Alinezhad M., Mahdavi I., Hematian M.
et al. (2021). A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries.
Environ Dev Sustain 24, 8779–8806 (2022). DOI:
https://doi.org/10.1007/s10668-021-01809-y.
Amin H.S., Mulligan-Gow S. and Zhang G. (2019). Selection of Food Items for Diet Problem Using a Multi-objective Approach under Uncertainty. Application of Decision Science in Business and Management. DOI: 10.5772/intechopen.88691.
Averbakh I. (2001). On the complexity of a class of combinatorial optimization problems with uncertainty.
Mathematical Programming, Vol. 90
, No.
2, pp. 263–272. DOI:
https://doi.org/10.1007/PL00011424.
Baron O., Berman, O., Fazel-Zarandi M.M. and Roshanaeia V. (2019). Almost Robust Discrete Optimization.
European Journal of Operational Research, Vol. 276, pp. 451–465. DOI:
https://doi.org/10.1016/j.ejor.2019.01.043.
Ben-Tal A., Bertsimas D. and Brown D.B. (2010). A soft robust model for optimization under ambiguity. Operations Research, Vol. 58 (4-part-2), pp. 1220. DOI:
https://doi.org/10.1287/opre.1100.0821.
Ben-Tal A., Boyd S. and Nemirovski A. (2006). Extending scope of robust optimization: Comprehensive robust counterparts of uncertain problems. Mathematical Programming, Vol. 107, No. 1, pp. 63–89, DOI: 10.1007/s10107-005-0679-z.
Ben-Tal A., Ghaoui L.E. and Nemirovski A. (2009). Robust optimization. Mathematical Programming, ISBN 978-0-691-14368, Vol. 107, No. 1, pp. 63–89.
Bertsimas D. and Sim M. (2004b). Robust discrete optimization under ellipsoidal uncertainty sets, pp. 1–23.
Buttriss J.L., Briend A., Darmon N., Ferguson E.L., Maillot M. and Lluch A. (2014). Diet modelling: how it can inform the development of dietary recommendations and public health policy.
Nutr Bull, Vol. 39
, pp. 115–125. DOI:
https://doi.org/10.1111/nbu.12076.
Corné van Dooren (2018). A Review of the Use of Linear Programming to Optimize Diets, Nutritiously.
Economically and Environmentally, REVIEW article, Front. Nutr. Vol. 5
, pp. 48. DOI:
https://doi.org/10.3389/fnut.2018.00048.
Corné van Dooren and Aiking H. (2016). Defining a nutritionally healthy, environmentally friendly, and culturally acceptable Low Lands Diet.
The International Journal of Life Cycle Assessment. Vol. 21
, No.
5, pp. 688-700. DOI:
https://doi.org/10.1007/s11367-015-1007-3.
Dantzig G.B. (1947). Programming in a Linear Structure. Comptroller, United States Air Force, Washington DC. E-Publishing Inc. (pp. 73-74).
Dantzig G.B. (1990). The Diet Problem, Interfaces, Vol. 20, No. 4, pp. 43–47. Copyright, 1990, The Institute of Management Sciences 091-2102/90/2004/0043$01.25.
Darmon N., Ferguson E.L. and Briend A. (2006). Impact of a cost constraint on nutritionally adequate food choices for French women: an analysis by linear programming.
Journal of Nutrition Education and Behavior, Vol. 32
, No.
8, pp. 82-90. DOI:
10.1016/j.jneb.2005.11.028.
Escudero L.F., Kamesam P.V., King A.J. and Wets R.J.B. (1993). Production planning via scenario modeling. Annals of Operations Research, Vol. 43, No. 6, pp. 311–335.
Ferguson E.L., Darmon N., Fahmida U., Fitriyanti S., Harper T.B. and Premachandra I.M. (2009). Design of optimal food-based complementary feeding recommendations and identification of key “problem nutrients” using goal programming.
Journal of Nutrition, Vol. 136
, No.
9, pp. 2399–2404. DOI:
https://doi.org/10.1093/jn/136.9.2399.
Fletcher L.R., Soden P.M. and Zinober A.S.I. (1994). Linear programming techniques for the construction of palatable human diets.
Journal of the Operational Research Society, Vol. 45
, No.
5, pp. 489–496. DOI:
https://doi.org/10.1057/jors.1994.76.
Gao X., Wilde P.E., Lichtenstein A.H. and Tucker L. (2006). The 2005 USDA Food Guide Pyramid is associated with more adequate intakes within energy constraints than the 1992 Pyramid.
