Supplier Selection in the Context of Industry 4.0 Using Hybrid DEA-SMART Method

Document Type : Research Paper

Authors

1 Department of Industrial Engineering, Ankara Yıldırım Beyazit University

2 ANKARA YILDIRIM BEYAZIT UNİVERSİTY

Abstract

In the era of Industry 4.0, choosing suppliers for online commerce is of utmost importance and calls for the application of efficient, data-centric techniques. Businesses are under increasing pressure to improve their supply chain management strategies and select the best suppliers in the online commerce environment of Industry 4.0. Traditional approaches, however, sometimes don't include a thorough assessment of suppliers across several dimensions. In order to close this gap, this paper proposes a new approach that combines Data Envelopment Analysis (DEA) with the Simple Multi-Attribute Rating Technique (SMART). The first phase is applying DEA to determine how effective suppliers are using the data that has been gathered. DEA offers a quantitative indicator of how efficiently providers convert their inputs into outputs. This combination score enables rating suppliers while simultaneously considering multi-attribute evaluation and quantifying efficiency assessment, then using a number of different criteria, providers are evaluated using the SMART approach. The findings of this analysis help to improve supplier selection procedures in the context of online commerce, which falls under the purview of Industry 4.0.

Keywords


Arora, C., Kamat, A., Shanker, S., & Barve, A. (2022). Integrating agriculture and industry 4.0 under “agri-food 4.0” to analyze suitable technologies to overcome agronomical barriers. British food journal124(7), 2061-2095.
Azadi, M., Moghaddas, Z., Cheng, T. C. E., & Farzipoor Saen, R. (2023). Assessing the sustainability of cloud computing service providers for Industry 4.0: a state-of-the-art analytical approach. International Journal of Production Research61(12), 4196-4213.
Azadi, M., Moghaddas, Z., Farzipoor Saen, R., & Hussain, F. K. (2021). Financing manufacturers for investing in Industry 4.0 technologies: internal financing vs. External financing. International Journal of Production Research, 1-17.
Dabrowski, M. (2014). The simple multi attribute rating technique (SMART). Multi-criteria decision analysis for use in transport decision making.
Erdogan, M., Ozkan, B., Karasan, A., & Kaya, I. (2018). Selecting the best strategy for industry 4.0 applications with a case study. In Industrial Engineering in the Industry 4.0 Era: Selected papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2017, July 20–21, Vienna, Austria (pp. 109-119). Springer International Publishing.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International journal of production economics210, 15-26.
Ghadimi, P., Wang, C., Lim, M. K., & Heavey, C. (2019). Intelligent sustainable supplier selection using multi-agent technology: Theory and application for Industry 4.0 supply chains. Computers & Industrial Engineering127, 588-600.
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production252, 119869.
Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191.
Jamwal, A., Agrawal, R., Sharma, M., Kumar, V., & Kumar, S. (2021). Developing A sustainability framework for Industry 4.0. Procedia CIRP98, 430-435.
Javaid, M., Khan, S., Haleem, A., & Rab, S. (2023). Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. Benchmarking: An International Journal30(10), 3753-3790.
Kumar, R. R., & Kumar, C. (2016, December). An evaluation system for cloud service selection using fuzzy AHP. In 2016 11th International Conference on Industrial and Information Systems (ICIIS) (pp. 821-826). IEEE.
Kumar, V., Vrat, P., & Shankar, R. (2021). Prioritization of strategies to overcome the barriers in Industry 4.0: a hybrid MCDM approach. Opsearch, 1-40.
Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering6, 239-242.
Medić, N., Marjanović, U., Prester, J., Palčič, I., & Lalić, B. (2018). Evaluation of advanced digital technologies in manufacturing companies: Hybrid fuzzy MCDM approach. In 25th EurOMA conference (pp. 1-10).
Medić, N., Marjanović, U., Zivlak, N., Anišić, Z., & Lalić, B. (2018, March). Hybrid fuzzy MCDM method for selection of organizational innovations in manufacturing companies. In 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE) (pp. 1-8). IEEE.
Naveed, Q. N., Islam, S., Qureshi, M. R. N. M., Aseere, A. M., Rasheed, M. A. A., & Fatima, S. (2021). Evaluating and ranking of critical success factors of cloud enterprise resource planning adoption using MCDM approach. IEEE Access9, 156880-156893.
Pan, X. L., & Tian, Y. (2011). Supplier selection in B2B manufacturing commerce using AHP-DEA. Advanced Materials Research323, 23-27.
Patel, M. R., Vashi, M. P., & Bhatt, B. V. (2017). SMART-Multi-criteria decision-making technique for use in planning activities. New Horizons in Civil Engineering (NHCE 2017), 1-6.
Pishdar, M., Danesh Shakib, M., Antucheviciene, J., & Vilkonis, A. (2021). Interval type-2 fuzzy super sbm network dea for assessing sustainability performance of third-party logistics service providers considering circular economy strategies in the era of industry 4.0. Sustainability13(11), 6497.
Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics224, 107546.
Royendegh, B. D., & Erol, S. (2009). A DEA–ANP hybrid algorithm approach to evaluate a university’s performance. International Journal of Basic & Applied Sciences9(10), 115-129.
Sachdeva, N., Shrivastava, A. K., & Chauhan, A. (2021). Modeling supplier selection in the era of Industry 4.0. Benchmarking: An International Journal28(5), 1809-1836.
Siregar, D., Arisandi, D., Usman, A., Irwan, D., & Rahim, R. (2017, December). Research of simple multi-attribute rating technique for decision support. In Journal of Physics: Conference Series (Vol. 930, No. 1, p. 012015). IOP Publishing.
Trung, N. Q., & Thanh, N. V. (2022). Evaluation of digital marketing technologies with fuzzy linguistic MCDM methods. Axioms11(5), 230.
Sari, I. U., & Ak, U. (2022). Machine Efficiency Measurement in Industry 4.0 Using Fuzzy Data Envelopment Analysis. Journal of Fuzzy Extension & Applications (JFEA)3(2).
Yoon, K. P., & Hwang, C. L. (1981). Multiple attribute decision making: Methods and applications: A state-of-the-art survey. Springer.
Hwang, C. L., & Yoon, K. (2012). Multiple attribute decision making: methods and applications a state-of-the-art survey (Vol. 186). Springer Science & Business Media.
Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Computers & Operations Research33(5), 1289-1307.