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Abstract 

Home health care (HHC) aims to assist patients at home and to help them to live with greater independence, avoiding 

hospitalization or admission to care institutions. The patients should be visited within their availability periods. 

Unfortunately, the uncertainties related to the traveling and caring times would sometimes violate these time windows 

constraints, which will qualify the service as poor or even risky. This work addresses the home health care routing and 

scheduling problem (HHCRSP) with multiple hard/fixed time windows as well as stochastic travel and service times. A 

two-stage stochastic programming model recourse (SPR model) is proposed to deal with the uncertainty. The recourse is 

to skip patients if their availability periods will be violated. The objective is to minimize caregivers’ traveling cost and 

the average number of unvisited patients.  Monte Carlo simulation is embedded into the genetic algorithm (GA) to solve 

the SPR model. The results highlight the efficiency of the GA, show the complexity of the SPR model, and indicate the 

advantage of using multiple time windows. 

Keywords: Genetic Algorithm; Simulation; Stochastic Programming Recourse Model; Multiple Time Windows. 

1. Introduction  

Home health care (HHC) allows patients to live safely, independently and in a personal environment in the case of aging, 

disabling disease or injury. It aims to visit patients in their homes to perform care services, it includes: 1) medical services 

such as nursing, physical and speech therapy; 2) help seniors with services of daily living, such as dressing, bathing, and 

eating; 3) assist with cleaning, cooking, and other housekeeping. According to the report on aging and health (WHO 

(2015)), on average, people would live to age 77; 15 of those years would be lived with disability. The percentage of 

seniors is increasing in European countries and is expected to increase further in the next years (Tarricone and Tsouros 

(2008)). HHC services will allow patients to live safely and independently in their homes and avoid moving to hospital 

to receive care activities. Also, it expected to decrease admissions in hospitals (Cissé et al. (2017)). HHC companies must 

assign qualified caregivers to patients and define their routes to provide requested services. These companies must 

consider both patients’ preferences such as availability periods to increase their satisfaction and optimize one or more 

criteria such as the transportation cost. This problem is recognized as HHCRSP, which combine two NP-hard problems 

known in the literature as the vehicle routing problem (VRP) with time windows (Braysy and Gendreau (2005)) and the 

nurse rostering problem (Burke et al. (2004)). 

Most works only adopt deterministic methods and/or models to address the HHCRSP. The constraints and objectives 

considered in the literature vary from one study to another: multi-modal transportation (Hiermann et al. (2015)), time-

dependent travel times (Rest and Hirsch (2016)), temporal dependencies between services (Mankowska et al. (2014); 

Rasmussen et al. (2012); Redjem and Marcon (2016)), multiple availability periods of patients (Bazirha et al. (2020a)), 

lunch break requirements (Liu et al. (2017)) and multi-objective optimization (Decerle et al. (2019); Braekers et al. (2016); 

Duque et al. (2015); Fathollahi-Fard et al. (2020)). However, these models are generally less robust, the predefined 

schedule should be revised for any change arising in practical situations. Otherwise, services may be provided with 

tardiness for patients who have not yet been visited, therefore the service will be qualified poor or risky.  
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Travel and service times are critical elements in the planning and are not always fixed as estimated due to practical reasons 

(Shi et al. (2019)). Travel time duration between patients could be affected by driving skills, road, and weather conditions. 

For the service time is depending for example on diagnosing time and parking situations (Shi et al. (2019)). 

Most of previous efforts have been focused on studying the VRP with stochastic parameters such as demands, travel and 

service times (Laporte et al. (1992); Li et al. (2010); Tas et al. (2014a, b); Luo et al. (2016); Errico et al. (2016); Marinaki 

and Marinakis (2016); Mendoza et al. (2016)). But there are only a few works that have dealt with the HHCRSP with 

stochastic parameters (e.g., Shi et al. (2018, 2019); Cappanera et al. (2018, 2021); Shahnejat et al. (2021); Yuan et al. 

(2015); Bazirha et al. (2020b, 2021)) (see Table 1). These studies only consider a single availability period per patient 

and no study, as far as we know, has used multiple time windows for the stochastic HHCRSP. This work considers 

multiple time windows for patients that aim to minimize the number of unvisited patients as well as to increase the chance 

to provide requested services within patients’ time windows since are supposed hard/fixed with stochastic parameters 

(travel and service times). In addition, the proposed model generalizes time windows constraints. It allows to use multiple 

time windows for some patients and a single availability period for others. The problem with a single availability period 

for some patients could be considered as a problem with multiple windows by keeping the valid period and setting the 

others to [0, 0]. 

Table 1. Stochastic parameters considered in VRP and HHCRSP problems 

Reference Stochastic parameters Problem 

Laporte et al. (1992) Travel times VRP 

Li et al. (2010) Travel and service times VRP 

Tas et al. (2014a, b) Travel times VRP 

Errico et al. (2016) Service times VRP 

Marinaki and Marinakis (2016) Demands VRP 

Luo et al. (2016) Demands VRP 

Mendoza et al. (2016) Demands VRP 

Saffarian et al. (2015) Demands and travel times VRP 

Cappanera  et al. (2018, 2021) Demands HHCRSP 

Yuan et al. (2015) Service times HHCRSP 

Shahnejat  et al. (2021) Travel and service times HHCRSP 

Shi et al. (2018, 2019) Travel and service times HHCRSP 

Bazirha et al. (2020b, 2021) Travel and service times HHCRSP 

To deal with the uncertainty, several models have been proposed in the literature. The robust optimization (Ben-Tal et al. 

