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Abstract 

Urban delivery, especially the last-mile delivery, has become an increasingly important area in the global supply chain 

along with the boom of e-commerce. Delivery companies and merchants can introduce some innovative solutions such 

as the equipment of autonomous vehicles (AVs) to decrease their operating costs, environmental impact, and social 

risks during the delivery process. This paper mainly develops a mathematical model to get the best allocation of AVs 

among city logistics centers (CLCs) as a mixed delivery method. The advantage of the presented model stems from 

considering the equipment cost, the delivery cost, and the CO2 emission, which is measured through social carbon cost 

(SCC). In addition, this paper establishes a risk model considering the impact of seasonal variations to evaluate the 

infection risk of delivery during pandemic periods for four potential delivery scenarios: customers going to CLCs, 

ordering online and picking-up at CLCs, delivering by traditional vehicles (TVs), and delivering by the mixed method 

with the optimal allocation of AVs. The research finds the optimal allocation for a London case, reveals the relationship 

between the nominal service capacity (NCpa) of CLCs and the optimal number of CLCs equipped with AVs, concludes 

that the more CLCs are equipped with AVs, the fewer CO2 emissions and the fewer citizens will be infected, and 

provides some managerial insights that may help delivery companies and merchants make appropriate decisions about 

the allocation of AVs. 

Keywords: Urban logistics; Cost optimization; CO2 emission; Infection risk; Net Present value. 

 

1. Introduction  

In recent years, the rise of e-commerce has led to a super urban delivery market (Akeb et al., 2018) and an increasing 

number of logistics service providers (LSPs) who compete over market shares and customer satisfaction (Scherr et al., 

2019). Although the development of urban logistics has promoted the prosperity of the world economy, the increasing 

transportation contributes a lot to greenhouse gas (GHG) emissions (Li et al., 2019). Reducing GHG pollutions, 

especially CO2 emissions, is one main challenge face by businesses today to improve economic sustainability (Guerrero 

et al., 2013). Moreover, there has been an increasing social concern on environmental protection not only among 

environmental advocacy groups and policymakers but also among enterprises who have begun to consider ecological 

issues parallel to their economic performance (Abbasi and Nilsson, 2016; Rao et al., 2015). Therefore, LSPs are under 

pressure to decrease their delivery cost (Palak et al. 2014) and to reduce the impact on the environment (Savelsbergh 

and Van Woensel, 2016). Furthermore, minimizing the infection risk of both customers and staff is a growing challenge 

that LSPs are facing in encountering an epidemic situation such as the Coronavirus 2019 (COVID-19) pandemic. This 

challenge has become an international public health issue because the outbreak of COVID-19 has affected worldwide 

people and has evoked their vigilance against the infection risk in their daily logistics activities, especially when they 

contact unfamiliar individuals such as those that they meet during the process of delivering or receiving parcels 

(Elavarasan and Pugazhendhi, 2020). 
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To meet these economic, environmental, and risk-mitigation targets, many LSPs are considering to implement 

innovative delivery options, such as using autonomous vehicles (AVs) for parcel delivery. Fraedricha (2019) defines 

delivery AVs as a kind of self-driving vehicle, which can be used by LSPs for goods deliveries to customers’ home or 

to parcel-collection boxes. Masoud and Jayakrishnanb (2017) predicted that AVs would be widely used in the near 

future because they have considerable advantages conducive to alleviating traffic congestion, improving traffic 

efficiency and safety, reducing GHG emission, and saving energies (Vahidia and Sciarretta, 2018; Fagnant and 

Kockelman, 2015; Zhu and Ukkusuri, 2015). Besides, Elavarasan and Pugazhendhi (2020) proposed that new 

technologies such as delivery robots or AVs can help a lot in mitigating infection and in controlling the situation like 

the COVID-19 pandemic. 

