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Abstract 

In the pursuit of sustainable development goals, recycling has attracted a high level of attention around the world due to 

its economic and environmental benefits; however, applying the Conditional Value-at-Risk (CVaR) as an effective risk 

management approach for optimal Design of reverse supply chain (RSC) has been addressed by a few studies. This study 

mainly aims to achieve an optimal design for the RSC of recycling of polyethylene terephthalate (PET) bottles due to 

uncertainties in the market price of recycling materials, logistics costs, and the supply of raw materials. Considering the 

stochastic nature of the waste RSC parameters, two-stage stochastic programming models are developed in which the 

CVaR(Shortage) is utilized as a risk criterion to control shortages in demand centers. Moreover, the expected value of 

profit (E(Profit)) and the CVaR(Profit) are considered as two different objective functions. To evaluate efficiency and 

applicability, our selected models are implemented with the real data of Tehran’s Municipal Waste data. Comparing the 

empirical results indicate that using the CVaR(shortage) is an appropriate and reasonable approach to tackle the risk of a 

shortage in demand centers, and can be used to design the supply chain of other case studies. Also, the CVaR(Profit)) is 

more conservative in the face of the risk of shortage due to the risk-taking feature embedded in the objective function, 

which can be adjusted based on the decision maker’s preference. The results additionally indicate that transportation cost 

plays an essential role in the cost structure of PET recycling stages. 

 

Keywords: Reverse logistics supply chain; Circular economy; Polyethylene terephthalate (PET) bottles; Conditional 

value-at-risk (CVaR); Recycling; Uncertainty. 
 

1. Introduction  

In a circular economy (CE) products are recycled, reused, or repaired rather than thrown away, and in which waste from 

one process becomes an input into other processes (Figure 1). The CE is now a core component both of the EU’s 2050 

Long-Term Strategy to achieve a climate-neutral Europe and of China’s five-year plans (Preston et al., 2019). In the 

current age of business, where the life cycle of products is getting shorter and shorter, product return policies are 

characterized by fast response times and fast customer service, while there is a greater emphasis on return management, 

shape change, and re-storage of finished products. Collecting and recycling products after the consumption by customers 

and returning them to the supply chain or devastating them bring up the supply chain problem (Forouzanfar et al., 2018). 

New public laws and regulations related to returning products and materials also compel top managers responsible for 

logistics and supply chain processes to look closely at the reverse logistic (RL) process since the implementation of the 

RL process at different supply chain levels can increase the value of returned products for factories (Wilcox et al., 2011). 
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Figure 1. Circular economy activities 

 

According to the statistics published by World Atlas (2018), Tehran is the 40th most populous city in the world with 8.43 

million inhabitants. While the world’s urban population growth was 1.9% in 2018, the urban population in Iran 

experienced a 2.1% growth (WDI, 2019). Along with the increase in urbanization growth, municipal solid waste (MSW) 

production (associated with air, soil, and water pollution) has increased (Chen, 2018); (Han et al., 2019); (Rai and 

Goswami, 2019). According to the 2018 annual report of the World Health Organization (WHO), waste production per 

capita is 300g per day. This figure is more than 710g for Iranians, while it is 790g in Tehran, which is 2.5 times the world 

average. However, the value added to waste recycling accounts for 15% of the Gross Domestic Product (GDP) of some 

industrialized countries. While an average of 70% of the produced waste is recycled in the world, this figure is 

optimistically about 20% in Iran.  

 

Solid waste management (SWM), as an important environmental aspect, plays a major role in sustainable development 

(Rodić and Wilson, 2017);(Mwanza and Mbohwa, 2017); (Ferronato et al., 2018); (Das et al., 2019). In line with 

sustainable development, waste management is one of the main concerns, and neglecting this issue will inflict irreparable 

damages on the ecosystem of Iran. 

 

In many countries, several laws and regulations have been passed and implemented in this regard. Nowadays, developed 

countries do not consider waste as a threat; rather, they see it as an opportunity to promote the development of the country 

and to supply and produce goods and energy. The adoption of the Law on Waste Management in 2004 was a giant step 

towards regulating proper waste management in Iran. However, the performance level of waste management in Iran is 

not very satisfactory. For instance, more than 58 thousand tons of waste (equivalent to 21 million tons per year) were 

produced in 2018 in Iran, but only 20% of this waste was recycled. Moreover, about 70 weight percent of wastes are 

landfilled in the metropolises of the country, which produces about 6 million tons of greenhouse gases (IPRC, 2018). 

 

The recycling amount of dry waste in metropolises of Iran is about 9%, and given that about 35% of waste is recyclable 

dry waste, the amount of recycled dry waste despite its high economic justification is much lower than expected. 

Currently, landfilling is an ordinary mechanism for Tehran's MSW management. Up to 50% of Tehran’s wastes are 

disposed of in landfills without any separation (Heidari et al., 2019). Considering its extensive use in packaging, soft-

drink bottles, fibers, and films, PET has been a main source of plastic pollution in the world (Zhou et al., 2019). 
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 According to Figure 2, the global production rate of PET bottles was 485 billion bottles in 2016, a trend projected to 

reach 583.3 billion bottles per year by 2021. Iran’s annual plastic consumption tops 2.5 million tons (over 31 kilograms 

per capita). Moreover, according to Figure 3, Plastics and PET constituted 11% of Iran’s MSW composition (2009-2019), 

which means that after organic and food wastes (68%), it has the largest share in the beta MSW composition 

(Esmaeilizadeh et al., 2020). Just in Tehran, 7,500 tons of waste are produced daily, 1,000 tons of which are plastic, while 

100 tons of it are made up of PET bottles (IPRC, 2018). Since recycling and waste separation are not commonplace in 

Iran, almost all of this plastic waste is disposed of in landfills. This is while recycling one ton of plastic equals saving 11 

barrels of crude oil (TURPC, 2018). 

 

 
Figure 2. World production of PET bottles from 2004-2021 

(Source: Statista, 2019) 

 

 
Figure 3. The average composition of MSW in Iran (2009-2019) 

 

Considering the growing population and shortening the life cycle of manufactured products, solid waste has increased 

rapidly over the last 20 years (Wang and Nie, 2001); (Sanjeevi and Shahabudeen, 2015); (Bing et al., 2016). Economic 

and environmental challenges around the world have forced governments to implement various tools to collect and recycle 

solid waste. Some solid materials, such as electronic waste and household plastic, consist of valuable recyclable materials 

(Ayvaz et al., 2015); (Bing et al., 2015); (Xu et al., 2017). Therefore, governments and organizations need a more efficient 

reverse supply chain (RSC)  design to recycle this waste at the lowest possible cost (Golroudbary and Zahraee, 2015).  

 

Moreover, uncertainty is the main attribute in managing the (reverse) supply chains (Mahnam et al., 2009). Indeed, based 

on the amount of available information, there are three types of uncertainties: a) randomness b) epistemic and c) deep 
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uncertainty (Bairamzadeh et al., 2018). Randomness uncertainty when occurred that the probability distribution can be 

estimated based on adequate and valid historical data. Epistemic is often related to the lack of knowledge in parameters. 

Finally, deep uncertainty is relevant to the lack of information about the related parameters (Bairamzadeh et al., 2018). 

