000 420,000 

 

Then, to find the Pareto efficient solutions of the bi-objective model, it is solved using the AUGMECON2 method (steps 

are similar to previous parts), and the results are shown in Table 13. and are presented in Fig 7. The represented Pareto 

efficient solutions support this hypothesis that these two objective functions are in contrast to a great extent. 

 

Table 13. Pareto optimal solutions of solving the bi-objective problem 

ID Obj1 Obj2 
No. of selected 

farms  

No. of opened slaughterhouses 

(Manuf. Tech.) 

No. of selected 

retailers   

1 8,501,465.4 178.34 4 2 (1), 2 (2) 8 

2 8,751,450.5 158.15 5 1(1), 3(2) 10 

3 11,421,440.0 137.95 8 6(2) 15 

4 15,651,420.0 117.76 5 4(1), 8(2) 5 
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Figure 7. The Pareto optimal solutions for the bi-objective model 

 

 

And last but not least, it would be essential to reflect on the effect of using the RPP-I approach for coping with 

uncertainty in the proposed model. For this reason, a realization method is performed in which the deterministic model 

and RPP-I model (including all three objectives) are solved separately, and their achieved results are tested under 

nominal data, including eight random nominal datasets generated via their uncertain relative ranges. The result of such 

realization is shown in Table 14. 

As can be seen, the total average Coefficient Variation (CV) is less when using the RPP-I model. In contrast to solving 

the model under a certain environment, it assures more feasibility robustness. Also, the CV measure performs well in the 

1st and 2nd objective functions when using the RPP-I approach. Indeed, we can observe more feasibility robustness for 

these two objective functions, which affects the average CV too. In fact, due to the importance of the two first objectives, 

one can also ignore that the deterministic model outperforms the RPP-I version in the third objective function. 

 
 Table 14. Result of solving the model under the realization 

 

No. of realization 
Deterministic RPP-I 

Obj1 Obj2 Obj3 Obj1 Obj2 Obj3 

1 8,974,186.6 123.5 24.0 11,747,490 129.2 27.0 

2 8,539,731.7 109.9 23.5 11,303,020 121.8 24.0 

3 8,371,232.8 95.4 23.0 11,108,400 114.0 23.5 

4 8,334,236.0 123.3 24.0 11,098,620 129.0 26.5 

5 8,514,913.4 126.3 24.0 11,295,210 130.8 26.5 

7 8,527,358.8 98.7 23.0 11,430,120 116.0 23.5 

8 8,371,256.1 112.4 23.5 11,238,510 123.1 24.0 

Average(AVE) 8,518,987.9 112.79 23.57 11,317,338.6 123.42 25.00 

Standard Deviation 

(STD) 
218,086.1 12.35 0.45 221,819.8 6.68 1.58 

Coefficient of variation 

(CV = STD/AVE) 
0.0256 0.1095 0.0191 0.0196 0.0541 0.0632 

Average CV 0.0514 0.0456 
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6. Conclusion 

This research develops a multi-objective, multi-product, multi-period, multi-transport modal, and mixed-integer 

linear programming model for a meat supply chain with uncertain parameters to make a trade -off between costs, 

distribution time, and resiliency of the designed network. The proposed model determines the optimum flow of 

products across the network, the optimum quantity, and the assignment of echelons, critical nodes, and the optimum 

inventory level of meat in retailers in each period. A robust possibilistic approach (RPP-I) is employed to deal with 

uncertain parameters. Also, the AUGMECON2 method is adopted to solve the proposed multi -objective model. 

Finally, we provided some sensitivity analysis and managerial insights that help decision-makers to make the best 

decisions while dealing with real-world problems. The effect of applying or eliminating the robust possibilistic 

method and applying or eliminating the resilience measure is also well analyzed in the last section. The results prove 

that consideration of uncertainty in input parameters and adding supply chain resilience measures (as two main 

contributions of this paper) to the model assures the applicability of the proposed model in real -world situations to 

a significant extent.  