(2009)) constructs a feasible solution for any realization of the uncertainty in a given set (Bertsimas et al. (2011)), this 

uncertainty is not stochastic, but rather deterministic and set-based (Bertsimas et al. (2011)). The chance constrained 

model (Charnes and Cooper (1959)) seeks a solution for which the failure probability is less than some given threshold 

and corrective actions are not considered in the failure case (Gendreau et al. (1996)).  The SPR model (Bernard (1955)) 

seeks a solution that minimizes the cost of the first stage solution plus the expected net cost of recourse (second stage) 

(Gendreau et al. (1996)). The objective function of the SPR model is more meaningful than the chance constrained model 

(Gendreau et al. (1996)). This work adopts the SPR model to cope with the uncertainty of travel and service times, the 

recourse is to skip providing a service operation if it will be carried out with a tardiness. 

We use CPLEX solver to solve the deterministic model as well as the GA based heuristic since experiments in the 

literature show that it has a good ability for global searching (Shi et al. (2018)). We embed Monte Carlo simulation into 

the GA to solve the SPR model since GA parameters are independent of the parameters of the problem. However, 

heuristics based on local search strategies, such as Tabu Search (Glover (1986)), Simulated Annealing (Kirkpatrick et al. 

(1983)) and Variable Search Neighborhood (Mladenovic and Hansen (1997)), are not suitable to be combined with the 

simulation since its parameters depend on the problem size (Bazirha et al. (2020b)). For each new solution, the simulation 

is performed to estimate the recourse. The convergence to the expected real value may take more time. Indeed, the more 

the number of convergence iterations increases, the more the estimated value approaches to the expected real value (Law 

of large numbers).   

In previous studies, on the one hand, exact approaches such as branch-and-price algorithm have been proposed to solve 

stochastic models, where the service time (Errico et al. (2016); Yuan et al. (2015)) or the travel time (Tas et al. (2014b)) 

is supposed stochastic and the expected value is calculated by a mathematical formula. On the other hand, in (Shi et al. 

(2018); Bazirha et al. (2020b)) both travel and service times are supposed stochastic, and the simulation has been used to 

estimate the expected value. As explained above, the simulation takes time to find a good estimation. In addition, although 

exact methods give the optimal solution, their computation time increases monotonically with the size of the problem. To 

solve our problem within a reasonable computational time, a heuristic with the simulation is used rather than exact 

approaches. 

The remainder of the paper is structured as follows: Section 2 describes the problem statement. The SPR model for the 

HHCRSP and Monte Carlo simulation are presented in section 3. The heuristic method is presented in section 4. 

Numerical experiments are conducted in section 5. Section 6 concludes the paper. 
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2. Problem statement 

The HHCRSP with multiple time windows and stochastic travel and service times is defined as follows: given a HHC 

company that provides a set of services S = {1, 2, ..., q} to a set of patients N = {1, 2, ..., n}, which will be visited on a 

day. The goal is to find a valid daily planning in which available caregivers K = {1, 2, ..., c}, will be efficiently assigned 

to patients considering the uncertainty in terms of traveling and caring times that may occur. 

Caregivers start from the HHC company center and must return to that center after visiting all assigned patients. They use 

the same mode of transportation to travel between patients (i.e., cars of the HHC company). They are paid for their regular 

working time regardless of the amount of care they do. To ensure fairness among them, a maximum number of patients 

not to exceed is fixed (max_v). 

Caregivers’ qualification is indicated in a matrix of binary parameters ∆ks. The binary parameter ∆ks is set to 1 if caregiver 

k can perform service s, and 0 otherwise. Requested services are indicated in in a matrix of binary parameters δis, which 

is set to 1 if patient i requires service s, and 0 otherwise. Multiple time windows are adopted for each patient [ail, bil], 

where ail and bil are, respectively, the earliest and latest possible service times of the time window l ∈ L = {1, 2, ..., p}, 

where p is the number of patients’ time windows. The decision maker could select any availability period l to schedule 

the requested visit for each patient i. 

It is more likely that providing some services will not be compatible with patients’ preferred availability periods since 

travel  𝑇̃𝑖𝑗 and service 𝑡̃𝑖𝑠 times are supposed stochastic and patients’ time windows are assumed hard/fixed. Therefore, 

the recourse is defined as skipping a patient when carrying out the service will not be compatible with his availability 

periods. The goal is to establish a daily planning that minimizes the transportation cost (first stage) as well as the average 

number of unvisited patients (second stage) with respect to patients’ time windows, skills requirements, and the maximum 

of visits not to exceed by each caregiver. 

3. Mathematical formulation 

The problem is formulated as a two-stage stochastic programming model recourse with multiple hard/fixed time windows. 