Uncertainty of parameters is an important factor that could lower the quality of long-term plans of companies (Hamidieh 

and Fazli-Khalaf, 2017). Therefore, it is necessary to consider uncertainty in reverse supply chain design. 

 

Meanwhile, few studies have been conducted on solid waste management through RSC design, but some research gaps 

still remain. The novel contributions of this study can be expressed as follows: 

 

1. A mathematical optimization model is presented to design the Municipal Solid Waste (MSW) supply chain (PET 

bottles) under the uncertainties of the recycling market prices of recycled products, the supply of raw materials, 

and recycling costs.  

2. In the proposed model, the concept of Conditional Value-at-Risk (CVaR) is used as a risk criterion to control 

shortages at each demand center. 

3. In this study, two distinct objective functions (E(profit) and CVaR(Profit)) are employed, and their results are 

compared. 

4. To validate the applicability and efficiency of the proposed mathematical model, real data from 6 different 

districts of Tehran city are implemented. 

The remainder of the present study is organized as follows: In Section 2, some of the most relevant studies carried out in 

the field of RSC are reviewed. Section 3 presents the research methodology used in the study. Section 4 analyzes the 

findings of the study, and Section 5 is dedicated to the discussion and conclusion. 

 

2. Literature Review 

2.1 Designing the Supply Chain Network 

The simulation-based optimization model improves the decisions made by the analytical model further under a stochastic 

(Chiadamrong and Piyathanavong, 2017). The RSC can be described as a business strategy that acts as a driving force for 

recycling process activities (specifically to improve the value of recycling) (Ayvaz et al. (2015) and Xu et al. (2017)). In 

recent years, closed-loop and reversed supply chain design issues have attracted the attention of many scholars, and a 

large number of papers have been published in this field. Fleischmann et al. (1997) were the first to study articles published 

in the field of logistic networks. They classify the published articles into three main categories, i.e., distribution planning, 

production planning, and inventory. Shih (2001) explored reverse logistics (RL) planning for the recycling of electronic 

appliances in Taiwan. In this study, a MILP is applied to optimize the infrastructure and the RL flow. The model proposed 

in this study aimed to minimize the total cost, which includes the cost of transport, operating cost, fixed cost, final 

discharge cost, and landfill cost, as well as to optimize the proceeds of the recycled material. The results are shown for 

different scenarios in terms of harvesting rate and operational conditions. Nagurney and Toyasaki (2005) worked on RL 

management and recycling of e-waste using a multi-objective balance framework for e-waste. This study describes the 

behavior of different decision-makers, including e-waste sources, processors, and consumers associated with demand 

markets for distinctive products. The proposed model is solved using the proposed algorithm. 

 

Dat et al. (2012) presented a recycling network model for different types of returned e-products to minimize the total cost 

of processing such products. This study modeled a complete recycling network, including different recycling sites, by 

extending prior research. The proposed model consists of four different recycling stages, i.e., the collection site, the 

separation site, the recycling and repair site, and the final site, consisting of the landfill site, and the primary and secondary 

markets. The optimal location of the facilities and the flow of materials in the RL network are determined. It should be 

noted that the most critical way to reduce the total cost of the system is to reduce transportation costs (Mohsenizadeh et 

al., 2020). 
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Bing et al. (2014) investigated the RL network design for household plastic waste. In this study, a MILP model (a mixed 

integer linear programming model) is designed to simultaneously minimize transportation costs and environmental 

impacts. By comparing the selected scenarios, the results of this study show that the current baseline network settings are 

efficient under logistics conditions are. However, these settings have the requirements in terms of strategic changes 

according to the presented hypotheses regarding required processing facilities for dealing with plastic waste. 

 

Govindan et al. (2015) examined the latest literature on the design of RL networks and closed loops. In this study, the 

authors showed that among a total of 328 articles published in the field of the supply chain during 2007-2013, 190 articles 

were in the field of the closed-loop supply chain, 152 were in the field of RL, 24 articles were related to sustainability, 

and only six articles were related to the green supply chain. Paydar and Olfati (2018) developed a MILP model for an RL 

network in Iran. Considering the process of collecting and remanufacturing PET bottles, and minimizing total costs, their 

results indicated the applicability and efficiency of the proposed model. In this study, two meta-heuristic algorithms were 

implemented, and in order to obtain reliable results, parameters were set using the Taguchi method. (Diabat and Jebali, 

2021) address the closed loop supply chain (CLSC) network design problem for durable products with the consideration 

of take-back legislation. Results show that a higher reverse service level and CLSC profit can be achieved when a 

regulation based on a reward-penalty mechanism is implemented 

 

2.2. Supply Chain Design with Uncertainties 

In recent years, assessing supply chain coordination under uncertainties has become a trending topic in various studies 

(Hu and Feng, 2017). Uncertainty is one of the main characteristics of RL. These uncertainties arise from every individual 

activity in the RL ((Klibi et al., 2010), (Senthil et al., 2018)). Table 1 presents a summary of some significant features of 

the relevant studies, which have considered uncertainties in the MSW recycling system.  

 
Table 1. Significant Features of the Relevant Studies 

Author(s) Object(s) Model Uncertainty Application 

Kara and 

Onut (2010) 
revenue-maximization 

two-stage stochastic 

programming 

Demand 

and the amount of paper that 

can be collected from customers 

paper recycling 

Pishvaee et 

al. (2011) 
Total cost minimization MILP 

Demand,  type, and quantity of 

returned products 
… 

Komly et al. 

(2012) 

Multi-objective 

optimization 

A mathematical model 

based on life-cycle 

assessment (LCA) 

Input parameters PET bottles 

Ramezani et 

al. (2013) 

Profit maximization, and 

minimization of the number 

of defective raw 

material 

MILP 

The quantity of price, 

production, operating, and 

disposal costs, demands, and 

return rates 

… 

Liu and 

Nagurney 

(2013) 

Profit maximization 
two-stage stochastic 

programming 
Demand and Cost … 

Ayvaz et al. 

(2015) 
Profit maximization 

Two-stage stochastic 

programming  

return quantity, sorting quality, 

and transportation cost 

electronic 

equipment 

(Ene and 

Öztürk, 2015) 

the total 

profit  maximization, and  

environmental impact 

minimization 

mathematical 

programming 
the number of returned products 

end-of-life 

vehicles' recovery 

network 
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Table 1. Continued 

Author(s) Object(s) Model Uncertainty Application 

Xu et al. (2017) total emission and cost minimization MILP waste collection levels 

recycling 

systems of solid 

waste 

(Fazli-Khalaf 

and Hamidieh, 

2017) 

maximizes social responsibility 

while minimizing fixed establishing 

and variable processing costs of 

network 

Robust Reliable 

Forward-reverse 

Supply Chain Network 

Design 

demand, capacity of 

facilities and costs 

applicable in 

most of 

industrial case 

(Habibi et al., 

2017) 

minimizing the total cost, and 

pollution from the greenhouse gas 

emission 

multi-objective robust 

optimization 

non-recyclable and 

recyclable waste 

generation 

MSW  

(Hamidieh and 

Fazli-Khalaf, 

2017) 

Minimizing the total costs of 

network design along with 

maximization of total responsiveness 

of distribution network 

Hybrid analytical–

simulation modeling 

approach 

demand of the customer 

zones and capacity of 

facilities 

Warehouses 

Babazadeh and 

Sabbaghnia 

(2018) 

total costs minimizing 

Robust stochastic 

programming and 

CVaR 

demand parameter 

medium-density 

fiberboard 

(MDF) 

industry 

Senthil et al. 