Emerging technologies in smart sensors and communication are making the use of AVs possible in recent years (Wu et 

al. 2020; Brummelen et al. 2018). And, practically, there has been an increasing worldwide interest in developing 

robots/vehicles for delivery to increase the efficiency and safety of the whole supply chain. Hoffmann and Prause 

(2018) stated that Estonia played a leading role in this field with its start-up, Starship Technologies, which focuses on 

providing a promising solution to solve the last-mile delivery problem. In September 2016, the start-up announced a 

strategic partnership with Mercedes-Benz Vans, a German truck producer, to develop the ‘Robovans’ – a truck-based 

autonomous-robots model for delivery. This model, indeed, realizes the ‘hub and spoke’ concept – a well-known 

standard model in logistics – and creates a smart solution for bridging longer distances of delivery. Besides, Xia and 

Yang (2018) revealed that China was also an important player in the area of autonomous delivery robots, as the largest 

e-commerce platform by revenue, JD.com, conducted its first trial in autonomous driving vehicles for last-mile delivery 

on June 18, 2017, at Renmin University, Beijing. The vehicle delivered about 10 packages in approximately six hours. 

JD subsequently deployed approximately 60 autonomous driving vehicles for last-mile delivery at Beijing, Xian, and 

Hangzhou for pilot AI-based package delivery. Moreover, a Stanford research conducted by Lee et al. (2016) mentioned 

that other leading companies developing delivery robots included SideWalk, which has already conducted pilot projects 

with DHL in Lithuania, and Dispatch, which was formed by MIT and University of Pennsylvania experts. Furthermore, 

countries like China and India have implemented robots or AVs to deliver foods and medicines in their healthcare 

supply chain systems to mitigate the infection risk of the COVID-19 epidemic (Elavarasan and Pugazhendhi, 2020). 

Scherr et al. (2019) concluded that whether the use of AVs can cause savings to LSPs depends on their costs relative to 

TVs. Although, theoretically, AVs have advantages such as lower GHG emissions and the higher degree of safety, the 

weakness of AVs derives from their apparent inability to completely substitute manned vehicles and from their 

significantly high manufacturing cost primarily resultant from the added cost of various sensors they need to be 

equipped with (Duarte and Ratti, 2018; Masoud and Jayakrishnanb, 2017). These problems can be solved along with 

technical development in the future. With the widespread use of AVs for delivery, customers will gradually accept this 

model because they will be increasingly impressed with the high efficiency and low risk of AVs rather than with the 

mechanical and indifferent interactions with these robots. Burn (2013) predicted that the AVs will be widely used for 

logistics activities and will greatly change the transportation systems in the future. 

City Logistics Centers (CLCs) are an essential part of the modern urban logistics system, and the selection of the 

location of a CLC has become a critical challenge in logistics and supply chain management (Rao et al., 2015). This 

paper, aiming at finding the optimal allocation of a mixed delivery fleet including both AVs and TVs, highlights a 

research perspective of urban logistics that is very different from the traditional perspectives of scholars who focus on 

comparing the economic or environmental impacts of only using AVs with those of only using TVs. In this study, the 

main objectives are to optimize the allocation of delivery vehicles among all CLCs in terms of the total cost and 

environmental impact and to evaluate the advantage of AVs in reducing infection risk during pandemic periods. 

This paper, for the first time, mainly develops an optimization model to get the best allocation of AVs among city 

logistics centers (CLCs) as a mixed delivery method. The advantage of the presented model stems from considering the 

equipment cost, the delivery cost, and the CO2 emission, which is measured through social carbon cost (SCC). In 

addition, this paper creatively establishes a risk model considering the impact of seasonal variations to evaluate the 

infection risk of delivery during pandemic periods for four potential delivery scenarios: customers going to CLCs, 

ordering online and picking-up at CLCs, delivering by traditional vehicles (TVs), and delivering by the mixed method 

with the optimal allocation of AVs. The research finds the optimal allocation for a London case, reveals the relationship 

between the nominal service capacity (NCpa) of CLCs and the optimal number of CLCs equipped with AVs, concludes 

that the more CLCs are equipped with AVs, the fewer CO2 emissions and the fewer citizens will be infected, and 
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provides some managerial insights that may help delivery companies and merchants make appropriate decisions about 

the allocation of AVs. 

This research develops in the following outline. It first briefly introduces the background of the autonomous vehicles 

used in urban logistics and lists the research objectives. Following that, the literature-review section presents the current 

research achievements about autonomous delivery vehicles and the urban-logistics optimization considering delivery 

cost, pollution, and social risk. In light of these previous studies, the paper then moves into the proposed mathematical 

model to design a logistics network equipped by autonomous vehicles with measuring the total infection risk. The 

results are summarized and analyzed in the ‘results and analysis’ section. Then the following ‘discussions and 

managerial implications’ section discusses the key findings and proposes some business suggestions from a practical 

perspective. Finally, the conclusion section reviews the whole study and discusses the implication of the findings to 

future research in the area of urban logistics. 