Caregivers’ routes and assignment are defined in the first stage. The second stage aims to introduce the recourse if they 

arrive lately to patients, which is expressed as skipping patients’ visits since their time windows are assumed hard/fixed. 

The recourse is to minimize the average number of unvisited patients. The notation of sets, decision variables and 

parameters used in the model are defined as follows: 
3.1. Sets 

 N = {1, 2, ..., n}: set of patients; 

 N0   and Nn+1: the extended sets of N that include nodes 0 and n+1, which represent the HHC center; 

 K = {1, 2, ..., c}: set of caregivers; 

 S = {1, 2, ..., q}: set of services and skills; 

 L = {1, 2, ..., p}: set of patients’ availability periods. Each patient i has p time windows: Actually, there are Li 

valid periods, the others (i.e., p − Li) are null. 

3.2. Deterministic parameters 

 M: a large positive constant; 

 Maxv: maximum of patients that a caregiver could visit; 

 [ail, bil]: the lth time window of the patient i;  

 cij: transportation cost from patient i to patient j;  

 δis: equals 1 if patient i requests service s; 

 ∆ks: equals 1 if caregiver k is skilled to perform service s. 

3.3. Stochastic parameters 

 𝑇̃𝑖𝑗: travel times between patients’ locations;  

 𝑡̃𝑖𝑠: processing time of service s at patient i; 

 𝐸̃(. ): the average number of uninvited patients, which expresses the recourse of the second stage. 

3.4. Decision variables 

 xijk: equals 1 if caregiver k visits patients j after patient i, 0 otherwise;  

 yiks: equals 1 if caregiver k visits patient i to perform service s, 0 otherwise;  

 zil: equals 1 if the lth time window is selected for patient i, 0 otherwise; 

 𝑆̌𝑖𝑘
 :  caregiver k starting time at patient i; 

3.5. Parameters for Recourse model 

 vi: equals 1 if the service operation requested by patient i will be skipped (will not be provided), 0 otherwise;  

 α: penalty cost for each unvisited patient. 
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3.6. Mathematical model 

The SPR model proposed to address this problem is adapted from our previous work (Bazirha et al. (2020b)) by using 

another recourse model (Errico et al. (2016)) (skip patients) instead of using a penalty cost for violating time windows 

(Shi et al. (2018)). In addition, we add other constraints such as multiple time windows and maximum number of patients 

to visit per caregiver. The model is defined as follows: 
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𝑧𝑖𝑙
  ∈ {0,1}                                                                                                                                          ∀ 𝑖𝜖𝑁,   𝑘𝜖𝐾 (19) 

 

The objective function is defined as minimizing the transportation cost and the average number of unvisited patients 

caused by skipping them if their time windows will be violated. Constraints (1) and (2) impose that each patient is visited 

exactly by one caregiver to perform his requested service. Constraints (3) and (4) guarantee that the HHC center is the 

start and the end of caregivers’ tours. Constraints (5) impose route continuity for the patients assigned to a caregiver k. In 

doing so, tours will be constructed rather than open paths. Constraints (6) and (7) determine either service operation s 

requested by patient i will be provided, or it will be skipped. Indeed, if (vi = 0, i.e., Constraints (6) must be verified), the 

service operation will be provided for patient i and the start time for patient j must respect completion time of providing 

the requested service operation for patient i. Otherwise (vi = 1, i.e., Constraints (7) must be verified), the service operation 

for patient i will be skipped. These constraints ensure that the starting times of services are strictly increasing in each 

caregiver’s route, which remove sub-tours (Mankowska et al. (2014)). Constraints (8) define the variable yiks, caregiver k 

provides a service to patient i imply that caregiver k goes to another location (a patient or the HHC center) after visiting 

patient i. Constraints (9) guarantee that each assigned caregiver is skilled to perform a requested service. Constraints (10) 

ensure that each caregiver does not exceed the maximum number of visits allowed. Constraints (11) and (12) require that 

time windows will not be violated. Constraints (13) ensure for each patient that only one time window is selected from 

her/his availability periods to provide the requested service. Constraints (14)-(19) set the domains of decision variables. 

3.7. Expected recourse estimation procedure 

 

The recourse model in stochastic programming depends on the nature of the problem and its constraints. Constraints 

containing stochastic parameters are more likely to be violated, therefore a recourse must be used to deal with the 

uncertainty. In (Shi et al. (2018)), the authors defined the recourse as a penalty cost for a tardiness of a service operation 

and a remuneration for caregivers’ extra working time. This recourse requires to be used with soft/flexible time windows. 
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In (Errico et al. (2016)), the authors defined the recourse when a route becomes infeasible as: skipping the service at the 

current customer and skipping the visit at the next customer. This recourse is used with hard/fixed time windows. Since 

we suppose that patients’ time windows must be respected, we define the recourse as skipping providing a service 

operation for a patient when his availability periods could not be respected. The algorithm 1 is used to estimate the 

excepted value of recourse. sumv is the total number of skipped visits. Tj is the minimal tardiness of providing the service 

operation to patient j considering all his availability periods. pj contains the selected period l for the patient j. Vk contains 

patients assigned to the caregiver k. 