(2018) 
Prioritization of risks hybrid MCDM 

Business interruption 

value, Price and 

Business recovery time 

plastic recycling 

firm 

Diaz-Barriga-

Fernandez et al. 

(2018) 

multi-objective optimization MILP 

the availably of the 

residues and the 

product prices 

MSW 

Garibay-

Rodriguez et al. 

(2018) 

minimizing the overall cost MILP 
The selling price of 

recycled materials 
MSW 

Alizadeh et al. 

(2019) 
Production optimization 

robust three-stage 

stochastic 

programming model 

Carbon Tax Rate MSW 

Asefi et al. 

(2019) 

total costs (logistics and 

transportation) minimizing  
MILP MSW generation MSW 

Fan et al. (2019) Profit maximization 
two-stage supply chain 

model 
raw material supply 

solid biomass 

fuel 

Gambella et al. 

(2019) 

minimizing the total management 

cost 

two-stage multi-period 

stochastic 

programming 

waste generation 

rates 
solid waste 

Heidari et al. 

(2019) 
Profit maximization 

multi-objective 

mathematical 

programming 

Economic, social, and 

Environmental 

Parameters 

MSW 

Singh (2019) optimization of the efficiency 
fuzzy, stochastic, and 

interval programming 

the rate of produced 

waste, disposal facility, 

and treatment cost 

MSW 

(Fazli-Khalaf et 

al., 2019) 
reliable supply chain network design 

Robust possibilistic 

programming 
input parameters lead-acid battery 

(Nayeri et al., 

2020) 

optimizing financial, environmental, 

and social impacts of the SCLSC 

multi-objective 

mathematical 

model 

demand, transportation 

costs, and carbon 

emission capacity 

water tank 

(Gumte et al., 

2021) 

1 Nationwide supply chain setup 

to optimally determine the 

operational and design 

decisions 

mixed integer linear 

programming model 

biomass feed supply, 

demand, and import 

product price 

bio-waste 
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Although there have been extensive studies on the RSC, some research gaps remain, which can be addressed as follows:  

 

1. In the objective function of the model, the profit from recycling PET bottles is maximized by designing the RSC 

model and considering the minimum cost of logistics under uncertainty. 

2. In the second model with the objective function of CVaR(Profit), the total expected CVaR profit is maximized 

with and without shortage constraint and results compared with model with objective function of E(Profit). 

3. In this study, the concept of CVaR is used as a criterion to control the shortage at each demand center. 

4. Only a few studies have been carried out on the development of the RSC for PET bottles. 

3. Methodology 

3.1. Problem Statement 

Figure 4 illustrates the schematic of the proposed model. The waste supply chain network consists of collection centers, 

separation centers, recycling plants, and retailers. To design the model, two optimization models are developed to 

maximize the profit from the waste recycling supply chain as well as to reduce the risk of demand for recycling in demand 

centers. In this model, the following assumptions are made: 
 

1) Logistics costs, the initial amount of collected waste, the prices of recycled materials, and the demand for 

recycled materials are non-deterministic. 

2) Each separation center is supplied by more than one collection center, each recycling center is supplied by more 

than one separation center, and each retail center is supplied by more than one recycling center. 

3) Each collection center can supply more than one separation center, each separation center can supply more than 

one recycling center, and each recycling center can supply more than one retail center. 

 

G=1

G=2

G=N

D=1

D=2

D=N

U=1

U=2

U=N

R=1

R=2

R=N

.

.

.

.

.

.

.

.

.

.

.

.

 Mixed Waste 
collection Center(G)

 Sorting and discarding 
center (D)

 Recycling plants (U) retailers

Figure 4. Schematic of the Proposed Model 

To maximize profits from the RL network, the problem was modeled by using two stochastic programming methods. The 

uncertainties of the model are defined by a set of non-deterministic parameters described by discrete distribution. The 

model’s scenarios are considered based on a combination of non-deterministic parameters. 
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A two-stage stochastic programming method is employed to examine decision making in terms of uncertainty. The 

fundamental idea in the programming method is the returning concept, i.e., the corrective action can be carried out after 

implementing a scenario. The decision in the first stage includes variables that must be derived before determining the 

actual value of uncertainty. After the primary stage, uncertainty is established and the decision-maker must choose an 

action that advances his/her goals by considering the realization of the optimal scenario. The second stage variables are 

characterized by the realization of the unknown parameters. When the uncertainty of the existing raw materials is resolved, 

the decisions of the second stage are taken, including waste flows from collection centers to demand centers. 

3.2. VaR and CVaR Concepts 

Using VaR is a common method to incorporate the concept of risk into the model ((Rockafellar and Uryasev, 2000); 

(Pflug, 2000); (Zhu and Fukushima, 2009); (Kazemzadeh and Hu, 2013); (Uryasev, 2013). With a specified probability 

level, the VaR for a certain asset is the lowest value of α such that the loss will not exceed α with a certain confidence 

level (Rockafellar and Uryasev, 2000). However, due to conceptual and computational constraints, it is preferable to use 

CVaR constraints. The CVaR (a.k.a. Mean Excess Loss) is a useful approach for considering uncertainty and optimizing 

the performance of mathematical models (Babazadeh and Sabbaghnia, 2018). Although the VaR is one of the most 

prevailing risk measures, some of its main weaknesses cannot be ignored. The VaR is continuous only for the normal 

distribution, and it is very difficult to calculate for scenario-based models. In contrast, the CVaR is always continuous 

and convex, and it can be used properly in stochastic scenario-based models. The CVaR is also optimized using stochastic 

and mathematical programming approaches (Babazadeh et al., 2012). 

 

To define VaR and CVaR for a loss function, the right tail is usually considered as a Probability Density Function (PDF) 

(Di Bernardino et al., 2015), (Kleinow et al., 2017). In this study, the CVaR is used for the right tail of a PDF for the 

shortage of the demand centers. 

