An ontological approach to model outbound logistics based on Internet of things (OLP-IoT)

Document Type : Research Paper

Authors

1 Mathematics and informatics department National School of Applied sciences Tangier

2 Mathematics and Informatics Department , National school of Applied sciences, Tangier, Morocco

3 Mathematics and Informatics department, National School of Applied Sciences , Tangier , Morocco

Abstract

Currently, the performance of outbound logistics processes is an important element for companies that would like to increase the level of customer satisfaction and improve the visibility of the supply chain, thus guaranteeing the quality and safety of products. On the other hand, the concept of smart logistics has been proposed as a technological solution that aims to improve performance, security and traceability in the logistics of companies. A crucial element to achieve this goal is to benefit from the emergence of the Internet of Things (IOT) and related technologies. Indeed, IOT streamlines the logistics process and improves its efficiency. However, to track and trace a product’s life cycle, its physical state, associated activities, and involved objects, a large amount of heterogeneous data will be generated from various sources, especially from sensors and RFID (Radio Frequency Identification) tags. Moreover, the observations produced by these sources are made available with heterogeneous vocabularies and data formats. This heterogeneity creates interoperability problems and prevents the adoption of generic solutions on a global scale which make it difficult to reuse data for other purposes and share them among different stakeholders. To address this challenge, we propose in this work an approach based on semantic modeling, using the semantic web and ontologies, to improve the interoperability and knowledge sharing of different phenomena in the outbound logistics domain. In this sense, we have designed and developed an OLP-IOT ontological approach adapted to logistics data and offering semantic enrichment of IOT data. This approach allows the sharing of sensor observations, the identification of products and logistics objects involved as well as the contextualization of data and the reuse of processed knowledge and information. The ontology was developed using the Neon methodology, which emphasizes reuse and modularization. This explicit knowledge is then used to develop a reasoning system to guide the logistic expert for an incremental and semi-automatic construction of a software solution to an instantaneous problem.