2. Literature review 

The rapid urbanization and the development of e-commerce stimulate the social demand for an efficient transportation 

and logistics system (Çolak et al., 2016). However, this demand is increasingly difficult to be satisfied due to the 

growing urban problems such as congestion and pollution (Batty, 2008; Bettencourt, 2013). Therefore, in recent years, 

scholars in logistics and transportation areas have focused a great deal of attention on evaluating the advantages and 

impacts of using autonomous vehicles (AVs) for urban logistics in more detail by taking account of three aspects: 

economy, environment, and society (Mohammed et al. 2017; Chanchaichujit 2016). 

Decreasing the environmental burden while minimizing total cost is a critical objective of logistics managers and 

relative scholars (Sherafati et al., 2020). Guerrero et al. (2013) proposed a Trucking Sector Optimization (TSO) model 

to evaluate the impact of different decisions made by truck operators on life-cycle GHG emissions. This model 

simulates the transitional dynamics of the truck-delivery industry in responses to changes in the business environment 

and time-dependent governmental interventions, and these scholars analyzed the optimal decisions considering the 

change of policies, GHG emissions, and the costs usually observed in this industry, such as fuel cost, capital cost, 

human-resource cost. Some other scholars also built this kind of optimization model to evaluate the different decisions 

about vehicle fleets considering environmental issues, especially GHG emissions. For instance, Figliozzi et al. (2011) 

used an integer program to find the optimal composition of the personal vehicle fleet that minimizes the total cost that 

includes the cost of GHG emissions. Similarly, Stasko and Gao (2010) used an integer programming model to 

determine the optimal management of a bus fleet. They held that bus operating companies should equip buses with 

more energy-efficient propulsion technologies to satisfy governmental regulations. Furthermore, some studies 

considered the properties of both cost and time efficiency of the logistics system. The time efficiency mainly refers to 

minimize total time or distance from CLCs to customers. Wong et al. (2018) proposed a comprehensive carbon-driven 

multi-criteria truckload utilization model to optimize the loading of consolidated cargos from multiple customers with 

different sizes, weights, and destinations into a fleet of trucks with minimum distance, GHG emissions, and fuel 

consumption. Their results show that the model can be used to improve the operational efficiencies and minimize the 

carbon emitted from trucks. Other scholars, instead of only considering the properties of vehicles, aimed to optimize the 

number, location, and capability of logistics centers such as CLCs. Alho et al. (2018) focused on parking optimization 

to improve mobility by optimizing the location, number, and usage of loading/unloading bays for urban freight vehicles. 

Besides, Tsao and Thanh (2019) developed a multi-objective mixed robust possibilistic flexible programming 

(MOMRPFP) approach to optimize the design of a sustainable dry port network. Their results show that the total 

network cost and CO2 emissions will greatly decrease by optimization.  

Different form scholars such as Chabot et al. (2018) who developed optimization models to minimize the costs and 

GHG pollutions based on current manned vehicles, some scholars have begun to study the advantages of AVs. Wu et al. 

(2020) modeled a mixed traffic network with non-autonomous streets and special expressways for AVs to achieve the 

system optimum, considering user cost, travel time, and travel distance. Feng (2021) studied the time and cost 

efficiency of AVs based on a case study at Coventry city in UK. He concluded that using AVs will improve the time 

efficiency and the long-term cost efficiency. Masoud and Jayakrishnan (2017) proposed an optimization model for AVs 

to minimize total travel time and concluded that a central shared AVs service provider could achieve the highest 

environmental benefits. The shared AVs model is also analyzed by Lokhandwala and Cai (2020), who found that shared 

AVs generated by electricity can greatly reduce daily CO2 emission. Besides, Lopez et al. (2020) demonstrated that 

using shared AVs can have lower costs than using privately-driven cars.  
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It is also necessary to study the influence of using delivery AVs from a social perspective. Wang and Zhao (2019) 

evaluated the risk preference of adopting AVs among different socioeconomic groups considering two kinds of social 

risks – economic risk and psychometric risk. Considering the infection risk during pandemic periods such as the 

worldwide pandemic COVID-19, Elavarasan and Pugazhendhi (2020) proposed a hospital supply chain system 

integrating AVs for the distribution of products to mitigate the infection risk. They held that technologies such as 

Artificial Intelligence (AI), Internet of things (IoT), AVs, and drones could help the whole society to control epidemic 

situations.  