The simulation is running until either condition 1 or condition 2 is met. Condition 1 is fixed as a maximum number of 

iterations, denoted by MaxIterMCS. Condition 2 expresses the gap between the estimated values at iterations t − 1 and t: 

𝑔𝑎𝑝 =
𝐸(.)𝑡−1−𝐸(.)𝑡

𝐸(.)𝑡−1
. This formula must exactly hold at a maximum number of iterations, denoted by MaxIterGap, and it 

computes the gap between E(.)t−1 and E(.)t with an error ε. When the estimated value converges to the real expected value, 

values of E(.)t−1 and E(.)t will be very close to each other, and the gap tends to zero. Reducing to 0 and increasing 

MaxIterGap will ensure that the estimated value tends towards the real expected value. However, the computational time 

increases significantly since the simulation is carried out for each new generated solution. Condition 1, i.e., MaxIterMCS, 

is used to avoid falling into an infinite loop that could be caused by the condition 2, especially when ε tends towards 0 

and MaxIterGap tends towards a large number. The condition used in (Shi et al. (2018)), is a particular case of the 

proposed conditions ( 𝜀 = 0, MaxIterGap =+∞ and maxIterMCS = 100). 

4. Genetic Algorithm 

 The Genetic Algorithm (Holland (1992)) is a population-based heuristic, which involves a simulation of Darwinian 

“survival of the fittest”. Parents compete against each other, and the fittest ones will be selected to passe their 

characteristics to the produced offspring through crossover and mutation operators. This process is applied to an initial 

population and keeps on iterating until a generation with the highest fitness will be kept.  

The first step is how to represent solutions to apply crossover and mutation operations, then the decoding method to 

compute the fitness of individuals. A solution is represented by two chromosomes where their sizes equal to the number 

of patients. The first chromosome (patients’ chromosome) contains patients and their requested services (included in 

parenthesis), and the second chromosome (caregivers’ chromosome) contains assigned caregivers.  

Example: Table 2 shows an example of a solution encoding that involve 2 caregivers, 3 types of services and 6 patients. 

Caregiver 1 is assigned to patients 4, 5, and 2 to perform respectively services 2,1 and 2 while caregiver 2 is assigned to 

patients 6, 1 and 3 to carry out respectively services 1,3 and 3. 

To compute the fitness of an offspring, for each subset of patients assigned to a caregiver, arrival and starting times will 

be iteratively calculated in the same order as they appear at patients’ chromosome. The earliest availability period l ∈ L 

that minimizes the tardiness of providing the requested service operation s will be chosen for each patient. 

 

Table 2. Example of solution encoding 

Patients 6 (1) 4 (2) 1 (3) 5 (1) 3 (3) 2 (2) 

Caregivers 2 1 2 1 2 1 

4.1. Crossover operator 

The crossover operation is the main genetic operator in genetic algorithm used to pass parents’ genes to their children. 

Several crossover operations have been proposed in the literature. In this study, we use the 2-point crossover operator to 

reproduce an offspring from two parents. It will be independently applied for each chromosome: 

 Generate two random crossover points p1 and p2 in the parent; 

 Copy the segment between points p1 and p2 from the first parent to the first offspring; 

 Copy the segment before p1 and the segment after p2 from the second parent to the first offspring; 

 Repeat for the second offspring with the parent’s role reversed. 
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Steps 1 and 2 are similar for both chromosomes while the third step must be adapted to patients’ chromosome. Indeed, 

the repetition of caregivers does not affect the infeasibility of a solution when exchanging genes between parents since 

each caregiver appears many times in a solution (see figures 1 and 3). In contrast, each patient is allowed to appear in a 

solution only once, so step 3 will be adapted to sort genes of the segment before p1 and the segment after p2 in the same 

order as they appear at each opposite parent. This adaptation avoids deleting or duplicating a patient in a solution (see 

figures 1 and 2). 

4.2. Mutation operator 

The mutation is performed at random with a small probability to increase the diversity of solutions, to avoid local 

optimums and to diversify the search directions. In this work, two mutation operations are used. The first one (patients’ 

mutation) is to swap the positions of two patients, which avoid deleting or duplicating a patient. The second one 

(caregivers’ mutation) is to switch an assigned caregiver at random. Suppose that the conditions of applying mutation 

operators are verified. The randomly generated positions are 3 and 6 for patients and 1 for caregivers. Table 3 shows the 

mutated solution from the solution in Table 2. 

Table 3. Example of mutation operator 

Patients 6 (1) 4 (2) 2 (2) 5 (1) 3 (3) 1 (3) 

Caregivers 1 1 2 1 2 1 

4.3. Fitness and selection 

In order to apply crossover and mutation operators, two parents must be selected from the population. Many selection 

methods have been proposed in the literature to choose the fittest individuals for reproduction. The most commonly used 

selection methods include roulette wheel selection, rank selection, and tournament selection. The first one suffers from 

problem of premature convergence due to the possible presence of a dominant individual that always wins the competition 

and is selected as a parent. The second suffers from the slower convergence and the sorting must be done to each 

chromosome to assign ranks, which increase the computational time. We use the tournament selection to choose the 

individuals for reproduction. k individuals are selected from a large population of size Psize to compete against each other. 

