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Abstract 

The design and establishment of a logistics network is a strategic decision that lasts several years to work and the 

parameters of customer demand and return may be changed during this time. Therefore, an efficient logistics network 

should be designed in a way that can respond to uncertainties. The applications of such a network can be found in different 

industries like the battery industry. This study aims to determine the number of products sent among the centers at each 

time so that the total cost of reverse logistics and delay time is minimized. To address the uncertainty in the reverse 

logistics network (RLN), a fuzzy programming method is utilized. To tackle the complexity of the problem, the cuckoo 

optimization algorithm (COA) and genetic algorithm (GA) were developed. To compare these two optimization 

algorithms and find the superiority of them, a series of problem instances were generated. The obtained results 

demonstrated a satisfactory efficacy for both meta-heuristic algorithms. It was also revealed that the sum of values sent 

to the main manufacturer is equal to the values obtained from the exact solution method.  

. 

 

Keywords: Reverse logistics; Time and cost optimization; Fuzzy theory; Cuckoo optimization algorithm; Genetic 

algorithm. 

1. Introduction  

Profound changes and developments in the business world and new conditions of production and trade in the current era 

have provided the ground for the emergence of new attitudes and paradigms that should be regarded by those involved in 

the field of production and trade. In this regard, a new approach and attitude towards the subject of logistics have emerged 

under the name of reverse logistics. Logistics covers the physical part of the supply chain and mainly contains all activities 

concerning the flow of materials and goods from the stage of supply of raw materials to the production of the final product, 

including transportation, warehousing, etc (Dey and Giri, 2020). Reverse logistics system is one of the most significant 

and vital aspects of any business and includes the supply, production, distribution of products/services and support for 

any type of them. In today's business era, where the product life cycle is getting shorter and shorter, product return policies 

are settled by fast response times and customer service, with more emphasis on return management, re-shaping and re-

stocking of all goods. vOne of the new trends in logistics management is recycling or reusing products. In this method, 

products that reach the end of their useful life are repurchased from the end consumer, and after disassembly, the reusable 

parts of the product are returned to the life cycle in the form of discarded products. Reverse logistics management is a 

small but important area of the modern suppliers' chain and allows the companies' managers to return the returned goods 

and raw materials to suppliers and adopt policies, systems, and methods reducing the total cost of the supply chain system 

to maintain continuity and coordination of production and distribution activities and to prevent from the cessation of 

operations due to lack of inventory and usability of returned items and goods (McKinnon, Alan et al. 2010).  
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Reverse logistics is especially popular due to its several competitive advantages. Environmental laws and economic 

interests, consumer awareness, and social responsibilities towards the environment are the pivotal drivers of this area 

(Keskin BB and Uster H. 2007; Bagheri-neghad Z., Kazemzadeh R. et al. 2013). In this regard, the design of a logistics 

network as a part of supply chain planning is of particular importance. Therefore, the proper design of this network can 

play a positive role in supply chain goals, especially cost reduction, responsiveness level, and efficiency (Chopra S. 2003). 

Applying the problems of reverse logistics network (RLN) design varies from linear models to complex non-linear models 

and from product delivery cost minimization to complex multi-objective optimization problems (Altiparmak, Gen et al. 

2006). Since important issues in the real world involve more than one goal, regarding multiple goals at the same time is 

a good choice for most decision-makers. Moreover, the existence of uncertainty in the parameters of the problem is among 

the items that will be considered in this research. 

Given the points mentioned about the importance of reverse logistics and its role in the supply chain, this paper attempts 

to design a logistics network that considers different objective functions in the reverse logistics problem. Accordingly, 

two objective functions of time and cost of operation are taken into account. An efficient logistics network must be 

designed in a way that meets uncertainties. Therefore, in this research, a fuzzy bi-objective programming approach is 

employed to account for the uncertain parameters. 

The rest of the study is arranged as follows. A literature review of the logistics network is given in Section 2. The 

optimization problem of fuzzy time and cost in RLN and its parameters, objective function, and constraints are described 

in Section 3. The fuzzy bi-objective programming model is developed in Section 4. Our proposed COA and GA 

algorithms are discussed in Section 5. Section 6 reports the simulation results related to solving two meta-heuristic 

algorithms and their comparison. Section 7 ends with conclusions and some suggestions for future studies. 

2. Literature review 

The main target of any supply chain is to meet customer needs with the highest efficiency and the lowest cost. Structurally, 

the supply chain includes a network of retailers, wholesalers, distributors, manufacturers and suppliers; that each of them 

is the supplier of its downstream agent and the retailer meets the needs of the end customers. In this regard, the reverse 

logistics system includes the process of returned goods and how to properly deal with these items and all operations 

concerning the reuse of goods and materials to increase the productivity, profitability and efficiency of the logistics 

organization.  

In recent years, most of the research works have concentrated on modeling the reverse logistics costs. Pishvaei et al. 

(2010) suggested a bi-objective mixed-integer nonlinear programming (MINLP) model for configuring an integrated 

direct and RLN. In order to treat the offered model, they developed a multi-objective memetic algorithm with a dynamic 

local search (LS) operator to determine a set of negligible solutions. In order to tackle complex optimization problems, 

various meta-heuristic methods have been proposed. One of the newest methods is COA which has been used in several 

studies (Akbari and Rashidi 2016; Amiri and Mahmoudi 2016; Wood 2016). Other useful meta-heuristic algorithms can 

be found in the studies performed by Saeedi Mehrabad et al. (2017), Goli et al. (2018, 2020a, 2020b). 

Ulko and Bookbinderm (2012) studied the effects of different cost scenarios on the design of logistics networks. They 

obtained multiple optimal solutions for the cost and time of delivery to maximize the suppliers' profit. Dat et al. (2012) 

proposed a multi-level RLN design model consisting of collection sites, treatment sites (equipment recycling and repair), 

disassembly sites and final sites (disposal facilities and primary and secondary markets). They implemented their 

proposed methodology on the recycling of end-of-life electrical and electronic products. Bilgen and Çelebi (2013) 

presented an integrated production scheduling model and distribution planning in a dairy supply chain (considering the 

reverse logistics system) with the aim of maximizing the profitability of the entire network. For this purpose, an MILP 

model was suggested to formulate the problem. Moreover, they designed a simulation approach to solve the problem. In 

other studies, Niknejad and Petrovic (2014) presented a model of integrated RLN with different product recycling routes. 

To this end, a fuzzy MILP model was suggested to deal with the uncertain nature of the parameters. Govindan et al. 