Keywords


Agarwal, R., Fernandez, D. G., Elsaleh, T., Gyrard, A., Lanza, J., Sanchez, L., Georgantas, N., & Issarny, V. (2016). Unified IOT ontology to enable interoperability and federation of testbeds. 2016 IEEE 3rd World Forum on Internet of Things (WF-IOT), 70‑75. https://doi.org/10.1109/WF-IOT.2016.7845470
Ahmed, S., Kalsoom, T., Ramzan, N., Pervez, Z., Azmat, M., Zeb, B., & Ur Rehman, M. (2021). Towards Supply Chain Visibility Using Internet of Things: A Dyadic Analysis Review. Sensors, 21(12), 4158. https://doi.org/10.3390/s21124158
Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15‑16), 4719‑4742. https://doi.org/10.1080/00207543.2017.1402140
Benkhaled, S., Hemam, M., Djezzar, M., & Maimour, M. (2022). An Ontology – based Contextual Approach for Cross-domain Applications in Internet of Things. Informatica, 46(5). https://doi.org/10.31449/inf.v46i5.3627
Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., & Taylor, K. (2017). IOT-Lite: A lightweight semantic model for the internet of things and its use with dynamic semantics. Personal and Ubiquitous Computing, 21(3), 475‑487. https://doi.org/10.1007/s00779-017-1010-8
Brecht, J. K., Sargent, S. A., Brecht, P. E., Saenz, J., & Rodowick, L. (2019). Protecting Perishable Foods During Transport by Truck and Rail. EDIS, 2019(2). https://doi.org/10.32473/edis-hs1328-2019
Butner, K. (2010). The smarter supply chain of the future. Strategy & Leadership, 38(1), 22‑31. https://doi.org/10.1108/10878571011009859
Cao, S., Bryceson, K., & Hine, D. (2020). Improving supply chain risk visibility and communication with a multi-view risk ontology. Supply Chain Forum: An International Journal, 21(1), 1‑15. https://doi.org/10.1080/16258312.2020.1717990
Cheng, H., Zeng, P., Xue, L., Shi, Z., Wang, P., & Yu, H. (2016). Manufacturing Ontology Development Based on Industry 4.0 Demonstration Production Line. 2016 Third International Conference on Trustworthy Systems and Their Applications (TSA), 42‑47. https://doi.org/10.1109/TSA.2016.17
Choy, K. L., Ho, G. T. S., & Lee, C. K. H. (2017). A RFID-based storage assignment system for enhancing the efficiency of order picking. Journal of Intelligent Manufacturing, 28(1), 111‑129. https://doi.org/10.1007/s10845-014-0965-9
Christopher, M., & Holweg, M. (2011). “Supply Chain 2.0” : Managing supply chains in the era of turbulence. International Journal of Physical Distribution & Logistics Management, 41(1), 63‑82. https://doi.org/10.1108/09600031111101439
Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W. D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., … Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17, 25‑32. https://doi.org/10.1016/j.websem.2012.05.003
Daly, M., Grow, F., Peterson, M., Rhodes, J., & Nagel, R. L. (2015). Development of an automated ontology generator for analyzing customer concerns. 2015 Systems and Information Engineering Design Symposium, 85‑90. https://doi.org/10.1109/SIEDS.2015.7117017
Daniele, L., & Pires, L. F. (2014a). An Ontological Approach to Logistics. In M. Zelm, M. van Sinderen, L. F. Pires, & G. Doumeingts (Éds.), Enterprise Interoperability (p. 199‑213). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118846995.ch21
Daniele, L., & Pires, L. F. (2014b). An Ontological Approach to Logistics. In M. Zelm, M. van Sinderen, L. F. Pires, & G. Doumeingts (Éds.), Enterprise Interoperability (p. 199‑213). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118846995.ch21
d’Aquin, M., Schlicht, A., Stuckenschmidt, H., & Sabou, M. (2007). Ontology Modularization for Knowledge Selection: Experiments and Evaluations. In R. Wagner, N. Revell, & G. Pernul (Éds.), Database and Expert Systems Applications (Vol. 4653, p. 874‑883). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_85
De Nicola, A., & Missikoff, M. (2016). A lightweight methodology for rapid ontology engineering. Communications of the ACM, 59(3), 79‑86. https://doi.org/10.1145/2818359
Ding, Y., Jin, M., Li, S., & Feng, D. (2021a). Smart logistics based on the internet of things technology : An overview. International Journal of Logistics Research and Applications, 24(4), 323‑345. https://doi.org/10.1080/13675567.2020.1757053