The fittest one is selected to participate in the crossover operation. 
For each solution, three components are computed: caregivers’ transportation cost (see equation 22); number of patients 

visited after exceeding the maximum number to visit per caregiver (see equation 20); and the expected value for the SPR 

model (see equation 21). For the deterministic model, F2 is equivalent to the number of unvisited patients. Solutions are 

first compared according to the value of F1, the individual with small value will be selected. If constraints 10 are satisfied 

(F1 = 0), solutions are compared according to the value of F2. For the deterministic model, this value must converge to 0, 
while it could be greater than 0 for the SPR model. If solutions have the same values of F1 and F2, the solution with small 

transportation cost will be selected. We use this lexicographic order to ensure convergence to feasible solutions (F1 = 0) 

and to avoid using aggregation techniques for F2 and F3 since fixing weights is confusing and units are not the same. In 

addition, for any skipping a patient without providing the requested service operation, a wasting cost will be occurred. 

For example, if a caregiver will visit patients p1, p2 and p3 and it happens that he will skip the patient p2, the wasting cost 

that may occur is 𝑐 𝑝1𝑝2
+ 𝑐 𝑝2𝑝3

− 𝑐 𝑝1𝑝3
since he could be visit patient p3 directly after patient p1. Therefore, it interesting 

to minimize first the number of uninvited patients to ensure patients’ satisfaction and avoid wasting costs. 

𝐹1 = ∑ 𝑀𝑎𝑥(∑ ∑  

𝑞

𝑠=1

𝑦𝑖𝑘𝑠 − 𝑀𝑎𝑥𝑣 ,0)

𝑛

𝑖=1

𝑐

𝑘=1

 (20) 
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𝐹2 = 𝐸 [∑ 𝑣𝑖

𝑛

𝑖=1
] (21) 

𝐹3 = ∑ ∑ ∑ 𝑐𝑖𝑗

𝑛+1

𝑗=1

𝑥𝑖𝑗𝑘

𝑛

𝑖=0

𝑐

𝑘=1

 (22) 

4.4. Genetic algorithm procedure 

Algorithm 2 needs an initial population of the size Psize and to define mutation and crossover probabilities (pm and pc).  

Whenever crossover and mutation operations are performed to generate an offspring, a repair procedure is used to ensure 

skills requirements constraints are satisfied. It browses each patient in the solution and checks if a qualified caregiver is 

assigned through crossover and mutation operators, otherwise the unqualified caregiver is randomly replaced by a skilled 

one. After the transportation cost is computed, the simulation is carried out to calculate the average number of unvisited 

patients for the current offspring. This process keeps on iterating for several iterations until no improvements in the best 

solution found could be achieved. 

 

 

4.5. Initial population 

Given a population size Psize, the initial population is randomly generated as follows: 

 For i = 1 to Psize do: 

 Generate patients’ visiting order at random; 

 Browse each patient in the visiting order and randomly assign a skilled caregiver; 

 Compute components F1, F2 and F3 (see equations 20, 21 and 22). 

5. Numerical experiments 

The tests are performed on the computer with Intel i7-7600U 2.80-GHz CPU and 16 GB of RAM under windows 10. 

CPLEX solver version 12.8 is used to implement and test the deterministic version of the SPR model. The language C++ 

is used to code and test the GA based heuristic. 

5.1. Test instances 
The test instances were generated using reference instances from the literature. Deterministic and stochastic parameters 

were, respectively, randomly generated as described in (Mankowska et al. (2014)) and in (Shi et al. (2018)). The HHC 

center and patients’ positions are randomly placed in a 100x100 unit distance area. Transportation cost cij   and travel 

times Tij   are equal to the Euclidean distance dij between patient’ locations truncated to an integer. The number of services 

that the HHC center is supposed to provide is fixed to 6 (S = {1, ...,6}).  For each patient, a single service operation is 

supposed to be requested and is randomly selected from S, its duration tis is randomly drawn from the interval [15, 20].  

A daily planning period of 10 hours is considered in which patients’ time windows are randomly placed for instances 
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with a single time window. In the case of double time windows per patient, the daily planning period is divided into two 

periods, each one has a length of 5 hours. The first time window is randomly placed in the first 5 hours ([0, 5]) and the 

second one in the next 5 hours ([5, 10]). Each time window is of length 120 minutes. Caregivers’ qualifications are 

grouped into two subsets {1,2,3} and {4,5,6}. Each caregiver is skilled to provide some services randomly selected, at 

most three, either in {1,2,3} or in {4,5,6}.  

For the SPR model, we randomly generate travel and service times as described in (Shi et al. (2018)).  Service times 

duration follows a normal distribution  𝑡̃𝑖𝑠~𝑁( 𝑡𝑖𝑠, (
𝑡𝑖𝑠

5
)2)  and travel times between patients also follows a normal 

distribution 𝑇̃𝑖𝑗~𝑁( 𝑇𝑖𝑗 , (
𝑇𝑖𝑗

3
)2). Parameters 𝑡𝑖𝑠 and  𝑇𝑖𝑗  are, respectively, the average processing time of the service s   and 

the average traveling time from patient i to patient j. Parameters  
𝑡𝑖𝑠

5
  and 

𝑇𝑖𝑗

3
 are, respectively, the standard deviation values 

of the service time s for patient i and the driving time from patient i to patient j. 