(2015) conducted a comprehensive review of closed-loop supply chain and reverse logistics to review 382 articles from 

2007 to 2013. Karimi et al. (2015) studied the problem of multi-period multi-product closed-loop supply chain design for 

dairy products in conditions of uncertainty. In this study, the forward supply chain included three levels of suppliers, 

manufacturing plants and distribution centers, and the reverse supply chain included collection, recycling and production 

centers. The aim of the research was to minimize the total cost of the chain. Since their problem was investigated in 

uncertain conditions, they applied the chance-constrained programming technique to model the problem. Dondo and 

Méndez (2016) developed an operational planning model for forward and reverse logistics activities in a multi-level 

logistics network. In their research, the issue of distribution and recovery was thoroughly investigated. A decomposition-

based heuristic approach was developed in order to solve the proposed problem by achieving near-optimal solutions. 

Ardalan et al. (2016) presented a supply chain network with multi-state demand. In their study, an MILP model was 

offered to formulate the problem. The objectives of this study were to maximize the profits of the entire supply chain 
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network. They employed a Lagrangian relaxation technique to solve the problem and validate the model. Gao et al. (2016) 

examined pricing decisions in a closed-loop supply chain network (CLSCN) design problem by considering the game 

theory approach. In this regard, strategies such as reverse logistics service, advertising related to recycling policies and 

workers' training program were considered and analyzed. Zahiri and Pishvaee (2017) designed a blood supply chain 

network under an uncertain environment. For this purpose, a bi-objective MILP optimization model was suggested in 

which the total cost is minimized and the demand coverage is maximized. Due to the uncertainty of the data, two robust 

probabilistic programming models were developed based on the credibility criterion. The results of the case study 

demonstrated the appropriate performance of the proposed models. Keshavarz Ghorabaee et al. (2017) offered a multi-

objective multi-product multi-product reverse supply chain model under uncertainty. The objectives of this study were to 

minimize the total cost and maximize the greenness points of the purchased raw materials. To solve the proposed model, 

they applied several multi-objective decision-making (MODM) techniques. 

Das & Roy (2019) studied the effect of carbon emission in a multi-objective transportation-location problem. They 

developed the neutrosophic compromise programming to get the Pareto solutions. Pervin et al. (2020) developed an 

integrated vendor-buyer model with quadratic demand under inspection to minimize the total cost. Ghosh & Roy (2021) 

developed a fuzzy multi-objective product blending transportation problem considering truck load constraints. Moreover, 

Ghosh et al. (2021) developed a fuzzy multi-objective for the fixed-charge transportation problem. Das et al. (2021) 

developed a multi-objective transportation-allocation problem considering carbon emission in inventory management. 

The fuzzy programming is applied to get the Pareto solutions. Paul et al. (2021) formulate and solve an economic order 

quantity model with default risk. They studied the demand effect and risk on optimal credit period for a deteriorating 

inventory model. Midya et al. (2021) developed a fuzzy multi-stage multi-objective fixed-charge solid transportation 

problem in a green supply chain. A min-max goal programming was used to obtain Pareto solutions. 

In addition, other similar studies are presented as follows: modeling of reverse logistics activities at the end of life of the 

vehicles (Demirel, Demirel et al. 2016), reverse logistics design for the wastes of the electronic equipment (Kilic, Cebeci 

et al. 2015), outsourcing of reverse logistics activities (Agrawal, Singh et al. 2016), forward and backward logistics design 

for CLSCN (Pedram, Bin Yusoff et al. 2017) and integrated its structure for new products (Gaur, Amini et al. 2017). A 

scenario-based multi-objective MILP model was offered by Gao and Cao (2020) to design a sustainable RLSCN under 

uncertainty. They took into account the facility reconstruction within the proposed network and tried to minimize the total 

expected emission cost, maximize the total profit and maximize the total expected number of job opportunities. Kargar et 

al. (2020a) conducted a study to design an RLN for medical waste management during the COVID-19 outbreak. The 

objectives were to minimize the total cost and total risk of `operations at the same time. They employed the revised Multi-

Choice Goal Programming (MCGP) technique to tackle the problem. In another study, Kargar et al. (2020b) proposed a 

fuzzy Goal Programming (GP) method to deal with a tri-objective MILP model for reverse supply chains of medical 

waste. The aims were to minimize the total cost, total stored waste and maximize the scores related to treatment 

technologies. 

Regarding the mentioned contents, this study provides a bi-objective optimization model of time and cost. The 

uncertainties considered in this study are implemented using fuzzy theory. For this purpose, a credibility-based approach 

is utilized for the fuzzification process. Moreover, a COA is developed to solve a large-scale problem that has not been 

done in this field, so far. According to the research literature review, this study provides a mathematical model to optimize 

two objectives of time and cost using fuzzy parameters in an RLN at three levels of return centers, processing and 

manufacturer in one product. The study considers the retrieved end-of-life product and the amount of the manufacturer 

demand and the amount of end-of-life products collected in each period is definite from the beginning. Moreover, the 

COA algorithm is used to solve a large-scale problem that has not been done in this field, so far. 
 

3. Problem definition 

Reverse logistics is among the topics addressed in the field of RLN and CLSCN management of various industries. It 

seems that no serious attention has been paid to it in different industries of the country, so far. Over the recent years, many 

factories and industries in developed countries have started to study this field and have accounted for reverse logistics as 

one of the important processes in their supply chain. In a supply chain environment, when reverse logistics design is 

raised, time and cost in the amount of products retrieved by the customer are key factors. Also, inventory control and 

distribution planning as basic support activities influence the total cost of the supply chain and customer service level 

(Farahani and Elahipanah 2008). In this study, an RLN with two objectives of cost and time is designed in form of fuzzy. 

In this network, there are a customer area, several recovery centers, several processing centers and a manufacturer that 

delivers the retrieved products to the customers through reverse logistics. Figure 1 represents the proposed reverse logistic 

network. 

The goal of this study is to specify the amount of products to be sent between centers in each time period so that the total 

cost and time of the reverse logistics network are minimized. The first objective function is to minimize the cost of the 
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whole reverse logistics network, which includes the fixed cost to open processing centers, the cost of inter-center 

transportation, and the holding cost of inventory. The second objective function is time minimization, which is considered 

as the amount of delay in sending customer orders. In reverse logistics, meeting customer delivery time is much more 

difficult than in forward logistics. The reason for this is the uncertain rate of recovery of end-of-life products. To resolve 

this concern, we can minimize the waiting time by taking into account the amount of shipping delay as a function of the 

second objective. 

As mentioned, a fuzzy approach has been used to meet the uncertainty in the RLN. Thus, all input parameters of the 

problem, expressed in the following, are considered in form of fuzzy numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Proposed reverse logistic network. 