 

According to (Kazemzadeh and Hu, 2013) and Babazadeh and Sabbaghnia (2018), 𝑉𝑎𝑅 1−𝛼 is a stochastic variable 𝑥 for 

the minimum value of 𝑡 so that with the probability of α, the loss does not exceed 𝑡, while 𝐶𝑉𝑎𝑅 1−𝛼 is the conditional 

expectation of loss higher than 𝑡, mathematically can be represented as: 

 

𝑉𝑎𝑅 1−𝛼(𝑥) = 𝑖𝑛𝑓{𝑡: 𝑝𝑟(𝑥 ≤ 𝑡) ≥ 1 − 𝛼}                                                                                                                         (1) 

 

𝐶𝑉𝑎𝑅 1−𝛼(𝑥) = 𝐸[𝑥|𝑥 ≥ 𝑉𝑎𝑅 1−𝛼]                                                                                                                                  (2) 

 

Since in this problem it is assumed that the stochastic variables are discrete and because the shortage of demand is defined 

as a discrete distribution, the discrete-state definition of CVaR for the stochastic variable 𝑋 with a probability of α is: 

 

𝐶𝑉𝑎𝑅 1−𝛼(𝑥) = 𝑖𝑛𝑓𝑡 {𝑡 +
1

𝛼
𝐸[(𝑥 − 𝑡)+]}                                                                                                                         (3) 

 

Where 

 

𝛼+ = 𝑚𝑎𝑥{0, 𝛼}                                                                                                                                                                (4) 

 

In the RL design of waste recycling, CVaR loss (the shortage of demand for recycled material in this study) is considered 

as a criterion to control the risk of recycling in the demand centers. The constraint that limits the upper boundary of 

𝐶𝑉𝑎𝑅(𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒) of demand is introduced in the model. Figure 5 presents the VaR and CVaR for the continuous 

distribution associated with loss or shortage with α %. 
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Figure 5. VaR and CVaR(shortage) 

 

While CVaR has usually been utilized for adverse distribution in financial literature, it can also be used for optimal 

distribution, such as profit distribution. In this study, CVaR has been used to calculate the uncertainty of the profit. To 

distribute the profit, the VaR and CVaR are considered, while the probability density function is considered for the left 

tail (Figure 6). Moreover, 𝐶𝑉𝑎𝑅 1−𝛽 is a stochastic variable with the maximum value of 𝑡 so that the profit will not be 

lower than 𝑡 with the probability of 𝛽, while the expected conditional profit 𝐶𝑉𝑎𝑅 1−𝛽 is more moderate than 𝑡.  

Figure 6. VaR and CVaR(Profit) 

 

The mathematical terms of this definition can be expressed as: 

 

𝑉𝑎𝑅 1−𝛽(𝑥) = 𝑠𝑢𝑝{𝑡: 𝑝𝑟(𝑥 ≥ 𝑡) ≥ 1 − 𝛽},                                                                                                                                  (6)  

 

𝐶𝑉𝑎𝑅 1−𝛽(𝑥) = 𝐸[𝑥|𝑥 ≤ 𝑉𝑎𝑅 1−𝛽]                                                                                                                                                (7)    

  

The discrete definition of CVaR is as follows: 

 

𝑉𝑎𝑅 1−𝛽(𝑥) = 𝑠𝑢𝑝𝑡 {𝑡 −
1

𝛽
𝐸[(𝑡 − 𝑥)+]}                                                                                                                                        (8) 
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3.2. Objective Function and Constraints 

In this section, the indices and parameters of the designed model are presented.  

 

Table 2. sets, parameters, and decision variables 

Sets 

𝑆 = Set of scenarios 

𝐺 = Set of the mixed waste collection center 

𝐷  = Set of sorting and discarding centers 

𝑈= Set of recycling factories 

R  = Set of retailers 

L= level of recycling plan 

Parameters 

𝑍𝑔= the sustainability factor in the collection center g 

𝐶𝑔𝑠
𝑠𝑐=cost of collecting waste in center g under scenario s 

𝑒𝑑 = Reduction factor 

𝐷𝐼𝑔𝑑= the direct distance between the d and g nodes under scenario s 

𝑇  = Factor of the meandering of the path 

𝐶𝑠
𝑔𝑇

= the cost of transportation per unit of unseparated waste under scenario s 

𝑊𝑑 = the capacity of separation center d 

𝑌 = factor of the amount of waste that is sent to the separation centers 

𝐶 
𝐷𝐶= cost of per unit waste in sorting and discarding centers 

𝐶 
𝐷𝑇= the cost of transportation per unit of separated waste 

𝐷𝐼𝑑𝑢= the direct distance between u and d nodes under scenario s 

𝑇= Factor of the meandering of the path 

𝐶𝑈𝐶= the cost of separated recycled waste per unit 

𝑈𝐿𝑢= Capacity of recycling plants 

λ= factor of the separated waste sent to recycling factories  

𝐵= Budget 

𝐶𝐿
𝐵= cost of construction of waste plants in level L 

 𝐶 
𝑈 𝑇

 
= Transportation cost per unit of recycled waste 

𝑄𝑔𝑠=amount of mixed waste collection center g under scenario s 

𝐷𝐼𝑢𝑟 = the direct distance between the r and u nodes   

𝐾𝑟 = The total demand value of retailer r 

𝑃𝑟𝑠 = the price of recycled materials sold to the retailer r under scenario s 

𝑠ℎ𝑟𝑠= the shortage of demand in retailer r under scenario s 

𝐻= the maximum amount of shortage in retailer 

 𝛿𝑙𝑢 = A set of binary variables to determine whether a waste recycling factory with 𝑙 capacity is located in the location 𝑢 or 

not. 

𝑊𝑠= the probability of occurrence of scenario s 

Decision (Optimization) Variables 

ℎ𝑑𝑢𝑠= The amount of separated waste flows from the separation center d to the recycling plant u under scenario s 

𝑞𝑢𝑟𝑠= The amount of recycled waste flows from the recycling plant u to the retailer r under scenario s 

𝑓𝑔𝑑𝑠= The amount of unseparated waste flows from the collecting center g to the separation center s under scenario s 

γ𝑠, ղ= the variables used to the formulation of the shortage of CVaR 

 

3.3. Model Constraints 

The model’s constraints in the first stage involved the selection of locations for the recycling plants. A set of binary 

variables 𝛿𝑙𝑢 is considered to determine whether a waste recycling plant with capacity 𝑙 is located in location 𝑢 or not. To 

ensure that the cost of construction of waste recycling plants does not exceed the existing budget 𝐵, the constraint can be 

considered as: 
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∑ ∑ 𝐶𝑙
𝐵

𝑙𝑢

𝛿𝑙𝑢 ≤ 𝐵.                                                                                                                                                                                 (9) 

 

At any desired location, only one waste recycling plant can be constructed, which is characterized by the following 

constraints: 

 

∑ 𝛿𝑙𝑢 ≤ 1

𝑙

                             ∀𝑢 ∈ 𝑈.                                                                                                                                                (10) 

 

The remaining constraints relate to the decisions of the second stage, which determine the amount of initial waste and 

recycling waste among supply chain nodes. 

 

With regards to the total waste collection centers, it is assumed that each of these centers  𝑔 ∈ 𝐺 can collect 𝑄𝑔𝑠 tons of 

waste per year. Also, 𝑍𝑔is the sustainability factor for the collection centers, which remains for different reasons (e.g., 

seasonal reasons). Therefore, any collection center can provide (1 − 𝑍𝑔)𝑄𝑔𝑠 tons of waste. Assuming that the amount of 

waste flow from the 𝑔 − 𝑡ℎ recycling center to the 𝑑 − 𝑡ℎ separation center in scenario 𝑠 is equal to 𝑓𝑔𝑑𝑠: 

 

        ∑ 𝑓𝑔𝑑𝑠 ≤ (1 − 𝑍𝑔)𝑄𝑔𝑠

𝑑

             ∀𝑔 ∈ 𝐺,    ∀𝑠 ∈ 𝑆.                                                                                                              (11)  

 

The reduction factor 𝑒𝑑 є [0,1) is considered to possible losses during transport and loading, which depends on the 

amount of waste collected. Therefore, the amount of initial waste sent to the separation centers is less than or equal to the 

capacity of the 𝑑 − 𝑡ℎ separation center (𝑊𝑑). 