Ding, Y., Jin, M., Li, S., & Feng, D. (2021b). Smart logistics based on the internet of things technology : An overview. International Journal of Logistics Research and Applications, 24(4), 323‑345. https://doi.org/10.1080/13675567.2020.1757053
Dooley, D. M., Griffiths, E. J., Gosal, G. S., Buttigieg, P. L., Hoehndorf, R., Lange, M. C., Schriml, L. M., Brinkman, F. S. L., & Hsiao, W. W. L. (2018). FoodOn : A harmonized food ontology to increase global food traceability, quality control and data integration. Npj Science of Food, 2(1), 23. https://doi.org/10.1038/s41538-018-0032-6
Elsaleh, T., Bermudez-Edo, M., Enshaeifar, S., Acton, S. T., Rezvani, R., & Barnaghi, P. (2019). IOT-Stream: A Lightweight Ontology for Internet of Things Data Streams. 2019 Global IOT Summit (GIOTS), 1‑6. https://doi.org/10.1109/GIOTS.2019.8766367
Elsaleh, T., Enshaeifar, S., Rezvani, R., Acton, S. T., Janeiko, V., & Bermudez-Edo, M. (2020). IOT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services. Sensors, 20(4), 953. https://doi.org/10.3390/s20040953
Engel, G., Greiner, T., & Seifert, S. (2018). Ontology-Assisted Engineering of Cyber–Physical Production Systems in the Field of Process Technology. IEEE Transactions on Industrial Informatics, 14(6), 2792‑2802. https://doi.org/10.1109/TII.2018.2805320
Fernandez, M., Gomez-Pearez, A., & Juristo, N. (1997). Methontology : From Ontological Art Towards Ontological Engineering. 8.
Flores-García, E., Jeong, Y., Liu, S., Wiktorsson, M., & Wang, L. (2022). Enabling industrial internet of things-based digital servitization in smart production logistics. International Journal of Production Research, 1‑26. https://doi.org/10.1080/00207543.2022.2081099
Fortineau, V., PavIOT, T., & Lamouri, S. (2013). 5 root concepts for a meta-ontology to model product along its whole lifecycle*. IFAC Proceedings Volumes, 46(7), 47‑52. https://doi.org/10.3182/20130522-3-BR-4036.00061
Fraga, A. L., Vegetti, M., & Leone, H. P. (2020). Ontology-based solutions for interoperability among product lifecycle management systems: A systematic literature review. Journal of Industrial Information Integration, 20, 100176. https://doi.org/10.1016/j.jii.2020.100176
Grangel-Gonzalez, I., Halilaj, L., Auer, S., Lohmann, S., Lange, C., & Collarana, D. (2016). An RDF-based approach for implementing industry 4.0 components with Administration Shells. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 1‑8. https://doi.org/10.1109/ETFA.2016.7733503
Helwan University, & Ouf, S. (2021). A Proposed Architecture for Pharmaceutical Supply Chain Based Semantic Blockchain. International Journal of Intelligent Engineering and Systems, 14(3), 31‑42. https://doi.org/10.22266/ijies2021.0630.04
Hooi, Y. K., Hassan, M. F., & Ci, T. X. (2012). Interoperation of Elements in Process Safety Management Via Ontology-Oriented Architecture. 5.
Jachimczyk, B., Tkaczyk, R., PIOTrowski, T., Johansson, S., & Kulesza, W. (2021). IOT-based Dairy Supply Chain—An Ontological Approach. Elektronika Ir Elektrotechnika, 27(1), 71‑83. https://doi.org/10.5755/j02.eie.27612
Janowicz, K., Haller, A., Cox, S. J. D., Le Phuoc, D., & Lefrançois, M. (2018). SOSA: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics, 56, 1‑10. https://doi.org/10.1016/j.websem.2018.06.003
Janowicz, K., Haller, A., Cox, S. J. D., Le Phuoc, D., & Lefrançois, M. (2019). SOSA: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics, 56, 1‑10. https://doi.org/10.1016/j.websem.2018.06.003
Jaskó, S., Skrop, A., Holczinger, T., Chován, T., & Abonyi, J. (2020). Development of manufacturing execution systems in accordance with Industry 4.0 requirements: A review of standard- and ontology-based methodologies and tools. Computers in Industry, 123, 103300. https://doi.org/10.1016/j.compind.2020.103300
Keller, R. M. (2016). Ontologies for aviation data management. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1‑9. https://doi.org/10.1109/DASC.2016.7777971
Kourtis, G., Kavakli, E., & Sakellariou, R. (2019). A Rule-Based Approach Founded on Description Logics for Industry 4.0 Smart Factories. IEEE Transactions on Industrial Informatics, 15(9), 4888‑4899. https://doi.org/10.1109/TII.2019.2916622