 

 

3.1. Research assumptions 
The assumptions of the fuzzy bi-objective mathematical programming model of time and cost in the reverse logistics 

system are stated below.  

i. RLN is designed to include three levels of return centers, processing and manufacturer.  

ii. In order to consider the uncertainty, the input parameters of the problem are in the form of fuzzy numbers. 

iii. Only one type of product is considered. 

iv. The amount of manufacturer demand and the amount of end-of-life products collected in each period is determined from the 

beginning. 

v. There is a fixed cost for reopening the processing centers. 

vi. The maximum capacity for both return and processing centers is definite. 

vii. The inventory maintenance cost of all processing centers is the same. 

 

3.2. Model sets 

I  : Set of return centers M : Manufacturer 

J : Set of processing centers 

 

T : Set of time horizon 

3.3. Model  parameters and decision variables 

jb    : Processing center capacity j 

jMc  : Shipping cost from processing center j to manufacturer M 

H

jc  : Inventory maintenance cost in processing center j per period 

ijc  : Shipping cost from return center i to processing center j 

op

jc  : Fixed cost of reopening the processing center j 

ijd  : Delivery time from return center i to processing center j 
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jMd  : Delivery time from processing center j to manufacturer M 

( )Md t  : Manufacturer demand M in period t 

jp
: Reusable product processing time in the processing center j 

Et : Expected shipping time of the customer 

( )ir t  : Amount of products with the final life retrieved in the return center i in period t 

( )ijx t
:
 
Amount of products sent from the return center i to the processing center j in period t 

( )jMx t  
:
 
Amount of products sent from processing center j to manufacturer M in period t 

( )H

jy t : Amount of inventory products sent to the processing center j in period t 

jz : If processing center j is used, it is 1, otherwise it is 0. 

3.4. Mathematical model of the problem 

The first objective function seeks to minimize the total cost of RLN comprising the fixed cost of reopening the processing 

centers, the cost of inter-center transportation, and the cost of inventory maintenance. The second objective function is 

time minimization, which is considered as the amount of delay in delivering customer orders. Due to the uncertain 

retrieval rate of end-of-life products, timely delivery of customer orders in reverse logistics is much more difficult than 

direct logistics. To solve this problem, the waiting time can be minimized by considering the amount of delivery delay as 

the second objective function. 

(1) 

1
0 1 1 1 1 1

[ ( ) ( ) ( )]
T J I J J J

op H H
j j ij ij jM jM j j

t j i j j j

Min f c z c x t c x t c y t
     

         

(2) 

 2
0 1 1 1

[ ( ) ( ) ( )]
T I J J

E Mij ij jM j jM
t i j j

Min f d x t t d t d p x t
   

       

(3) 

1

( ) ( ) ,
J

ij i
j

x t r t i t


   

(4) 

1

( ) ( 1) ,
I

H
ij j j j

i

x t y t b z j t


     

(5) 

1

( ) ( )
J

MjM
j

x t d t t


   

(6) 

1

( 1) ( ) ( ) ( ) ,
I

H H
j ij jM j

i

y t x t x t y t j t


      

(7) ( ), ( ), ( ) 0 , ,H
ij jM j

x t x t y t i j t   

(8)  0,1
j

z j   

Constraint (3) expresses that the amount of product sent from the return center i to the processing center j in period t is at 

most equal to the amount of retrieved end-of-life product in the return center i in period t. Constraints (4) and (5) indicate 

the capacity of the processing center and manufacturer, respectively. Inventory control in the processing center in each 

period is reviewed with constraint (6). Constraint (7) indicates that the decision variables ( ),
ij

x t ( )
jM

x t  and 

( )H
j

y t  are not negative and constraint (8) ensures that the variable 
j

z is 0 or 1. 

4. Fuzzy bi-objective modeling 

This study employs fuzzy logic for modeling and problem-solving. The fuzzy set theory is used more than other 

techniques due to the advantages stated in a variety of research studies (Goli et al. 2020a; Tirkolaee et al., 2021). Owing 

to the lack of need for sufficient and accurate information, the fuzzy programming technique renders a more effective 
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model than other approaches, such as the probabilistic method requiring sufficient knowledge for the distribution of 

uncertain parameters. In fact, in probabilistic approaches, specifying the distribution of problem parameters and 

determining its value is necessary that is very problematic in comparison with the fuzzy approach (Balin 2011). In 

situations where the parameters are uncertain, the development of a fuzzy programming method results in a truly flexible 

system (Behnamian and Ghomi 2014). Moreover, the computational complexity of fuzzy modeling is much less than 

other methods (Slowinski and Hapke 2000). The fuzzy set A from the reference X is a set of ordered pairs and is written 

as Eq. (9) (Zadeh 1965). 

(9) 

   , |
A

A x x x X   

where  
A

x is obtained from Eq. (10). 

                (10)   : 0,1
A

x X     

Considering the above-mentioned equation, it can be said that the membership function maps each member of the X set 

into the interval [0, 1]. The most common fuzzy numbers used in the research and application are trapezoidal and 

triangular fuzzy numbers. In this study, trapezoidal numbers are used for the fuzzification of the model. Trapezoidal fuzzy 

numbers are in form of quaternary  , , ,a b c d  ; it is illustrated in Figure 2 and its membership function is as Eq. 

(11): 

 

Figure 2. Trapezoidal fuzzy number. 

 

otherwise.

,

1 ,

,

0

x a
a x b

b a

b x c
x

d x
c x d

d c














 



 



 



 

                                                                                 (11) 

According to the criteria of possibility and obligation, the validity criterion is presented in form of Eq. (12) (MEHLAWAT 

and GUPTA 2014; Zhang, Huang et al. 2015). 

     (12) 1
( ) { ( ) ( )}

2
Cr A Pos A Nec A 

 
According to the above-mentioned items and definition of Cr, the validity function of the trapezoidal fuzzy number will 

be as Eq. (13): 

            
(13) 

 

0

2( )

1 1{ } { } { }
2 2

1
(1 )

2

1

x a

x a
a x b

b a

Cr r pos r Nec r b x c

x c
c x d

d c

x d

  
















 



       


  





 

 

µ 

ξ 
 

1 

𝑎             𝑏                  𝑐              𝑑 
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According to the definitions, the optimistic value of -𝛼 indicated by the symbol  sup  is calculated for 
1

2
   as the 

following: 

(14)     sup sup | (2 1) (2 2 )x Cr x a b             

Similarly, the pessimistic value of -𝛼 indicated by the symbol  inf  is calculated for 
1

2
  and is equal to: 

(15)     inf inf | (2 2 ) (2 1)x Cr x c d             

 According to Eq. (16), the average of four fuzzy numbers is used for de-fuzzification of parameters considered in the 

form of fuzzy objective function. Depending on the type of constraint, Eqs. (17) and (18) are employed for de-fuzzification 

of parameters being in the problem constraints (Liu and Liu 2002; Pishvaee, Torabi et al. 2012; Lu, Du et al. 2016). 