 

(1 − 𝑒𝑑) ∑ 𝑓𝑔𝑑𝑠

𝑔

≤ 𝑊𝑑                      ∀𝑑 ∈ 𝐷,    ∀𝑠 ∈ 𝑆.                                                                                                              (12)  

 

The amount of waste sent to the separation centers is separated using the 𝑌 ∈ [ 0, 1) factor, and then it is sent to the 

recycling plants. The amount of waste sent from the 𝑑 − 𝑡ℎ separation center to recycling plants should not exceed the 

capacity of the separation center, hence:  

 

  (1 − 𝑒𝑑) ∑ 𝑓𝑔𝑑𝑠𝑌 ≤ ∑ ℎ𝑑𝑢𝑠

𝑑𝑔

      ∀𝑢 ∈ 𝑈,   ∀𝑠 ∈ 𝑆.                                                                                                                 (13 ) 

 

On the other hand, the amount of waste sent to the 𝑢 − 𝑡ℎ plant should be less than or equal to its capacity (𝑉𝑙𝑢). 

 

 ∑ ℎ𝑑𝑢𝑠

𝑑

≤ ∑ 𝑉𝑙𝑢

𝑙

𝛿𝑙𝑢                        ∀𝑢 ∈ 𝑈,      ∀𝑠 ∈ 𝑆.                                                                                                            (14)   

 

It is assumed that the separated waste sent to recycling plants is recycled with the 𝜆 factor and is sent to the retail centers. 

That amount should be equal to the amount of recycled material sent from the 𝑢 − 𝑡ℎ recycling plant to retail centers. 

 

(1 − 𝑒𝑑) ∑ 𝑓𝑔𝑑𝑠

𝑔

𝑌𝜆 = ∑ 𝑞𝑢𝑟𝑠

𝑟

   ∀𝑑 ∈ 𝐷,   ∀𝑠 ∈ 𝑆.                                                                                                                 (15)  
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The decision variable 𝑞𝑢𝑟𝑠 represents the amount of recycled materials sent from the 𝑢 − 𝑡ℎ factory to the 𝑟 − 𝑡ℎ demand 

center under the 𝑠 scenario. In the 𝑠 scenario, the total demand value of the 𝑟 − 𝑡ℎ retailer (𝐾𝑟) is not met; 𝑠ℎ𝑟𝑠 denotes 

the shortage in the following constraint: 

∑ 𝑞𝑢𝑟𝑠

𝑢

+ 𝑠ℎ𝑟𝑠 = 𝐾𝑟                   ∀𝑟 ∈ 𝑅,    ∀𝑠 ∈ 𝑆.                                                                                                                       (16)  

 

As discussed earlier, the amount of recycled material may not be enough to supply the entire retail demand, so demand 

centers encounter with a shortage. To manage this shortage, the conditional value-at-risk is used as a risk criterion 

measurement. Recycling plants have to determine the maximum amount of their shortage, which is denoted by𝐻. Based 

on the definition of the conditional value-at-risk for the discrete distribution, the maximum amount of the conditional 

value-at-risk with the probability of α % (𝐶𝑉𝑎𝑅1−𝛼(𝑠ℎ) ≤ 𝐻) is applied. 

 

By linearizing this constraint using auxiliary variables 𝜂 and   and the CVaR for the discrete distribution, it can be 

represented as: 

 

𝜂 +
1

𝛼
∑ 𝑤𝑠𝛾𝑠

𝑠

≤ 𝐻.                                                                                                                                                                        (17) 

𝛾𝑠 ≥ 𝑠ℎ𝑟𝑠 − 𝜂                       ∀𝑠 ∈ 𝑆, ∀𝑟 ∈ 𝑅                                                                                                                        (18) 

 

      𝛾𝑠 ≥ 0                                            ∀𝑠 ∈ 𝑆.                                                                                                                                  (19) 
 

3.4. Objective Function 

The purpose of the model is to maximize profit, which is defined as the total revenue from the sale of recycled waste 

minus total costs. There are many costs in the RL of recycling. The first cost is the cost of collecting each unit of waste, 

denoted by 𝐶𝑔𝑠
𝑆𝐶. Another cost is the cost of transportation per unit of unseparated waste, denoted by 𝐶𝑠

𝑆𝑇. Assuming that 

the direct distance between the 𝑔 − 𝑡ℎ collection center and the 𝑑 − 𝑡ℎ separation center is equal to 𝐷𝐼𝑔𝑑, the total cost 

of collection and transportation of non-recycled waste is equivalent to:  

 

∑ (𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑,𝑠

+ 𝜏𝐷𝐼𝑔𝑑𝐶𝑠
𝑆𝑇)𝑤𝑠𝑓𝑔𝑑𝑠                                                                                                                                                         (20) 

 

Which, 𝐷𝐼𝑔𝑑  denotes the direct distance between the nodes, in this problem, the actual distance between the nodes is 

considered by multiplying this distance by the meandering of the path denoted by 𝜏. Costs for the recycling centers and 

recycling plants were calculated according to the above conditions. The total costs of separation and transportation of the 

separated waste: 

 

 ∑ (𝐶𝑠
𝐷𝐶 + 𝜏𝐷𝑑𝑢𝐶𝑠

𝐷𝑇)𝑑,𝑢,𝑠 𝑤𝑠ℎ𝑑𝑢𝑠 .                                                                                                                                                 (21) 

 

The total costs of recycling and transportation of the recycled waste: 

 

∑(𝐶𝑠
𝑈𝐶 + 𝜏𝐷𝑢𝑟𝐶𝑠

𝑈𝑇)

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠.                                                                                                                                                      (22) 

 

In order to calculate the profit, it is need to calculated revenue first. To this end, it is assumed the prices of recycled 

materials sold to retailer 𝑟 are equal to 𝑃𝑟 , so total revenue from recycled material is equal to ∑ 𝑝𝑟𝑠𝑢,𝑟,𝑠 𝑤𝑠𝑞𝑢𝑟𝑠 . To 
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maximize the total profit (the total revenue minus the total cost), the problem is estimated based on two methods, i.e., the 

E(profit) and the CVaR. The first method (E(profit)), can be formulated as follows: 

 

𝑚𝑎𝑥 ∑ 𝑝𝑟𝑠

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠 − ∑ (𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑,𝑠

+ 𝜏𝐷𝐼𝑔𝑑𝐶𝑠
𝑆𝑇)𝑤𝑠𝑓𝑔𝑑𝑠 − ∑ (𝐶𝐷𝐶 + 𝜏𝐷𝐼𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢,𝑠

𝑤𝑠ℎ𝑑𝑢𝑠 

   − ∑(𝐶𝑈𝐶 + 𝜏𝐷𝐼𝑢𝑟𝐶𝑈𝑇)

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠 − 𝑃𝑀𝑇 (∑ 𝐶𝑙
𝐵𝛿𝑙𝑢

𝑙,𝑢

)                                                                                                          (23) 

𝑠. 𝑡. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (9) − (19), 

       𝑊𝑑 ≥ 0                                   ∀𝑑 ∈ 𝐷.                                                                                                                                        (24) 

 