Journal of Nutrition, Vol. 136, pp. 1341–1346. DOI:
https://doi.org/10.1093/jn/136.5.1341.
Golpîra H. and Javanmardan A. (2021). Decentralized decision system for closed-loop supply chain: a bi-level multi-objective risk-based robust optimization approach. Computers & Chemical Engineering, 154:107472. DOI:
https://doi.org/10.1016/j.compchemeng.2021.107472.
Haneveld W.K.K. and van der Vlerk M.H. (2006). Integrated chance constraints: reduced forms and an algorithm.
Computational Management Science, Vol. 3, 245–269. DOI:
https://doi.org/10.1007/s10287-005-0007-3.
Herforth A., Frongillo E.A., Sassi F., McLean M.S., Arabi M. and Tirado C. (2016). Toward an integrated approach to nutritional quality, environmental sustainability, and economic viability: research and measurement gaps. Ann. N.Y. Acad. Sci. ISSN 0077-8923
, Vol. 1332,
pp. 1–21. DOI:
https://doi.org/10.1111/nyas.12552.
Hernández M., Gómez T., Delgado‑Antequera L. and Caballero R. (2021). Using multiobjective optimization models to establish healthy diets in Spain following Mediterranean standards.
Operational Research, Vol. 21, pp. 1927–1961. DOI:
https://doi.org/10.1007/s12351-019-00499-9.
Hoseinpour M. and Alireza Fakharzadeh Jahromi A.F. (2019). The robust optimization model for providing Iranian diet for adjusting optimal glycemic load, Journal of Decisions and Operations Research, Vol. 4, No. 1, pp. 42-53.
Kouvelis P.S. and Yu G. (1997). Robust discrete optimization and its applications. Norwell. MA: Kluwer Academic PublishKlu, ISBN: 978-1-4757-2620-6.
Laloumis D. and Stefanakidis K. (2014). Restaurant Management, Publisher: Private version, ISBN13 139789609360296.
Lino M., Carlson A. and Fungwe T. (2007).
The Low-Cost, Moderate-Cost, and Liberal Food Plans, 2007 (CNPP-20). Washington DC: U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. DOI:
10.22004/ag.econ.45850.
Macdiarmid J.I., Kyle J., Horgan G.W., Loe J.E., Fyfe C., Johnstone A. and McNeill G. (2011). Livewell: a balance of healthy and sustainable food choices. World Wildlife Fund UK.
Macdiarmid J.I., Kyle J., Horgan G.W., Loe, J., Fyfe C. and Johnstone A. (2012). Sustainable diets for the future: can we contribute to reducing greenhouse gas emissions by eating a healthy diet?
Am J Clin Nutr., Vol. 96
, No.
3, pp. 632–639. DOI:
https://doi.org/10.3945/ajcn.112.038729.
Maillot M., Darmon N. and Drewnowski A. (2010). Are the lowest-cost healthful food plans culturally and socially acceptable?
Public Health Nutrition, Vol. 13
, pp. 1178–1185. DOI:
https://doi.org/10.1017/S1368980009993028.
Masud A. and Hwang C. (1981). Interactive Sequential Goal Programming.
Journal of the Operational Research Society, Vol. 32,
pp.
391-400. DOI:
https://doi.org/10.1057/jors.1981.76.
Mirzapour Al-E-Hashem S, Malekly H. and Aryanezhad M. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int J Prod Econ, Vol. 134, No. 1, pp. 28–42.
Mulvey M., Vanderbei R.J. and Zenios S.A. (1995).
Robust optimization of large-scale systems, Operations Research, Vol. 43
, No.
2, pp. 264-281. DOI:
https://doi.org/10.1287/opre.43.2.264.
Ruszczyński A. and Shapiro A. (2003). Stochastic programming models. In Stochastic programming.
Journal Handbooks in Operations Research and Management Science, Vol. 10
, pp. 1-64. DOI:
https://doi.org/10.1016/S0927-0507(03)10001-1.
Stigler G.J. (1945). The cost of subsistence.
American Journal of Agricultural Economics, Vol. 27
, No.
2, pp. 303–314. DOI:
https://doi.org/10.2307/1231810.
Wilson N., Nghiem N., Ni Mhurchu C., Eyles H., Baker, M.G. and Blakely T. (2013). Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand.
PLoS ONE, Vol. 8
, No.
27. DOI:
https://doi.org/10.1371/journal.pone.0059648.
Zacharatos G. (1999). Economics of Tourism and Organization of Tourist Travel, Publications Hellenic Open University, Patra Greece.