Tuning parameters were defined as follows: Pc = 0.4, Pm = 0.08, Psize = n × 20, GA based heuristic stops when there is no 

improvement over the best solution found for a number of iterations, which is set to n × 5, and the size of the tournament 

selection is set to 2. 

Two sets of instances are generated. The first set is used with a single time window per patient and contains three subsets 

(A, B and C). The instance A1_1 refers to the instance 1 of the category A with single time window. Accordingly, the 

second set has the same instances as the first set that are used with two availability periods (see Table 4). The instance 

A1_2 refers to the instance 1 of the category A with double time windows. The same instances are used with single and 

double availability periods to study their impact on solutions quality. 

Table 4. Tested instances details 

Set Subset Size Max𝑣 N L k 

STW A𝑖_1 𝑖 ∈ {1, 2, ..., 7} 4 10 1 3 

B𝑖_1 8 25 1 5 

C𝑖_1 10 50 1 10 

MTW A𝑖_2 𝑖 ∈ {1, 2, ..., 7} 4 10 2 3 

B𝑖_2 8 25 2 5 

C𝑖_2 10 50 2 10 
 

 

5.2. Computational Results 

Instances described above are solved within a time limit of 4 hours. “LB” and “Z” are, respectively, the lower bound 

(LB) and the objective function value of the deterministic model given by CPLEX. “Gap” is computed by the formula 

100%× (Z – LB)/Z) and “CPU” is the computing time. For GA based heuristic, we solve each instance 10 times then the 

best, the worst and the average solutions are retained. “CPU” expresses the total computing time elapsed for 10 runs. 

“GAP” is calculated between the average solution and the lower bound of CPLEX by the same above-mentioned formula. 

The proven optimal solutions are in boldface. 

CPLEX solved to optimality almost all instances of subsets A, B and C with single time window except instances C2 and 

C3 for which a feasible solution was found with, respectively, a gap of 8.68% and 6.85%. For multiple time windows, 

the optimum solutions of all instances of the subset A were found, while only instances B1, B3, B4 and B6 were solved to 

optimality. For the instances B2, B5 and B7, a feasible solution was found with, respectively, a gap of 10.78%, 13.18% 

and 14.04%. Instances of the subset C are hard to solve, CPLEX was not able to resolve these instances within the time 

limit. This complexity is due to the multiple time windows, which is exponential. For n patients and p availability periods 

for each one, we have pn possibilities to select for each one a time window to receive care services. 

The GA based heuristic solves instances in short CPU running times compared to CPLEX solver. GA is able to reach 

optimal solutions for some instances and to provide near-optimal solutions for the others (see figures (4,5) and tables (5, 

6)). The complexity due to the multiple time windows faced by CPLEX did not affected the GA since we select for each 

patient the best time window independently of the other patients’ time windows, which avoid the exponential complexity. 

Instance C5, with double time windows, shows the worst CPU running time, which is on average 17.3 seconds, while 

CPELX solver cannot find a feasible solution within 4 hours for subset C with double time windows. The worst gaps 

found for subsets with single time widows A, B and C are, respectively, 1.13% (A6), 6.27% (B2) and 19.33% (C2) (see 

Table 5). For instances with multiple time windows, the worst gaps found are, respectively, 1.16% (A1), 21.01 %(B2) and 

47.44% (C2) (see Table 6). 

The SPR model is solved by Monte Carlo simulation embedded into the GA. Caregivers’ transportation cost and the 

average number of unvisited patients is considered for each instance. The CPU time running time is significantly 

increasing for the SPR model compared the deterministic version due to simulation that must be carried out for each new 

offspring to compute the expected value (see Table 7). In addition, the expected value equals to zero for all instances 

except instances A3, A7, B2 and B6 used with single time window, which shows the robustness of the SPR model. 
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A comparison is performed between instances with single and multiple time windows for both models. Figures 6 and 7 

clearly show the advantage of adopting multiple time windows since the transportation cost is higher for instances with 

single availability period. Figures 8 and 9 show that caregivers’ transportation cost is higher for the stochastic model 

because solutions with lower expected value are prioritized to avoid skipping patients without providing services 

operations and increase patients’ satisfaction. Solutions with higher difference between patients’ latest service times (bil) 

and caregivers’ completion Cik are prioritized to increase the chance of respecting patients’ time windows since travel and 

service times are supposed stochastic. The more the margin (bil- Cik) is higher the more the fluctuation of caregivers’ 

arrival times remains robust and compatible with patient’s time windows. To illustrate that, we solved instance A5 using 

both models, the two solutions found are: for the deterministic model, caregivers’ transportation cost is 662 (see tables 5 

and 8) and for the stochastic model is 744 (see tables 7 and 9). We computed starting and completion times for patients 

visited by the caregiver 1 for both models stochastic and deterministic. The minimum difference between the latest service 

time (bi1) and the completion time Ci1 is 12 for the stochastic model and 4 for the deterministic model (see tables 10 and 

11). 