(16)  
4

a b c d


  
  

(17)   (2 2 ) (2 1)Cr x x c d         
 

(18)   (2 1) (2 2 )Cr x x a b           

This section develops a fuzzy bi-objective mathematical model based on the stated concepts, the existing uncertainties in 

reverse logistics problem, fuzzy set theory and validity approach. To develop a more realistic model, as presented in the 

problem assumptions, all input parameters of the problem are considered as uncertain and of the trapezoidal fuzzy number 

type. Thus, the proposed fuzzy bi-objective mathematical model will be as follows: 

(19) 

1
0 1 1 1 1 1

[ ( ) ( ) ( )]
T J I J J J

op H H
j j ij ij jM jM j j

t j i j j j

Min f c z c x t c x t c y t
     

         

(20) 

 2
0 1 1 1

[ ( ) ( ) ( )]
T I J J

E Mij ij jM j jM
t i j j

Min f d x t t d t d p x t
   

       

(21) 

1

( ) ( ) ,
J

ij i
j

x t r t i t


   

(22) 

1

( ) ( 1) ,
I

H
ij j j j

i

x t y t b z j t


     

(23) 

1

( ) ( )
J

MjM
j

x t d t t


   

(24) 

1

( 1) ( ) ( ) ( ) ,
I

H H
j ij jM j

i

y t x t x t y t j t


      

(25) ( ), ( ), ( ) 0 , ,H
ij jM j

x t x t y t i j t   

(26)  0,1
j

z j   
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Considering the de-fuzzification method presented in the previous section, depending on how to use a parameter, Eqs. 

(16) to (18) are employed and a fuzzy bi-objective mathematical model of time and cost in reverse logistics system is 

rewritten as follows: 

(27) 

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1 1
1 0

1 2 3 4
( )

1 4

[
4

( )]
4

( )
4

op op op opJ
j j j j

j

j

H H H HJ
j j j j H

j

j

I J
ij ij ij ij

ij
i j

T
Min f

t

c c c cJ jM jM jM jM
x t

jMj

c c c c
z

c c c c
y t

c c c c
x t





 

 


  
 



    
     

   

     
     

  

  





 

(28) 
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 Eqs. (24)-(26). 
There are several methods to solve the bi-objective mathematical model. In this study, a total weighted objective functions 

approach is used to solve the proposed model. Therefore, two single-objective metaheuristic algorithms are developed. 

In the following, two meta-heuristic algorithms are designed to treat the offered model and their results are studied and 

compared with each other for a variety of produced problem instances. 

 

5. Proposed meta-heuristic algorithms 

Since most logistics network design problems are NP-hard (Altiparmak, Gen et al. 2006; Lee and Dong 2009b; Pishvaee 

M. S. and Torabi S. A. 2010), precise methods have not been able to solve such large-scale problems; Therefore, heuristic 

and meta-heuristic methods are designed to tackle them. In this section, each of the algorithms and how they work are 

briefly presented. 

5.1.  Cuckoo optimization algorithm 

Here, a COA is developed to optimize time and cost in the fuzzy multi-objective model. Figure 3 illustrates the flowchart 

of COA (Rajabioun 2011). Naturally, each cuckoo lays between 5 to 20 eggs. Hence, these numbers are used as the upper 

and lower bounds of egg assignment to each cuckoo in various iterations. The other habit of each cuckoo is that it lays its 

eggs in a certain range called maximum Egg Laying Radius (ELR) (Akbari and Rashidi 2016). According to Eq. (32), 

ELR is determined based on the total number of eggs, the number of current cuckoo eggs, and the upper and lower bounds 

of the problem variables. 

(32)

 

 
'

var var
high low

Number of current cuckoo s eggs
ELR

Total number of eggs
     

Where  represents a parameter based on which the maximum ELR value is set. Also, varhi and varlow are the upper 

and the lower limits of the variable, respectively. After egg laying, P% of all eggs (usually 10%) having less profit function 

is annihilated. The rest of the eggs are fed and grown in the host nests. After forming the cuckoo groups, the group having 

the highest average profit (optimality) is chosen as the target group and other groups migrate toward it. Each cuckoo 

travels only λ% of the entire path to the current ideal goal and it also has a radian deviation φ. In order to design an 

efficient COA in this research, λ, a random number between 0 and 1 and φ, a number between 
6

  and -
6

  are 

generated, respectively. The upper and lower bounds of the variable are assumed to be 0 and 1 in ELR calculation, 

respectively. The flowchart of COA is illustrated in Figure 3. 
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5.2. Genetic algorithm 

Genetic actions mimic the process of inherited gene transfer to generate new offspring in each generation. An important 

part of the genetic algorithm (GA) is the creation of new chromosomes called offspring through some old chromosomes 

called parents. This important process is carried out by genetic actions. In general, these actions are performed by two 

operators named crossover and mutation. Obviously, to better identify chromosomes, there must be an indicator to 

evaluate the chromosomes. In the case of function optimization problems, this indicator usually takes a value the same as 

the objective function value of the problem, that is, each chromosome is converted into the corresponding solution and 

placed in the objective function. If each chromosome has a better objective function, the solution will be more appropriate. 

However, for some more complex problems, it is necessary to represent the fitness function. To reproduce a new 

population, a method should be utilized to select the best solution as far as possible. Two widely applicable methods are 

the random selection by roulette wheel and the competitive selection method. Figure 4 indicates the process of problem-

solving by GA by a flowchart. 

 

 
Figure 3. Proposed COA flowchart 
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Figure 4. Proposed GA flowchart. 

5.3. Algorithms parameters tuning 

In order to tune algorithm parameters, the trial-and-error method is applied. Tables 1 and 2 show the set of initial values 

of parameters related to COA and GA, respectively.  

 
Table 1. COA parameters value 

Parameter Notation Value 

Initial number of Cuckoos initialCuckoo 5 10 15 

Max number of Cuckoos Nmaxcuckoo 50 80 100 

Minimum number of eggs Neggmin 1 2 5 

Maximum number of eggs Neggmax 2 5 10 

Number of iteration maxit 50 100 150 

 

 

Table 2. GA parameters value 
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Parameter Notation Value 

Initial population npop 50 100 150 

Number of iteration Max_iteration 100 150 200 

Crossover rate Cross_rate 0.6 0.7 0.8 

Mutation rate Mut_rate 0.3 0.2 0.1 

 

The best value of each parameter is shown in Tables 3 and 4, respectively. 