Lantow, B. (2016). OntoMetrics : Application of on-line Ontology Metric Calculation. 12.
Lian, P., Park, D.-W., & Kwon, H.-C. (2007). Design of Logistics Ontology for Semantic Representing of Situation in Logistics. Second Workshop on Digital Media and Its Application in Museum & Heritages (DMAMH 2007), 432‑437. https://doi.org/10.1109/DMAMH.2007.52
Lu, Y., Panetto, H., Ni, Y., & Gu, X. (2013). Ontology alignment for networked enterprise information system interoperability in supply chain environment. International Journal of Computer Integrated Manufacturing, 26(1‑2), 140‑151. https://doi.org/10.1080/0951192X.2012.681917
Martin Placek & ,. (2022). Industrial Internet of Things (IIOT) market size worldwide from 2020 to 2028. https://www.statista.com/statistics/611004/global-industrial-internet-of-things-market-size/
Panetto, H., Dassisti, M., & Tursi, A. (2012). ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment. Advanced Engineering Informatics, 26(2), 334‑348. https://doi.org/10.1016/j.aei.2011.12.002
Park, D.-W., Lee, G.-T., & Kwon, H.-C. (2008). Ontological Approach to Integration of Event-Centric Logistics Information into EPC Network. 2008 IEEE International Workshop on Semantic Computing and Applications, 1‑8. https://doi.org/10.1109/IWSCA.2008.30
Pizzuti, T., Mirabelli, G., Grasso, G., & Paldino, G. (2017a). MESCO (MEat Supply Chain Ontology) : An ontology for supporting traceability in the meat supply chain. Food Control, 72, 123‑133. https://doi.org/10.1016/j.foodcont.2016.07.038
Pizzuti, T., Mirabelli, G., Grasso, G., & Paldino, G. (2017b). MESCO (MEat Supply Chain Ontology) : An ontology for supporting traceability in the meat supply chain. Food Control, 72, 123‑133. https://doi.org/10.1016/j.foodcont.2016.07.038
Poveda-Villalón, M., Suárez-Figueroa, M. C., & Gómez-Pérez, A. (2012). Validating Ontologies with OOPS! In A. ten Teije, J. Völker, S. Handschuh, H. Stuckenschmidt, M. d’Acquin, A. Nikolov, N. Aussenac-Gilles, & N. Hernandez (Éds.), Knowledge Engineering and Knowledge Management (Vol. 7603, p. 267‑281). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33876-2_24
Rahman, H., & Hussain, I. (2018). LiO-IOT: A Light-weight Ontology to provide Semantic Interoperability in Internet of Things. 6.
Rejeb, A., Simske, S., Rejeb, K., Treiblmaier, H., & Zailani, S. (2020). Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet of Things, 12, 100318. https://doi.org/10.1016/j.IOT.2020.100318
Rozsa, V., Denisczwicz, M., Dutra, M., & Ghodous, P. (2016). An Application Domain-Based Taxonomy for IOT Sensors. 11.
Santos, G., Silva, F., Teixeira, B., Vale, Z., & Pinto, T. (2018). Power Systems Simulation Using Ontologies to Enable the Interoperability of Multi-Agent Systems. 2018 Power Systems Computation Conference (PSCC), 1‑7. https://doi.org/10.23919/PSCC.2018.8442888
Seydoux, N., Alaya, M. B., Hernandez, N., Monteil, T., & Haemmerlé, O. (2015). Sémantique et Internet des objets : D’un état de l’art à une ontologie modulaire. 13.
Stewart, G. (1997). Supply‐chain operations reference model (SCOR) : The first cross‐industry framework for integrated supply‐chain management. Logistics Information Management, 10(2), 62‑67. https://doi.org/10.1108/09576059710815716
Suárez-Figueroa, M. C., Gómez-Pérez, A., & Fernández-López, M. (2012a). The NeOn Methodology for Ontology Engineering. In M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, & A. Gangemi (Éds.), Ontology Engineering in a Networked World (p. 9‑34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-24794-1_2
Suárez-Figueroa, M. C., Gómez-Pérez, A., & Fernández-López, M. (2012b). The NeOn Methodology for Ontology Engineering. In M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, & A. Gangemi (Éds.), Ontology Engineering in a Networked World (p. 9‑34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-24794-1_2
Sun, S., Zheng, X., Villalba-Díez, J., & Ordieres-Meré, J. (2020). Data Handling in Industry 4.0: Interoperability Based on Distributed Ledger Technology. Sensors, 20(11), 3046. https://doi.org/10.3390/s20113046