Table 5. Numerical results of instances with single time window and deterministic travel and service times 

Instances  CPLEX   GA based heuristic (10 runs)  

STW LB Z Gap CPU Best Worst Average Gap CPU 

A1_1 525.00 525 0.00% 1.43 525 566 529.10 0.77% < 1 

A1_2 754.00 754 0.00% 1.28 754 754 754.00 0.00% < 1 

A1_3 588.00 588 0.00% 1.31 588 588 588.00 0.00% < 1 

A1_4 817.00 817 0.00% 1.43 817 817 817.00 0.00% < 1 

A1_5 662.00 662 0.00% 1.62 662 677 665.40 0.51% < 1 

A1_6 439.00 439 0.00% 1.37 439 464 444.00 1.13% < 1 

A1_7 539.00 539 0.00% 1.36 539 539 539.00 0.00% < 1 

B1_1 1165.00 1165 0.00% 2.64 1165 1300 1232.50 5.48% 8.34 

B1_2 993.00 993 0.00% 2.40 993 1108 1059.40 6.27% 8.71 

B1_3 1089.00 1089 0.00% 3.58 1089 1162 1124.40 3.15% 8.76 

B1_4 928.00 928 0.00% 3.56 928 1001 965.00 3.83% 9.12 

B1_5 1064.00 1064 0.00% 2.27 1064 1246 1110.60 4.20% 10.51 

B1_6 1196.00 1196 0.00% 3.04 1196 1276 1226.40 2.48% 10.84 

B1_7 1099.00 1099 0.00% 1.80 1099 1172 1116.40 1.56% 9.02 

C1_1 1490.00 1490 0.00% 411.76 1555 1719 1644.80 9.41% 92.70 

C1_2 1529.64 1675 8.68% 14400 1799 1996 1896.20 19.33% 120.54 

C1_3 1425.26 1530 6.85% 14400 1633 1853 1723.00 17.28% 80.62 

C1_4 1603.00 1603 0.00% 5389.00 1803 1998 1889.70 15.17% 102.29 

C1_5 1482.00 1482 0.00% 388.24 1614 1974 1752.70 15.44% 141.29 

C1_6 1658.00 1658 0.00% 172.16 1736 1999 1848.30 10.30% 92.03 

C1_7 1492.00 1492 0.00% 232.13 1608 1742 1675.00 10.93% 91.38 

Table 6. Numerical results of instances with multiple time windows and deterministic travel and service times 

Instances  CPLEX   GA based heuristic (10 runs)  
MTW LB Z Gap CPU Best Worst Average Gap CPU 

A2_1 512.00 512 0.00% 1.76 512 524 518.00 1.16% < 1 

A2_2 672.00 672 0.00% 2.01 672 672 672.00 0.00% < 1 

A2_3 588.00 588 0.00% 1.74 588 593 588.60 0.10% < 1 

A2_4 665.00 665 0.00% 2.15 665 673 666.60 0.24% < 1 

A2_5 593.00 593 0.00% 2.86 593 598 594.90 0.32% < 1 

A2_6 388.00 388 0.00% 1.86 388 388 388.00 0.00% < 1 

A2_7 507.00 507 0.00% 1.99 507 507 507.00 0.00% < 1 

B2_1 855.00 855 0.00% 403.83 935 1030 989.90 13.63% 10.26 

B2_2 665.56 746 10.78% 14400 759 881 842.60 21.01% 10.85 

B2_3 905.00 905 0.00% 4027.58 947 1034 985.50 8.17% 10.59 
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Table 6. Continued 

Instances  CPLEX   GA based heuristic (10 runs)  

MTW LB Z Gap CPU Best Worst Average Gap CPU 

B2_4 739.00 739 0.00% 512.62 743 852 782.50 5.56% 9.60 

B2_5 726.67 837 13.18% 14400 853 941 894.30 18.74% 12.36 

B2_6 944.00 944 0.00% 1065.68 950 1043 998.20 5.43% 11.06 

B2_7 810.57 943 14.04% 14400 948 1047 993.00 18.37% 10.93 

C2_1 800.04 - - 14400 1330 1549 1406.80 43.13% 125.68 

C2_2 834.54 - - 14400 1467 1644 1587.80 47.44% 162.22 

C2_3 999.36 - - 14400 1437 1601 1519.60 34.24% 124.98 

C2_4 860.14 - - 14400 1474 1721 1622.20 46.98% 138.26 

C2_5 812.12 - - 14400 1367 1582 1453.30 44.12% 173.21 

C2_6 842.53 - - 14400 1417 1598 1505.03 44.02% 138.54 

C2_7 842.50 - - 14400 1361 1517 1436.30 41.34% 143.47 
 

 

Table 7. Numerical results of instances with stochastic travel and services times 