Table 3. Best value for COA parameters 

Parameter Notation Best Value 

Initial number of Cuckoos initialCuckoo 10 

Max number of Cuckoos Nmaxcuckoo 100 

Minimum number of eggs Neggmin 1 

Maximum number of eggs Neggmax 10 

Number of iteration maxit 150 

 
Table 4. Best value for GA parameters 

Parameter Notation Best Value 

Initial population npop 100 

Number of iteration Max_iteration 200 

Crossover rate Cross_rate 0.8 

Mutation rate Mut_rate 0.3 

 

5.4. Solution representation 

Each solution was considered as a chromosome and each chromosome consisted of a certain number of genes. The number 

of genes was found based on the problem structure. A chromosome generated in this study contains two stages. In the 

first stage, the number of genes is calculated by the number of retuning and processing centers while the second one is 

including the number of processing centers and a manufacturer as shown in Figure 5. 

 

 

           

 
Figure 5. Chromosome illustration 

5.5. Crossover and mutation operators 

In this study, a one-cut point crossover is applied to create offspring chromosomes from two randomly selected parents. 

Two new offspring are obtained using the following Equations. 

1 (1 )p b pfn b psn    (33) 

2 (1 )p b pfn b psn    (34) 

where b is a random array with size of parents, and pfn and psn are the dimensions of the first and second parent, 

respectively. 

In order to implement mutation operators, one center is randomly selected, and then one of its chromosomes is changed 

randomly with another. It should be mentioned that after applying these two operators, the feasibility of generated solution 

will be checked. 

5.6. The proposed COA validation 

To test the efficiency of the suggested algorithm, a small-scale sample problem is generated and solved by both the exact 

and COA approach. 4 returning centers, 3 processing centers, and a manufacturer are considered. Parameters value is 

reported in Table 5. 
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Table 5. Problem parameters value 

Parameter Value 

Demand ( ( )Md t ) 
U ~ [30 50] 

Capacity ( jb ) 
U ~ [80 105] 

Opening cost of processing center  (
op

jc ) 
U ~ [10 22] 

Processing time ( jp ) 
U ~ [9 19] 

Inventory cost (
H

jc ) 
U ~ [12 25] 

Shipping cost ( ijc ) jMc  و
U ~ [10 25] 

Delivery time ( ijd ) jMd  و
U ~ [7 19] 

Amount of product with the final life retrieved ( ( )ir t ) 
U ~ [25 55] 

 

The sample problem is solved exactly by CPLEX solver in GAMS software. The objective function is calculated by the 

weighted sum of two objectives equal to 6480. Then, this problem is also solved by COA in MATLAB software that is 

reached to 6496. In both methods, all 3 processing centers are applied. Table 6 represents the objective function value 

and computational time of the two approaches. 

Table 6. Comparison of two proposed methods. 

Method GAMS COA 

Objective function value 6480 6497 

Computational time (s) 1 20 

  

The amount of product shipping to the processing centers and manufacturer is reported in Tables 7 and 8, respectively. 

Table 7. The amount of product transported to the processing center 

Method GAMS COA 

Processing center Period 

1 2 1 2 

1 - 46 85 57.5 

2 67 91 50.5 90.5 

3 32 55 40 80 

 
Table 8. The amount of product transported to the manufacture 

Method GAMS COA 

Processing center Period 

1 2 1 2 

1 - - 15.5 - 

2 - - 15.5 - 

3 31 36 - 36 

 

Results show that the amounts of products shipped from returning center to the processing center and transported from 

the processing center to the manufacturer are the same in both methods.  

6. Evaluation of the developed algorithms 

Here, the performance of the two algorithms is assessed and compared. To evaluate the quality and dispersion of meta-

heuristic algorithms, the criteria of relative percentage deviation (RPD) and computational time are employed. To make 

these comparisons, 18 problem instances with different values obtained from the number of return centers, number of 

processing centers and time horizon, production and the best results arising from solving the problems by algorithms are 

given in Table 9. According to the table, the values of input data are fuzzy; First, 4 numbers are randomly generated using 

a uniform distribution. Then they are arranged in ascending order and are used as input data. The proposed algorithms are 

implemented in MATLAB R2016a software. 

 

 



Razmjooei, Mahdavi and Paydar 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.9, NO.3 372 

 

Table 9. Values of input data for problem instances. 

Parameters Values 

jb  
U ~ [3 10] 

( )Md t  
U ~ [30 50] 

( )ir t  
U ~ [20 50] 

ijc  
U ~ [10 25] 

jMc  
U ~ [10 25] 

op

jc  
U ~ [10 25] 

H

jc  
U ~ [10 25] 

ijd  
U ~ [5 20] 

jMd  
U ~ [10 25] 

jp  
U ~ [10 20] 

Et  
10 

 

Each of the controlling parameters considered for the algorithms has a significant effect on the solution quality and 

computational time. For example, increasing the population in GA may increase the computational load of the algorithm 

and its inefficiency. However, this increase in the number of countries enhances the possibility of finding an optimal 

global solution. Considering the several performed experiments and the results arising from them, the effective range for 

each controlling parameter of algorithms is obtained. To set the algorithm parameters, each algorithm was run several 

times, and finally, the best combination of algorithm parameters was obtained shown in Table 10. 

Table 10. Parameters of GA and COA. 

GA COA 

Parameter Value Parameter Value 

𝑚𝑎𝑥𝑖𝑡 200 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑢𝑐𝑘𝑜𝑜 10 

𝑛𝑝𝑜𝑝 100 𝑁𝑀𝑎𝑥𝐶𝑢𝑐𝑘𝑜𝑜 100 

𝑃𝑐 0.8 𝑚𝑎𝑥𝐺𝑒𝑛 50 

𝑃𝑚 0.3 𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2 

 

6.1.  RPD criterion 

RPD criterion shows the deviation rate of algorithms to the best possible value of the objective function. Therefore, if this 

value is lower, the algorithm shows better performance. It is calculated as follows: 

𝑅𝑃𝐷 =
𝑠𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑠𝑜𝑙

𝐵𝑒𝑠𝑡𝑠𝑜𝑙
∗ 100 

(35) 

Where sol is the solution obtained from the execution of the algorithm and Bestsol is the best solution obtained from the 

algorithms. The comparative results are given in Table 11. Moreover, the run time comparison is illustrated in Figure 6. 

Table 11 reports the implementation results of algorithms for hypothetical problems. According to Table 11, it can be 

inferred that although the COA performs better in all proposed problems, it takes more computational time to reach the 

solution in all cases (see Figure 6). Furthermore, when the dimension of the problem increases, the computational time to 

reach the near-optimal solution is increased exponentially. Furthermore, a sensitivity analysis is done on the confidence 

level ( ) to evaluate the uncertainty effect on the objective function. As shown in Figure 7, the higher confidence levels, 

the less fluctuation in cost and time, and subsequently, the total cost will decline. 
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Table 11. Computational results for the proposed problem instances. 