       𝑉𝑙𝑢 ≥ 0                                   ∀𝑙 ∈ 𝐿,    ∀𝑢 ∈ 𝑈.                                                                                                                       (25) 

 

       𝐾𝑟 ≥ 0                                   ∀𝑟 ∈ 𝑅.                                                                                                                                          (26) 

 

       𝛾𝑠 ≥ 0                                    ∀𝑠 ∈ 𝑆.                                                                                                                                           (27) 

 

       𝑓𝑔𝑑𝑠 ≥ 0                                  ∀𝑔 ∈ 𝐺,    ∀𝑢 ∈ 𝑈,    ∀𝑠 ∈ 𝑆.                                                                                                   (28) 

 

       ℎ𝑑𝑢𝑠 ≥ 0                                  ∀𝑑 ∈ 𝐷,    ∀𝑢 ∈ 𝑈,    ∀𝑠 ∈ 𝑆.                                                                                                  (29) 

 

       𝑞𝑢𝑟𝑠 ≥ 0                                  ∀𝑢 ∈ 𝑈,    ∀𝑟 ∈ 𝑅,     ∀𝑠 ∈ 𝑆.                                                                                                  (30) 

 

       𝑠ℎ𝑟𝑠 ≥ 0                                  ∀𝑟 ∈ 𝑅,    ∀𝑠 ∈ 𝑆.                                                                                                                      (31) 

 

       𝛿𝑙𝑢 ∈ {0,1}                             ∀𝑙 ∈ 𝐿,    ∀𝑢 ∈ 𝑈.                                                                                                                       (32)  

 

Since E(Profit) does not explicitly include risk in its objective function, in the second method, the CVaR(profit) is utilized 

for the objective function. The purpose of the second method is to maximize the total CVaR(profit). Indeed, the objective 

function can be considered as the maximization of the expected value of 𝛽 percent of the worst scenario (Kazemzadeh 

and Hu, 2013). Variables 𝜁  and 𝜑𝑠  are used to formulate and linearize CVaR(profit) for a discrete distribution. The 

objective function used in this linearization model is to define the discrete CVaR for the left side tail by implementing 

auxiliary variables and s . 

 

Table 3. Parameters of Stochastic Programming (CVaR(profit) Objective Function) 

𝑃𝑟𝑜𝑓𝑖𝑡𝑠 Total profit under scenario 𝑠 

𝐶𝑜𝑠𝑡𝑠 Total costs under scenario 𝑠 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 Total revenue under scenario 𝑠 

𝜑𝑠, 𝜁 Variables for formulating CVaR(profit) 

 

The model with the CVaR(profit) objective function is as follows: 

𝑀𝑎𝑥 𝜁 −
1

𝛽
∑ 𝑤𝑠𝜑𝑠

𝑠

                                                                                                                                                                        (33) 

 

    𝑠. 𝑡    𝜑𝑠 ≥ 𝜁 − 𝑝𝑟𝑜𝑓𝑖𝑡𝑠                                 ∀𝑠 ∈ 𝑆.                                                                                                                (34) 

 

            𝜑𝑠 ≥ 0                                                       ∀𝑠 ∈ 𝑆.                                                                                                                (35) 
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           𝑝𝑟𝑜𝑓𝑖𝑡𝑠 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − 𝐶𝑜𝑠𝑡𝑠            ∀𝑠 ∈ 𝑆.                                                                                                                    (36) 

 

           𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝑝𝑟𝑠𝑞𝑢𝑟𝑠

𝑢,𝑟

                        ∀𝑠 ∈ 𝑆.                                                                                                                    (37) 

 

           𝑐𝑜𝑠𝑡𝑠 = ∑(𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑

+ 𝜏𝐷𝑔𝑑𝐶𝑠
𝑆𝑇)𝑓𝑔𝑑𝑠 + ∑(𝐶𝐷𝐶 + 𝜏𝐷𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢

ℎ𝑑𝑢𝑠 

                      + ∑(𝐶𝑈𝐶 + 𝜏𝐷𝑢𝑟𝐶𝑈𝑇)

𝑢,𝑟

𝑞𝑢𝑟𝑠 + 𝑃𝑀𝑇(∑ 𝐶𝑙
𝐵𝛿𝑙𝑢

𝑙,𝑢

).                                                                                                 (38) 

 

Subject to constraints (9) – (19), and (24) – (32). 

4. Empirical Results 

4.1. Case Study 

In this study, a problem is investigated with real data for the RL network of PET bottles recycling from 6 districts of 

Tehran City. To this end, it be assumed that in each of these districts, there are centers for collection and separation of 

waste. The desired amount of waste can be collected from each of the six districts. Then, the waste is transferred from 

these centers to the separation centers to be completely separated. Afterward, the waste is transferred to recycling centers, 

whose optimal locations are determined by the model. Finally, the waste is transferred from the recycling centers to the 

sales centers (in this study, 5 districts are considered in Tehran City).  

4.2. Data 

The model has been implemented in 6 districts (District 15 to District 20) as collection centers and separation centers, 

while six districts around Tehran are considered as candidates for recycling plants, and five districts (Districts 3, 5, 8, 12 

and 18) are considered as retail centers according to the data released by the Waste Organization of Tehran. In this study, 

it be assumed that each of these districts is a candidate for the construction of recycling plants with three levels of capacity, 

i.e., 500, 600, and 700 tons per day for recycling separated PET. According to the statistics of the Waste Organization, 

about 30% of the total waste is dry waste, while about 5% of the dry waste is PET (disposed bottles). According to the 

statistics published by the abovementioned organization, the budget allocated for recycling the municipal waste in Tehran 

is about two billion dollars a year. Therefore, given that six different districts among the total 22 districts of Tehran City 

were considered as candidates for the recycling plant, the budget with these proportions is about 34.5 billion dollars.  

 

In this study, five districts as demand areas in Tehran were considered. The demand for each of these areas were 

determined relatively based on the size of the population in each district according to the Census Report of 2011. It was 

also assumed that the percentage of recyclable bottles is 30% of the total amount of used bottles, which equals 130 tons 

per day. 

 

Both confidence levels 𝛼 and 𝛽 are assumed as 20%, and they are used to calculate the CVaR of shortage and CVaR of 

profit. Moreover, the maximum value of recycled materials demand is set at 18 tons per day. 

 

The sustainability factor in all waste collection centers and the reduction factor, for possible losses during transportation 

and loading, are both set to 5%. The separation factor and the recycling factor for all separation centers and recycling 

plants are set equal to 80%. The meandering factor (the indirectness of the path) which is used to transform the direct 

distance between a pair of nodes to the actual distance between the two nodes is equal to 1.26 based on Kheyrollahi et al. 

(2016). 
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The scenarios of our study are estimated based on the average parameter value. Three scenarios are considered for the 

mixed collected waste, three scenarios for recycling materials prices, and eight scenarios for the cost of transport between 

collection and separation centers. By combining these scenarios, there will be 72 states for the selected problem. These 

states are shown in the Table 4. 