  Single time window   Multiple time windows 

Instances L COST E() CPU L COST E() CPU 

A1 1 525 0.00 2.32 2 524 0.00 2.29 

A2 1 754 0.00 2.30 2 672 0.00 2.28 

A3 1 609 0.01 3.73 2 594 0.00 2.40 

A4 1 817 0.00 2.44 2 673 0.00 3.81 

A5 1 744 0.00 3.15 2 593 0.00 2.36 

A6 1 487 0.00 1.94 2 388 0.00 2.43 

A7 1 586 0.03 2.51 2 507 0.00 2.48 

B1 1 1271 0.00 50.03 2 1149 0.00 68.24 

B2 1 1274 0.05 51.01 2 942 0.00 54.80 

B3 1 1261 0.00 94.36 2 1070 0.00 52.63 

B4 1 1131 0.00 42.91 2 934 0.00 55.70 

B5 1 1151 0.00 56.03 2 941 0.00 60.28 

B6 1 1413 0.16 64.40 2 1104 0.00 57.36 

B7 1 1285 0.00 39.99 2 1111 0.00 144.98 

C1 1 1696 0.00 751.00 2 1608 0.00 822.16 

C2 1 2058 0.00 643.87 2 1774 0.00 666.43 

C3 1 1954 0.00 1406.80 2 1563 0.00 596.02 

C4 1 2030 0.00 590.64 2 1913 0.00 1083.88 

C5 1 1917 0.00 1225.75 2 1546 0.00 961.67 

C6 1 1772 0.00 906.39 2 1659 0.00 784.86 

C7 1 1849 0.00 644.04 2 1623 0.00 652.07 
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Figure 4. CPLEX and GA solutions comparison for instances of the set STW with deterministic parameters 

 

Figure 5.  CPLEX and GA solutions comparison for instances of the set MTW with deterministic parameters 

 

Figure 6. Comparison of the best-found solutions for the deterministic model according to time windows 
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Figure 7. Comparison of the best-found solutions for the SPR model according to time windows 

 

Figure 8. Comparison of the best-found solutions with single time window according to type of model 

 

Figure 9. Comparison of the best-found solutions with multiple time windows according to type of model 

 
Table 8. Solution of instance A5 with single time window and deterministic parameters 

Patients 5(6) 2(6) 9(5) 8(5) 10(2) 6(6) 3(5) 1(2) 7(5) 4(5) 

Caregivers 1 3 3 1 2 3 1 2 1 3 

Table 9. Solution of instance A5 with single time window and stochastic parameters 

Patients 2(6) 3(5) 6(6) 10(2) 7(5) 1(2) 9(5) 5(6) 4(5) 8(5) 

Caregivers 1 3 3 2 3 2 1 1 3 1 
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Table 10. Caregiver 1 starting and completion times for assigned patients considering the solution found by the deterministic model 

for instances A5 with single time window 

Patients 5(6) 8(5) 3(5) 7(5) 

Time windows [ai1, bi1] 200 320 275 395 222 342 425 545 

Start and completion times [Si1, Ci1] 200 220 277 294 318 338 425 444 

bi1 − Ci1  100  101  4  101 

 
 

Table 11. Caregiver 1 starting and completion times for assigned patients considering the solution found by the SPR model for 

instances A5 with single time window. 

Patients 2(6) 9(5) 5(6) 8(5) 

Time windows [ai1, bi1] 130 250 203 323 200 320 275 395 

Start and completion times [Si1, Ci1] 130 146 230 260 288 308 365 382 

bi1 − Ci1  104  63  12  13 

 
6. Conclusion 

Home health care companies seek to respect patients’ time windows, which it becomes challenging when stochastic travel 

or/and service times are considered. Two possible recourses could be used in this case, either accepting providing services 

with a tardiness and time windows must be soft/flexible, or skipping a visit when a route becomes infeasible. In this study, 

the second recourse is adopted to deal stochastic service and travel times with multiple hard/fixed time windows. This 

multiplicity will increase the chance to minimize unvisited patients and give the decision maker more choices to schedule 

visits. A two-stage stochastic programming model with recourse is proposed to minimize the transportation cost as well 

as the average number of unvisited patients. The first stage is to find patients’ visiting order and caregivers’ assignment 

with respect to patients’ availability periods, skill requirements and the maximum number of patients not to exceed per 

caregiver. The second stage is to introduce the recourse defined as skipping patients when routes become infeasible 

according to their availability periods. The deterministic model is solved using CPLEX solver and the GA.  Monte Carlo 

simulation is embedded into the GA to solve the stochastic model. The tests prove the high performance of the GA to 

deal with large instances in a little amount of time, GA can reach optimal solutions for some instances and yield near-

optimal solutions for others. The SPR model shows high CPU running times while solving instances due the simulation 

that is carried out for each new solution to compute the average number of unvisited patients. Using multiple time 

windows helped to more optimize the transportation cost since more possibilities arise to schedule visits. Future works 

could be addressed to extend the SPR model to deal with multiple services since patients need several care activities per 

day. In addition, it would be interesting to compare the performance of the GA based heuristic with some other heuristics. 

Data Availability 

Datasets related to this article can be found at http://dx.doi.org/10.17632/9j52mtm737.1, an open-source online data 

repository hosted at Mendeley Data. 
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