No. J I T RPD Time 

GA COA GA COA 

1 4 3 5 0.63 0 26.61 34.20 

2 5 4 5 0.32 0 37.32 48.67 

3 7 5 6 0.40 0 68.80 89.48 

4 8 5 6 0.05 0 78.33 102.77 

5 10 7 8 0.18 0 161.69 205.81 

6 12 8 8 0.07 0 213.30 273.38 

7 13 8 9 0.22 0 262.11 331.63 

8 14 10 10 0.05 0 385.44 473.89 

9 15 12 10 0.15 0 477.54 597.45 

10 16 12 12 0.03 0 608.54 726.32 

11 18 12 12 0.12 0 686.11 844.70 

12 20 12 12 0.05 0 757.06 953.91 

13 21 13 12 0.17 0 830.63 1035.21 

14 22 15 15 0.14 0 1352.67 1624.86 

15 24 17 15 0.09 0 1562.65 1925.78 

16 26 19 17 0.12 0 2059.28 2639.20 

17 28 21 20 0.03 0 2864.03 3978.73 

18 30 23 22 0.02 0 4335.88 4631.85 

 

 
Figure 6. Computational time comparison of the algorithms. 

 
 Figure 7. Confidence level effect on the total cost. 
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7. Discussion, Conclusion and Outlook 

This work proposed a fuzzy bi-objective optimization model in a reverse logistics system that can be regarded in real-life 

industries like the battery supply chain. The aim was to find the amount of products sent among centers in each time 

period so that the total cost of reverse logistics and total delay time are minimized. A fuzzy bi-objective programming 

approach was employed to meet the uncertainty in the RLN. Finally, a mathematical programming model and two meta-

heuristic algorithms were developed to tackle the problem. To solve the large-scale problem, the proposed COA and GA 

were implemented in MATLAB software. Then, a number of sample problems in different dimensions according to the 

number of return centers, the number of processing centers and time horizon were generated and their results were 

analyzed and compared to each other. The computational results revealed that COA performed better than GA in finding 

a better solution but it takes a longer time. 

In the area of reverse supply chain design, there are other effective components, such as pollutants that can be studied to 

protect the environment. Other levels of the supply chain, such as recovery and repair, disposal and reuse will also be 

added to the problem. In addition, other new meta-heuristic methods can be used, such as the invasive weed optimization 

(IWO) algorithm (Sangaiah et al., 2020) and particle swarm optimization (PSO) algorithm (Tirkolaee et al., 2019). Since 

the supply cost and delay cost are of the same nature, this study used a weighted approach to combine two objectives. 

Moreover, other uncertainty techniques including robust optimization (Tirkolaee et al., 2020; Lotfi et al., 2020), stochastic 

control (Temoçin and Weber 2014) and application of neural networks as well as learning-based tools (Wang et al., 2018, 

2020a, 2020b) can be applied and compared to the proposed fuzzy programming approach. In conclusion, this study met 

the existing uncertainty in the problem using the fuzzy approach. In this regard, other approaches, such as probabilistic 

and scenario-based approaches can be used. 

 

Reference 

Agrawal, S., Singh, R. K., and Murtaza, Q. (2016). Outsourcing decisions in reverse logistics: Sustainable balanced 

scorecard and graph theoretic approach. Resources, Conservation and Recycling, Vol. 108, pp. 41-53. 

Akbari, M. and H. Rashidi (2016). A multi-objectives scheduling algorithm based on cuckoo optimization for task 

allocation problem at compile time in heterogeneous systems. Expert Systems with Applications, Vol. 60, pp. 234-248. 

Altiparmak, F., Gen, M., Lin, L., and Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization 

of supply chain networks. Computers & Industrial Engineering, Vol. 51(1), pp. 196-215. 

Amiri, E. and S. Mahmoudi (2016). Efficient protocol for data clustering by fuzzy Cuckoo Optimization Algorithm. 

Applied Soft Computing, Vol. 41, pp. 15-21. 

Ardalan, Z., Karimi, S., Naderi, B., and Khamseh, A. A. (2016). Supply chain networks design with multi-mode demand 

satisfaction policy. Computers & Industrial Engineering, Vol. 96, pp. 108-117. 

Bagheri-neghad Z. (2013). Identifying and ranking of success factors in automotive reverse logistics through interpretive 

structural modeling (ISM). Jourrnal of Management Research in Iran, Vol. 17(1), pp. 21-40. 

Balin, S. (2011). Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation. 

Information Sciences, Vol. 181, pp. 3551-3569. 

Behnamian, J. and S. M. T. F. Ghomi (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft 

Computing, Vol. 21, pp. 139-148. 

Bilgen, B., and Çelebi, Y. (2013). Integrated production scheduling and distribution planning in dairy supply chain by 

hybrid modelling. Annals of Operations Research, Vol. 211(1), pp. 55-82 

Chopra S. (2003). Designing the distribution network in a supply chain. Transportation Research - Part E, Vol. 39, pp. 

123-140. 

Das, S. K., and Roy, S. K. (2019). Effect of variable carbon emission in a multi-objective transportation-p-facility location 

problem under neutrosophic environment. Computers & Industrial Engineering, Vol. 132, pp. 311-324. 

Das, S. K., Pervin, M., Roy, S. K., and Weber, G. W. (2021). Multi-objective solid transportation-location problem with 

variable carbon emission in inventory management: a hybrid approach. Annals of Operations Research, pp. 1-27. 

https://doi.org/10.1007/s10479-020-03809-z 



A Fuzzy Bi-objective Optimization Model to Design a Reverse ... 

  

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.9, NO.3 375 

 

Dat, L. Q., Linh, D. T. T., Chou, S. Y., and Vincent, F. Y. (2012). Optimizing reverse logistic costs for recycling end-of-

life electrical and electronic products. Expert Systems with Applications, Vol. 39(7), pp. 6380-6387. 

Demirel, E., Demirel, N. and Gokcen, H.. (2016). A mixed integer linear programming model to optimize reverse logistics 

activities of end-of-life vehicles in Turkey. Journal of Cleaner Production, Vol. 112(3), pp. 2101-2113. 

Dey, S. K., and Giri, B. C. (2020). Coordination of a sustainable reverse supply chain with revenue sharing contract. 

Journal of Industrial & Management Optimization, DOI: http://dx.doi.org/10.3934/jimo.2020165. 

Dondo, R. G., and Méndez, C. A. (2016). Operational planning of forward and reverse logistic activities on multi-echelon 

supply-chain networks. Computers & Chemical Engineering, Vol. 88, pp. 170-184. 

Du, F. and G. W. Evans (2008). A bi-objective reverse logistics network analysis for post-sale service. Computers & 

Operations Research, Vol. 35(8), pp. 2617-2634. 