 

Table 4. Scenarios assumptions  

Scenarios Amount of collected waste probability of the occurrence 

Scenario 1 ∆𝑄 = −5% 1/3 

Scenario 2 𝑄 1/3 

Scenario 3 ∆𝑄 = +5% 1/3 

 Price of recycled waste  

Scenario 1 ∆𝑃𝑟𝑠 = −10% 1/3 

Scenario 2 𝑃𝑟𝑠 1/3 

Scenario 3 ∆𝑃𝑟𝑠 = +10% 1/3 

Transportation cost for unseparated wastes 

Scenario 1 ∆𝐶𝑔𝑡 = −10% 1/2 

Scenario 2 ∆𝐶𝑔𝑡 = +10% 1/2 

Transportation cost for separated wastes 

Scenario 1 ∆𝐶𝑑𝑡 = −10% 1/2 

Scenario 2 ∆𝐶𝑑𝑡 = +10% 1/2 

Transportation cost for recycled wastes 

Scenario 1 ∆𝐶𝑢𝑡 = −10% 1/2 

Scenario 2 ∆𝐶𝑢𝑡 = +10% 1/2 

Source: Research Assumptions 

 

The proposed models are intended to determine investment decisions for the location and the capacity of recycling plants, 

as well as decisions related to waste transport and waste delivery. The decisions of the first stage must be made before 

the uncertainty evaluation, and the decisions of the second stage will be made after the system parameters are estimated. 

In this study, decisions of the first stage involve investment decisions (for location and capacity of the recycling plants). 

When uncertainty is perceived, the decisions of the second stage are taken, including collection flows from collection 

sites to the separation and recycling centers, and recycled material flows into demand areas. The uncertainty considered 

in this model includes initial waste supply, recycling market price, and logistics transportation costs. Since the expected 

value of risk ignores the risk of decision-making in adverse conditions, to manage the risk management system, The 

CVaR was used in the second objective function. 

 

4.3. Results 

One of the main challenges in the RSC network design involves controlling the shortage of estimated demand. In our case 

study, the two proposed models have been implemented and compared with models with the same data as default, but 

without considering the CVaR of shortage. The first model, with the E(profit) objective function, is named model (A), 

while the second model is the model with the CVaR objective function, which is named model (B)*. Model A can be 

represented as follows: 
 

𝑀𝑎𝑥 ∑ 𝑝𝑟𝑠

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠 − ∑ (𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑,𝑠

+ 𝜏𝐷𝐼𝑔𝑑𝐶𝑠
𝑆𝑇)𝑤𝑠𝑓𝑔𝑑𝑠 − ∑ (𝐶𝐷𝐶 + 𝜏𝐷𝐼𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢,𝑠

𝑤𝑠ℎ𝑑𝑢𝑠 

 

   − ∑ (𝐶𝑈𝐶 + 𝜏𝐷𝐼𝑢𝑟𝐶𝑈𝑇)𝑢,𝑟,𝑠 𝑤𝑠𝑞𝑢𝑟𝑠 − 𝑃𝑀𝑇(∑ 𝐶𝑙
𝐵𝛿𝑙𝑢𝑙,𝑢 )                                                                                                          (39) 

    

                                                                 
* The models are run in GAMS V. 24.8.3 software application with the Baron solver. 
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Subjected to the constraints (9) - (19), (24) - (26), and (28) - (32). 

 

Figure 7 depicts the results obtained from model A. As shown in the figure, there is a shortage of demand which is not 

estimated in districts 3, 5, and 8. In particular, district 8 is facing a shortage of 7550100.4 kilograms per year, triggering 

the risk criterion to be used to control shortages. 

 
Figure 7. The location of recycling plants for model A without the constraint of shortage 

 

Model A with the constraint of value-at-risk of shortage is formulated as follows:  

𝑀𝑎𝑥 ∑ 𝑝𝑟𝑠

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠 − ∑ (𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑,𝑠

+ 𝜏𝐷𝐼𝑔𝑑𝐶𝑠
𝑆𝑇)𝑤𝑠𝑓𝑔𝑑𝑠 − ∑ (𝐶𝐷𝐶 + 𝜏𝐷𝐼𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢,𝑠

𝑤𝑠ℎ𝑑𝑢𝑠  

   − ∑(𝐶𝑈𝐶 + 𝜏𝐷𝐼𝑢𝑟𝐶𝑈𝑇)

𝑢,𝑟,𝑠

𝑤𝑠𝑞𝑢𝑟𝑠 − 𝑃𝑀𝑇 (∑ 𝐶𝑙
𝐵𝛿𝑙𝑢

𝑙,𝑢

)                                                                                                         (40)   

 

Subject to constraints (9) – (19), and (24) – (32). 

 

In Figure 8, when the constraint of CVaR of shortage is added to the model with the objective function of E(Profit), there 

is not much shortage in a specific node. Moreover, after adding the constraint of VaR of shortage, the total shortage of a 

system is reduced due to restricting the upper limit of the shortage. In addition, the total profit of the model is reduced 

due to the addition of constraints to the model. 
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Figure 8. The location of recycling plants for model A with the constraint of shortage 

 

The following formula shows model B without the constraint of CVaR of shortage: 

𝑚𝑎𝑥 𝜁 −
1

𝛽
∑ 𝑤𝑠𝜑𝑠

𝑠

                                                                                                                                                                      (41) 

 

    𝑠. 𝑡    𝜑𝑠 ≥ 𝜁 − 𝑝𝑟𝑜𝑓𝑖𝑡𝑠                                         ∀𝑠 ∈ 𝑆.                                                                                                      (42) 

 

            𝜑𝑠 ≥ 0                                                                ∀𝑠 ∈ 𝑆.                                                                                                     (43) 

 

           𝑝𝑟𝑜𝑓𝑖𝑡𝑠 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − 𝐶𝑜𝑠𝑡𝑠                     ∀𝑠 ∈ 𝑆.                                                                                                      (44) 

 

    𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝑝𝑟𝑠𝑞𝑢𝑟𝑠

𝑢,𝑟

                                  ∀𝑠 ∈ 𝑆.                                                                                                            (45) 

 

   𝑐𝑜𝑠𝑡𝑠 = ∑(𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑

+ 𝜏𝐷𝑔𝑑𝐶𝑠
𝑆𝑇)𝑓𝑔𝑑𝑠 + ∑(𝐶𝐷𝐶 + 𝜏𝐷𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢

ℎ𝑑𝑢𝑠  

   + ∑ (𝐶𝑈𝐶 + 𝜏𝐷𝑢𝑟𝐶𝑈𝑇)𝑢,𝑟 𝑞𝑢𝑟𝑠 + 𝑃𝑀𝑇(∑ 𝐶𝑙
𝐵𝛿𝑙𝑢𝑙,𝑢 )                                                                                                              (46)   

 

Subjected to the constraints (9) - (19), (24) - (26), and (28) - (32). 

