Arora, C., Kamat, A., Shanker, S., & Barve, A. (2022). Integrating agriculture and industry 4.0 under “agri-food 4.0” to analyze suitable technologies to overcome agronomical barriers. British food journal, 124(7), 2061-2095.
Azadi, M., Moghaddas, Z., Cheng, T. C. E., & Farzipoor Saen, R. (2023). Assessing the sustainability of cloud computing service providers for Industry 4.0: a state-of-the-art analytical approach. International Journal of Production Research, 61(12), 4196-4213.
Azadi, M., Moghaddas, Z., Farzipoor Saen, R., & Hussain, F. K. (2021). Financing manufacturers for investing in Industry 4.0 technologies: internal financing vs. External financing. International Journal of Production Research, 1-17.
Dabrowski, M. (2014). The simple multi attribute rating technique (SMART). Multi-criteria decision analysis for use in transport decision making.
Erdogan, M., Ozkan, B., Karasan, A., & Kaya, I. (2018). Selecting the best strategy for industry 4.0 applications with a case study. In Industrial Engineering in the Industry 4.0 Era: Selected papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2017, July 20–21, Vienna, Austria (pp. 109-119). Springer International Publishing.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International journal of production economics, 210, 15-26.
Ghadimi, P., Wang, C., Lim, M. K., & Heavey, C. (2019). Intelligent sustainable supplier selection using multi-agent technology: Theory and application for Industry 4.0 supply chains. Computers & Industrial Engineering, 127, 588-600.
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, 252, 119869.
Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191.
Jamwal, A., Agrawal, R., Sharma, M., Kumar, V., & Kumar, S. (2021). Developing A sustainability framework for Industry 4.0. Procedia CIRP, 98, 430-435.
Javaid, M., Khan, S., Haleem, A., & Rab, S. (2023). Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. Benchmarking: An International Journal, 30(10), 3753-3790.
Kumar, R. R., & Kumar, C. (2016, December). An evaluation system for cloud service selection using fuzzy AHP. In 2016 11th International Conference on Industrial and Information Systems (ICIIS) (pp. 821-826). IEEE.
Kumar, V., Vrat, P., & Shankar, R. (2021). Prioritization of strategies to overcome the barriers in Industry 4.0: a hybrid MCDM approach. Opsearch, 1-40.
Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242.
Medić, N., Marjanović, U., Prester, J., Palčič, I., & Lalić, B. (2018). Evaluation of advanced digital technologies in manufacturing companies: Hybrid fuzzy MCDM approach. In 25th EurOMA conference (pp. 1-10).
Medić, N., Marjanović, U., Zivlak, N., Anišić, Z., & Lalić, B. (2018, March). Hybrid fuzzy MCDM method for selection of organizational innovations in manufacturing companies. In 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE) (pp. 1-8). IEEE.
Naveed, Q. N., Islam, S., Qureshi, M. R. N. M., Aseere, A. M., Rasheed, M. A. A., & Fatima, S. (2021). Evaluating and ranking of critical success factors of cloud enterprise resource planning adoption using MCDM approach. IEEE Access, 9, 156880-156893.
Pan, X. L., & Tian, Y. (2011). Supplier selection in B2B manufacturing commerce using AHP-DEA. Advanced Materials Research, 323, 23-27.
Patel, M. R., Vashi, M. P., & Bhatt, B. V. (2017). SMART-Multi-criteria decision-making technique for use in planning activities. New Horizons in Civil Engineering (NHCE 2017), 1-6.
Pishdar, M., Danesh Shakib, M., Antucheviciene, J., & Vilkonis, A. (2021). Interval type-2 fuzzy super sbm network dea for assessing sustainability performance of third-party logistics service providers considering circular economy strategies in the era of industry 4.0. Sustainability, 13(11), 6497.
Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546.
Royendegh, B. D., & Erol, S. (2009). A DEA–ANP hybrid algorithm approach to evaluate a university’s performance. International Journal of Basic & Applied Sciences, 9(10), 115-129.
Sachdeva, N., Shrivastava, A. K., & Chauhan, A. (2021). Modeling supplier selection in the era of Industry 4.0. Benchmarking: An International Journal, 28(5), 1809-1836.
Siregar, D., Arisandi, D., Usman, A., Irwan, D., & Rahim, R. (2017, December). Research of simple multi-attribute rating technique for decision support. In Journal of Physics: Conference Series (Vol. 930, No. 1, p. 012015). IOP Publishing.
Trung, N. Q., & Thanh, N. V. (2022). Evaluation of digital marketing technologies with fuzzy linguistic MCDM methods. Axioms, 11(5), 230.
Sari, I. U., & Ak, U. (2022). Machine Efficiency Measurement in Industry 4.0 Using Fuzzy Data Envelopment Analysis. Journal of Fuzzy Extension & Applications (JFEA), 3(2).
Yoon, K. P., & Hwang, C. L. (1981). Multiple attribute decision making: Methods and applications: A state-of-the-art survey. Springer.
Hwang, C. L., & Yoon, K. (2012). Multiple attribute decision making: methods and applications a state-of-the-art survey (Vol. 186). Springer Science & Business Media.
Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Computers & Operations Research, 33(5), 1289-1307.