Farahani, R. Z. and M. Elahipanah (2008). A genetic algorithm to optimize the total cost and service level for just-in-time 

distribution in a supply chain. International Journal of Production Economics, Vol. 111(2), pp. 229-243. 

Gao, J., Han, H., Hou, L., and Wang, H. (2016). Pricing and effort decisions in a closed-loop supply chain under different 

channel power structures. Journal of Cleaner Production, Vol. 112, pp. 2043-2057. 

Gao, X., and Cao, C. (2020). A novel multi-objective scenario-based optimization model for sustainable reverse logistics 

supply chain network redesign considering facility reconstruction. Journal of Cleaner Production, Vol. 270, 122405. 

Gaur, J., Amini, M. and Rao, A. K. (2017). Closed-loop supply chain configuration for new and reconditioned products: 

An integrated optimization model. Omega, Vol. 66, pp. 212-223. 

Ghosh, S., and Roy, S. K. (2021). Fuzzy-rough multi-objective product blending fixed-charge transportation problem 

with truck load constraints through transfer station. RAIRO: Recherche Opérationnelle, Vol. 55, pp. S2923-S2952. 

Ghosh, S., Roy, S. K., Ebrahimnejad, A., and Verdegay, J. L. (2021). Multi-objective fully intuitionistic fuzzy fixed-

charge solid transportation problem. Complex & Intelligent Systems, Vol. 7(2), pp. 1009-1023. 

Goli, A., and Davoodi, S. M. R. (2018). Coordination policy for production and delivery scheduling in the closed loop 

supply chain. Production Engineering, Vol. 12(5), pp. 621-631. 

Goli, A., Zare, H. K., Tavakkoli‐Moghaddam, R., and Sadegheih, A. (2020a). Multiobjective fuzzy mathematical model 

for a financially constrained closed‐loop supply chain with labor employment. Computational Intelligence, Vol. 36(1), 

pp. 4-34. 

Goli, A., Tirkolaee, E. B., and Weber, G. W. (2020b). A Perishable Product Sustainable Supply Chain Network Design 

Problem with Lead Time and Customer Satisfaction using a Hybrid Whale-Genetic Algorithm. In Logistics Operations 

and Management for Recycling and Reuse (pp. 99-124). Springer, Berlin, Heidelberg. 

Karimi, R., Ghezavati, V. R., and Damghani, K. K. (2015). Optimization of multi-product, multi-period closed loop 

supply chain under uncertainty in product return rate: case study in Kalleh dairy company. Journal of Industrial and 

Systems Engineering, Vol. 8(3), pp.95–114. 

Kargar, S., Pourmehdi, M., and Paydar, M. M. (2020a). Reverse logistics network design for medical waste management 

in the epidemic outbreak of the novel coronavirus (COVID-19). Science of The Total Environment, Vol. 746, 141183. 

Kargar, S., Paydar, M. M., and Safaei, A. S. (2020b). A reverse supply chain for medical waste: A case study in Babol 

healthcare sector. Waste Management, Vol. 113, pp.197-209. 

Keshavarz Ghorabaee, M., Amiri, M., Olfat, L., and Khatami Firouzabadi, S. A. (2017). Designing a multi-product multi-

period supply chain network with reverse logistics and multiple objectives under uncertainty. Technological and 

Economic Development of Economy, Vol. 23(3), pp. 520-548. 

Keskin B.B. and Uster H. (2007). Meta-heuristic approaches with memory and evolution for a multi-product 

production/distribution system design problem. European Journal of Operational Research, Vol. 182(2): 663-682. 



Razmjooei, Mahdavi and Paydar 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.9, NO.3 376 

 

Kilic, H. S., Cebeci, U. and Ayhan, M. B.  (2015). Reverse logistics system design for the waste of electrical and electronic 

equipment (WEEE) in Turkey. Resources, Conservation and Recycling, Vol. 95 pp. 120-132. 

Kim, K., Song, I., Kim, J., and Jeong, B. (2006). Supply planning model for remanufacturing system in reverse logistics 

environment. Computers & Industrial Engineering, Vol. 51(2), pp. 279-287. 

Lee, J.-E., Gen, M. and Rhee, K. G. (2009a). Network model and optimization of reverse logistics by hybrid genetic 

algorithm. Computers & Industrial Engineering, Vol. 56(3), pp. 951-964. 

Lee, D.-H. and M. Dong (2009b). Dynamic network design for reverse logistics operations under uncertainty. 

Transportation Research Part E: Logistics and Transportation Review, Vol. 45(1) pp. 61-71. 

Li, X. and B. Liu (2006). A sufficient and necessary condition for credibility measures. International Journal of 

Uncertainty, Fuzziness & Knowledge-Based Systems, Vol. 14, pp. 527-535. 

Listeş, O. and R. Dekker (2005). A stochastic approach to a case study for product recovery network design. European 

Journal of Operational Research, Vol. 160(1), pp. 268-287. 

Liu, B. and Y. Liu (2002). Expected value of fuzzy variable and fuzzy expected value model. IEEE Transactions on Fuzzy 

Systems, Vol. 141, pp. 259-271. 

Liu. B. (2007). Uncertainty Theory. Berlin, Springer-Verlag. 

Lotfi, R., Yadegari, Z., Hosseini, S. H., Khameneh, A. H., Tirkolaee, E. B., and Weber, G. W. (2020). A Robust Time-

Cost-Quality-Energy-Environment Trade-off with Resource-Constrained in Project Management: A Case Study for a 

Bridge Construction Project. Journal of Industrial & Management Optimization, DOI: 

http://dx.doi.org/10.3934/jimo.2020158. 

Lu, H., Du, P.  Chen, Y. and He, L. (2016). A credibility-based chance-constrained optimization model for integrated 

agricultural and water resources management: A case study in South Central China. Journal of Hydrology, Vol. 537, pp. 

408-418. 

McKinnon, Alan, Browne, m., Whitring, A. and Piecyk, M.(2010). Green Logistics, Improving the environmental 

sustainability of logistics. Kogan page, London Philadelphia New Delhi. 

Mehlawat, M. K. and P. Gupta (2014). Credibility-Based Fuzzy Mathematical Programming Model For Portfolio 

Selection Under Uncertainty. International Journal of Information Technology & Decision Making, Vol. 13(01), pp. 101-

135. 

Melachrinoudis, E., Messac, A. and Min, H. (2005). Consolidating a warehouse network:: A physical programming 

approach. International Journal of Production Economics, Vol. 97(1), pp. 1-17. 

Midya, S., Roy, S. K., and Vincent, F. Y. (2021). Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid 

transportation problem in a green supply chain. International Journal of Machine Learning and Cybernetics, Vol. 12(3), 

699-717. 