 

As shown in Figure 9, there is a significant amount of shortage in district 8. The total amount of shortage is significantly 

higher compared to model A. The reason for this difference is that model A seeks to maximize E(Profit) regardless of the 

risk of decisions, while model B maximizes the total profit by considering the risk of undesirable decisions. 
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Figure 9. The location of recycling plants for model B without the constraint of shortage 

 

In this case, Model B considers an upper limit for the CVaR of shortage to reduce shortages in demand areas. The model 

is formulated as follows: 

max 𝜁 −
1

𝛽
∑ 𝑤𝑠𝜑𝑠

𝑠

                                                                                                                                                                        (47) 

   

    𝑠. 𝑡    𝜑𝑠 ≥ 𝜁 − 𝑝𝑟𝑜𝑓𝑖𝑡𝑠                                         ∀𝑠 ∈ 𝑆.                                                                                                        (48) 

 

            𝜑𝑠 ≥ 0                                                                ∀∈ 𝑆.                                                                                                           (49) 

 

           𝑝𝑟𝑜𝑓𝑖𝑡𝑠 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − 𝐶𝑜𝑠𝑡𝑠                     ∀𝑠 ∈ 𝑆.                                                                                                         (50) 

 

           𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝑝𝑟𝑠𝑞𝑢𝑟𝑠

𝑢,𝑟

                                  ∀𝑠 ∈ 𝑆.                                                                                                       (51) 

 

           𝑐𝑜𝑠𝑡𝑠 = ∑(𝐶𝑔𝑠
𝑆𝐶

𝑔,𝑑

+ 𝜏𝐷𝑔𝑑𝐶𝑠
𝑆𝑇)𝑓𝑔𝑑𝑠 + ∑(𝐶𝐷𝐶 + 𝜏𝐷𝑑𝑢𝐶𝐷𝑇)

𝑑,𝑢

ℎ𝑑𝑢𝑠 

                      + ∑(𝐶𝑈𝐶 + 𝜏𝐷𝑢𝑟𝐶𝑈𝑇)

𝑢,𝑟

𝑞𝑢𝑟𝑠 + 𝑃𝑀𝑇 (∑ 𝐶𝑙
𝐵𝛿𝑙𝑢

𝑙,𝑢

)                                                                                              (52) 

 

Subjected to the constraints (9) - (19), and (24) - (26). 

The result of implementing the model with the objective function and the constraint of the value-at-risk of shortage is 

shown in Figure 10. As can be observed from this figure, the sum of the total shortage is reduced compared to model B 

without constraints. 
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Figure 10. The location of recycling plants for model B with shortage constraints 

 

E(Profit) is increased after the constraints of shortage are applied in these models. Moreover, CVaR(Profit) is reduced 

due to the addition of constraints. This is because Model B maximizes profits in the worst condition, while the objective 

of Model A is maximizing E(Profit). The results of the two models show that the constraint of CVaR of shortage is a 

reasonable and appropriate method to deal with the risk of a shortage, which can be applied in systems where there is a 

tremendous shortage in some demand areas with high shortage cost. Since the constraints of the model can divide a 

significant shortage in the district by the parameter 𝛼 of the CVaR in total demand centers, there will be no extreme 

shortage in a particular district. Moreover, by comparing Models A and B, regardless of the CVaR constraint, it is found 

that Model B is more efficient for conservative decisions due to the risk-taking feature embedded in the objective function.  

4.4. Sensitivity Analysis 

In this section, Model B with the total CVaR(Profit) and the constraints of CVaR(Shortage) was examined through a 

sensitivity analysis; the results are presented in Figure 11 ,12 , and 13. First, the sensitivity of the objective function to 

the price of recycled materials was analyzed. By controlling other parameters of the recycled materials at each stage (base 

price of 28,000 Rials), the results show that the overall profit of the supply chain is increased. Moreover, by reducing the 

price of the total supply chain, the total revenue is reduced to zero at the price of 3900 Rials (Figure 11). 

 

 
Figure 11. Sensitivity analysis of total profit to the price 
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In this section, the cost of transportation can be increased by 10% at each stage to analyze the sensitivity of the objective 

function to the cost of transportation by keeping other parameters constant. As shown in the diagram below, the overall 

profits of the supply chain are significantly reduced by increasing the transportation cost. Therefore, transportation cost 

plays a vital role in the cost structure of recycling. Therefore, the most effective way to reduce the total cost of the system 

is to reduce transportation costs (Figure 12). This result is in the line with the findings of  (Dat et al., 2012). 

 

 
Figure 12. Sensitivity analysis of total profit to the transportation cost 

 

In this section, the goal of the objective function is to analyze the initial amount of the collected waste. In this section, by 

keeping other parameters constant, the initial amount of waste collected can be increased by 5, 10, and 20 %, respectively. 

The results show that by increasing the initial amount of the collected waste, the total revenue increases, while the total 

profit is almost constant since the capacity of waste collection centers is assumed to be limited (Figure 13). 

 

 
Figure 13. Sensitivity analysis of total profit to the collected waste 

 

5. Discussion and Conclusions  

Waste management in Tehran City with a population of 8.43 million people and a 790-gram per capita annual production 

of wastes (about 2.5 times the global average) is highly important in pursuit of achieving circular economy goals. In this 

regard, the main purpose of this study is to investigate the design of an RSC network for recycling PET bottles under 

uncertainty. To realize this objective, a mathematical programming framework is presented with a systematic planning 

approach for investment decisions for the location and capacity of recycling plants, transportation, and delivery of 

recycling materials. Uncertainty in this problem involves the supply of raw materials, market prices of recycling materials, 

and logistics costs. Also, one of the main challenges in this study is incurring a large amount of shortage in a single 

demand area. 
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Two approaches, i.e., E(Profit) and CVaR(Profit), have been modeled and used in the objective function formulation with 

and without shortage constraint (CVaR(shortage). The first approach tries to maximize E(Profit), while the second method 

is more focused on reducing the risk of the system under demand shortage conditions. Furthermore, by introducing 

CVaR(shortage) as a constraint, the effects of the integration of the model with stochastic shortage control have been 

investigated. To evaluate the effectiveness of the proposed models, real data from different districts of Tehran City were 

applied. 

 

Comparing the results of the two models indicates that the constraint of value-at-risk of shortage is a reasonable and 

appropriate way to deal with the risk of a shortage, which can be applied in systems where there is a significant and costly 

shortage in some demand areas. Accordingly, in a particular district, there will be no extreme shortage. In summary, the 

comparison between the proposed models shows that models with E(Profit) objective function represent a lower overall 

shortage, whereas models with CVaR(Profit) objective function represent more shortage. 

 

In summary, comparing the proposed models suggests that models with the objective function of E(Profit) represent a 

lower shortage, whereas models with the objective function of CVaR(Profit) represent more shortage in demand centers. 

Therefore, Model B is more conservative in the face of the risk of shortage due to the risk-taking feature embedded in the 

objective function, which can be adjusted in accordance with the decision maker’s preference by altering the 𝛽 coefficient.  

 

Moreover, the results of the sensitivity show that the total profit of the supply chain is significantly reduced by increasing 

the cost of transportation. Therefore, transportation cost plays an essential role in the cost structure of recycling stages. 

Moreover, by increasing the initial amount of the collected waste, the total revenue increases, while from one of the stages 

onwards, the total profit remains almost constant because the capacity of the waste collection centers is limited.  

 

As can be seen from the literature review, few studies have modeled the profit of waste recycling (PET bottles) using the 

CVaR approach. Therefore, future studies are suggested to include environmental impacts, and especially the social 

aspects of sustainable development in the model, and can also be performed at inter-city and even international levels 

(between countries). In addition, investigating the separation of waste at the source as a scenario and the impact of this 

parameter on the objective function; and carrying out a comparative study of efficient problem solving algorithms could 

be other directions for future work in this area. 
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