Here are some potential avenues for future research. For example, introducing other objectives to the model, such as 

reducing emissions throughout the network or considering the sustainability impacts of activating a meat supply chain 

network. Moreover, considering the uncertainty of the other parameters, such as the capacity of facilities, can be 

investigated in future studies. Since meat is a strategic product, deploying hybrid stochastic-robust-fuzzy methods can be 

respected as a more efficient method to cope with other business-as-usual and exceptional risks in the network. These 

methods can be boosted by considering some novel resiliency measures in the model. Finally, the model can be solved 

via meta-heuristic algorithms for large-instance problems. 

 

Appendix A 

Table A1. Demand for each type of product in each period 

Customer  
Demand  

𝛏(𝟏)  𝛏(𝟐)  𝛏(𝟑)  𝛏(𝟒) 

1 25.95 27.31 31.41 32.78 

2 5.10 5.37 6.17 6.44 

3 3.65 3.84 4.41 4.61 

4 2.22 2.33 2.68 2.80 

5 2.06 2.17 2.50 2.61 

6 0.68 0.72 0.82 0.86 

7 0.30 0.32 0.37 0.38 

8 0.97 1.02 1.17 1.22 

9 0.93 0.97 1.12 1.17 

10 1.34 1.41 1.63 1.70 

11 1.51 1.59 1.83 1.91 

12 1.26 1.33 1.53 1.60 

13 1.25 1.32 1.51 1.58 

14 1.23 1.30 1.49 1.56 

15 1.00 1.05 1.21 1.26 

16 0.07 0.07 0.09 0.09 

17 0.03 0.03 0.03 0.04 

18 0.08 0.09 0.10 0.10 

19 0.15 0.16 0.18 0.19 

20 0.21 0.21 0.25 0.26 
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Table A2. Fixed cost of working with farm 

Farm 
Cost 

𝛏(𝟏)  𝛏(𝟐)  𝛏(𝟑)  𝛏(𝟒) 

(1-15) 9,500 10,000 11,500 12,000 

Table A3. Fixed cost for selling via retailer 

Retailer 
Cost 

𝛏(𝟏)  𝛏(𝟐)  𝛏(𝟑)  𝛏(𝟒) 

(1-21) 19,000 20,000 23,000 24,000 

Table A4. Purchasing cost from farms for each type of livestock in each period 

Farms  

Cost 

1 2 1 2 1 2 1 2 

𝛏(𝟏)  𝛏(𝟐)  𝛏(𝟑)  𝛏(𝟒) 

(1-15) 1,567.03 5,295.9 1,649.5  5,574.60 1896.9 6410.8 1979.4 6689.5 

Table A5. Fixed opening cost for a slaughterhouse in each period using each manufacturing technology 

Farms  

Costs 

1 2 1 2 1 2 1 2 

𝛏(𝟏)  𝛏(𝟐)  𝛏(𝟑)  𝛏(𝟒) 

1 950,000 855,000 1,000,000 900,000 1,150,000 1,035,000 1,200,000 1,080,000 

2 855,000 950,000 900,000 1,000,000 1,035,000 1,150,000 1,080,000 1,200,000 

3 760,000 855,000 800,000 900,000 920,000 1,035,000 960,000 1,080,000 

4 1,045,000 855,000 1,100,000 900,000 1,265,000 1,035,000 1,320,000 1,080,000 

5 855,000 855,000 900,000 900,000 1,035,000 1,035,000 1,080,000 1,080,000 

6 665,000 570,000 700,000 600,000 805,000 690,000 840,000 720,000 

7 950,000 1,045,000 1,000,000 1,100,000 1,150,000 1,265,000 1,200,000 1,320,000 

8 855,000 665,000 900,000 700,000 1,035,000 805,000 1,080,000 840,000 

9 855,000 855,000 900,000 900,000 1,035,000 1,035,000 1,080,000 1,080,000 

10 855,000 855,000 900,000 900,000 1,035,000 1,035,000 1,080,000 1,080,000 

11 855,000 1,140,000 900,000 1,200,000 1,035,000 1,380,000 1,080,000 1,440,000 

12 855,000 855,000 900,000 900,000 1,035,000 1,035,000 1,080,000 1,080,000 
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