Min, H., Ko, H. J.  and Park, B. I. (2005). A Lagrangian relaxation heuristic for solving the multi-echelon, multi-

commodity, close-loop supply chain network design problem. International Journal of Logistics Systems and 

Managemen, Vol. 1(4), pp. 382-404. 

Neto, J. Q. F., Bloemhof-Ruwaard, J. M., van Nunen, J. A., and van Heck, E. (2008). Designing and evaluating sustainable 

logistics networks. International journal of production economics, Vol. 111(2), pp. 195-208. 

Niknejad, A., and Petrovic, D. (2014). Optimisation of integrated reverse logistics networks with different product 

recovery routes. European Journal of Operational Research, Vol. 238(1), pp. 143-154. 

Paul, A., Pervin, M., Roy, S. K., Weber, G. W., and Mirzazadeh, A. (2021). Effect of price-sensitive demand and default 

risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO-Operations Research, Vol. 55, 

S2575-S2592. 



A Fuzzy Bi-objective Optimization Model to Design a Reverse ... 

  

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.9, NO.3 377 

 

Pedram, A., Yusoff, N. B. Udoncy, O E., Mahat, A. B., Pedram, P. and Babalola, A. (2017). Integrated forward and 

reverse supply chain: A tire case study. Waste Management, Vol. 60, pp. 460-470. 

Pervin, M., Roy, S. K., and Weber, G. W. (2020). An integrated vendor-buyer model with quadratic demand under 

inspection policy and preservation technology. Hacettepe Journal of Mathematics and Statistics, Vol. 49, 1168-1189. 

Pishvaee M. S. and Torabi S. A. (2010). A possibilistic programming approach for closed-loop supply chain network 

design under uncertainty. Fuzzy Set and Systems, Vol. 161(20), pp. 2668-2683. 

Pishvaee, M. S., Farahani,  R. Z. and Dullaert, W.(2010). A memetic algorithm for bi-objective integrated forward/reverse 

logistics network design. Computers & Operations Research, Vol. 37(6), pp. 1100-1112. 

Pishvaee, M. S., Torabi, S. A. and Razmi, J. (2012). Credibility-based fuzzy mathematical programming model for green 

logistics design under uncertainty. Computers & Industrial Engineering, Vol. 62, pp. 624-632. 

Rajabioun, R. (2011). Cuckoo Optimization Algorithm. Applied Soft Computing, Vol. 11(8), pp. 5508-5518. 

Saeedi Mehrabad, M., Aazami, A., and Goli, A. (2017). A location-allocation model in the multi-level supply chain with 

multi-objective evolutionary approach. Journal of Industrial and Systems Engineering, Vol. 10(3), pp. 140-160. 

Sangaiah, A. K., Goli, A., Tirkolaee, E. B., Ranjbar-Bourani, M., Pandey, H. M., and Zhang, W. (2020). Big Data-Driven 

Cognitive Computing System for Optimization of Social Media Analytics. IEEE Access, Vol. 8, pp. 82215-82226. 

Shetaban, S., Seyyed Esfahani, M. M., Saghaei, A., and Ahmadi, A. (2020). An integrated methodology to control the 

risk of cardiovascular disease in patients with hypertension and type 1 diabetes. Computational Intelligence, Vol. 31, pp. 

435-460. 

Slowinski, R. and M. Hapke (2000). Scheduling Under Fuzziness. New York, Physica-Verlag Editions. 

Temoçin, B. Z., and Weber, G. W. (2014). Optimal control of stochastic hybrid system with jumps: a numerical 

approximation. Journal of Computational and Applied Mathematics, Vol. 259, pp. 443-451. 

Tirkolaee, E. B., Mahmoodkhani, J., Bourani, M. R., and Tavakkoli-Moghaddam, R. (2019). A self-learning particle 

swarm optimization for robust multi-echelon capacitated location–allocation–inventory problem. Journal of Advanced 

Manufacturing Systems, Vol. 18(04), pp. 677-694. 

Tirkolaee, E. B., Hadian, S., Weber, G. W., and Mahdavi, I. (2020). A robust green traffic‐based routing problem for 

perishable products distribution. Computational Intelligence, Vol. 36(1), pp. 80-101. 

Tirkolaee, E. B., Abbasian, P., and Weber, G. W. (2021). Sustainable fuzzy multi-trip location-routing problem for 

medical waste management during the COVID-19 outbreak. Science of the Total Environment, Vol. 756, 143607. 

Ülkü, M. A. and J. H. Bookbinder (2012). Optimal quoting of delivery time by a third party logistics provider: The impact 

of shipment consolidation and temporal pricing schemes. European Journal of Operational Research, Vol.  221(1), pp. 

110-117. 

Üster, H., Easwaran, G., Akçali, E., and Çetinkaya, S. (2007). Benders decomposition with alternative multiple cuts for 

a multi‐product closed‐loop supply chain network design model. Naval Research Logistics (NRL), Vol. 54(8), pp. 890-

907. 

Wang, G., Qiao, J., Bi, J., Li, W., and Zhou, M. (2018). TL-GDBN: Growing deep belief network with transfer learning. 

IEEE Transactions on Automation Science and Engineering, Vol. 16(2), pp. 874-885. 

Wang, G., Jia, Q. S., Qiao, J., Bi, J., and Liu, C. (2020a). A sparse deep belief network with efficient fuzzy learning 

framework. Neural Networks, Vol. 121, pp. 430-440. 

Wang, G., Jia, Q. S., Qiao, J., Bi, J., and Zhou, M. (2020b). Deep Learning-Based Model Predictive Control for 

Continuous Stirred-Tank Reactor System. IEEE Transactions on Neural Networks and Learning Systems. DOI: 

https://doi.org/10.1109/TNNLS.2020.3015869 



Razmjooei, Mahdavi and Paydar 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.9, NO.3 378 

 

Wood, D. A. (2016). Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by 

dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling. Journal of Natural Gas Science 

and Engineering, Vol. 34, pp. 236-252. 

Zadeh, L. A. (1965). Fuzzy sets. Infection Control, Vol. 8, pp. 338-353. 

Zadeh, L. A. (1978). "Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, Vol. 1, pp. 3-28. 

Zahiri, B., and Pishvaee, M. S. (2017). Blood supply chain network design considering blood group compatibility under 

uncertainty, Vol. 55(7), pp. 2013-2033. 

Zhang, Y. M., Huang, G. , Lu, H.W., and He, L. (2015). Planning of water resources management and pollution control 

for Heshui River watershed, China: A full credibility-constrained programming approach. Science of The Total 

Environment, Vol. 524–525, pp. 280-289. 

 
 