Sure, Y., Staab, S., & Studer, R. (2009). Ontology Engineering Methodology. In S. Staab & R. Studer (Éds.), Handbook on Ontologies (p. 135‑152). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92673-3_6
Swar, A., Khoriba, G., & Belal, M. (2022). A unified ontology-based data integration approach for the internet of things. International Journal of Electrical and Computer Engineering (IJECE), 12(2), 2097. https://doi.org/10.11591/ijece.v12i2.pp2097-2107
Symeonaki, E., Arvanitis, K. G., Piromalis, D., Tseles, D., & Balafoutis, A. T. (2022a). Ontology-Based IOT Middleware Approach for Smart Livestock Farming toward Agriculture 4.0 : A Case Study for Controlling Thermal Environment in a Pig Facility. Agronomy, 12(3), 750. https://doi.org/10.3390/agronomy12030750
Symeonaki, E., Arvanitis, K. G., Piromalis, D., Tseles, D., & Balafoutis, A. T. (2022b). Ontology-Based IOT Middleware Approach for Smart Livestock Farming toward Agriculture 4.0: A Case Study for Controlling Thermal Environment in a Pig Facility. Agronomy, 12(3), 750. https://doi.org/10.3390/agronomy12030750
Tamrakar, A. K., Shukla, A., Kalifullah, A. H., Reegu, F. A., & Shukla, K. (2022). Extended review on internet of things (IOT) and its characterisation. International Journal of Health Sciences, 8490‑8500. https://doi.org/10.53730/ijhs.v6nS2.7177
Tran-Dang, H., Krommenacker, N., Charpentier, P., & Kim, D.-S. (2020). The Internet of Things for Logistics: Perspectives, Application Review, and Challenges. IETE Technical Review, 1‑29. https://doi.org/10.1080/02564602.2020.1827308
Tursi, A., Panetto, H., Morel, G., & Dassisti, M. (2009). Ontological approach for products-centric information system interoperability in networked manufacturing enterprises. Annual Reviews in Control, 33(2), 238‑245. https://doi.org/10.1016/j.arcontrol.2009.05.003
Uschold, M., & King, M. (1995). Towards a Methodology for Building Ontologies. 15.
Verdouw, C. N., Wolfert, J., Beulens, A. J. M., & Rialland, A. (2016a). Virtualization of food supply chains with the internet of things. Journal of Food Engineering, 176, 128‑136. https://doi.org/10.1016/j.jfoodeng.2015.11.009
Verdouw, C. N., Wolfert, J., Beulens, A. J. M., & Rialland, A. (2016b). Virtualization of food supply chains with the internet of things. Journal of Food Engineering, 176, 128‑136. https://doi.org/10.1016/j.jfoodeng.2015.11.009
Vinoth, P., & Sankar, P. (2016). Bringing Intelligent Inferences through a Semantic Structure Markup System with the Support of Chemical Ontologies. 6.
Wang, Y., Huang, L., & vanden Broucke, S. (2019). An activity theory based approach for ontological modelling of collaborative logistics process dynamics. International Journal of Logistics Research and Applications, 22(4), 371‑392. https://doi.org/10.1080/13675567.2018.1535650
Yang, H., Kumara, S., Bukkapatnam, S. T. S., & Tsung, F. (2019). The internet of things for smart manufacturing : A review. IISE Transactions, 51(11), 1190‑1216. https://doi.org/10.1080/24725854.2018.1555383
Yuen, J. S. M., Choy, K. L., Lam, H. Y., & Tsang, Y. P. (2018). An Intelligent-Internet of Things (IOT) Outbound Logistics Knowledge Management System for Handling Temperature Sensitive Products: International Journal of Knowledge and Systems Science, 9(1), 23‑40. https://doi.org/10.4018/IJKSS.2018010102
Zhang, C., Zhou, G., & Lu, Q. (2017). Decision support oriented ontological modeling of product knowledge. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 39‑43. https://doi.org/10.1109/ITNEC.2017.8284816
Zheng, Y., Tetik, M., Törmä, S., Peltokorpi, A., & Seppänen, O. (2020, octobre 14). A Shared Ontology for Logistics Information Management in the Construction Industry. 37th International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan. https://doi.org/10.22260/ISARC2020/0175
Zhong, S., Fang, Z., Zhu, M., & Huang, Q. (2017). A geo-ontology-based approach to decision-making in emergency management of meteorological disasters. Natural Hazards, 89(2), 531‑554. https://doi.org/10.1007/s11069-017-2979-z
Zhou, H., Benton, W. C., Schilling, D. A., & Milligan, G. W. (2011). Supply Chain Integration and the SCOR Model: Supply Chain Integration and SCOR Model. Journal of Business Logistics, 32(4), 332‑344. https://doi.org/10.1111/j.0000-0000.2011.01029.x