Table 1. A summarized comparison of previous studies on urban logistics optimization considering delivery cost, pollution, and 

social risk 
Reference Optimal 

model 

Using 

AVs 

Time 

efficiency 

Equipment 

cost 

Delivery 

cost 

CO2 

emission 

Pandemic 

situation 

Delivery 

type 

Chabot et al. (2018)           Intercity  

Masoud and 

Jayakrishnanb 

(2017) 

          General  

Wu et al. (2020)           Intercity  

Scherr et al. (2019)             Urban  

Guerrero et al. 

(2013) 

           Intercity  

Tsao and Thanh 

(2019) 

           Seaport 

Lokhandwala and 

Cai (2020) 

         City travels 

Lopez et al. (2020)            General  

Anderhofstadt and 

Spinler (2020) 

            Intercity  

Alho et al. (2018)           Urban  

Wong et al. (2018)            Intercity  

Govindan et al. 

(2020) 

        Healthcare 

Elavarasan and 

Pugazhendhi (2020) 

         Healthcare 

Feng (2021)             Last-mile 

This research              Urban 

 

Table.1 summarizes the previous related studies and the comparison with this research. This research is devoted to 

filling the following three research gaps that can be extracted from Table.1. 

The first research gap lies in the insufficient study of the advantage of AVs used in urban logistics activities through 

quantitative comparison with traditional vehicles (TVs). Although most scholars, such as Masoud and Jayakrishnanb 

(2017); Wu et al. (2020); Lokhandwala and Cai (2020); Lopez et al. (2020); Wang and Zhao (2019), studied the 

advantage of AVs for general transportation, few of them considered using AVs for urban logistics activities. To our 

knowledge, only Anderhofstadt and Spinler (2020) revealed that freight companies are generally open to switching to 

innovative trucks including AVs because these vehicles will lead to fewer costs and GHG emissions, by conducting a 

qualitative choice-based conjoint (CBC) analysis be questioning employees from freight companies in Germany.  

The second research gap is that few scholars consider the total economic and environmental impact of a mixed delivery 

fleet of AVs and TVs. Only Scherr et al. (2019) proposed a service network with a mixed delivery fleet of AVs and TVs 

without considering the ecological impacts. The fact that many previous studies considered the AVs only a kind of 

innovative tool that could totally substitute TVs, a practice that overlooked the advantages of TVs especially for CLCs 

with low delivery frequencies and few customers and for those in developing countries where the traditional delivery 

cost is low, led to a de-emphasizing of the role of TVs in a mixed delivery fleet that is more available and efficient in 

the near future.  



Economic and Ecological Optimization of the London Urban Logistics System Considering … 

 

 

  

Int J Supply Oper Manage (IJSOM), Vol.8, No.2 118 

 
 
 
 

The third research gap is the lack of study on the relationship between delivery AVs and the infection risk. Although 

scholars such as Elavarasan and Pugazhendhi (2020) proposed that hospitals can use new technologies such as AVs for 

the distribution of foods and medicines to mitigate infection risk, there is a lack of research about the relationship 

between using AVs for urban delivery activities, instead of the supply chain inside hospitals, and the infection risk 

during long-term pandemic periods such as the COVID 19 broke out at the beginning of 2020, a risk that worldwide 

people are worried about because of the tremendous lasting effect caused by this contagion (Govindan et al. 2020).  

For filling these three defined research gaps, this research proposed a mathematical model to optimize the allocation of 

AVs and TVs among the CLCs owned by one LSP by minimizing the total cost of equipment cost, delivery cost, and 

social cost of CO2 emissions. Besides, this research evaluates the infection risk of the optimal allocation and compares 

it with the risk under the other three common logistics patterns. 

3. Problem description and assumptions 

In this section, two mathematical models are proposed. The first model focusses on total discounted cost (TDC), the 

sum of three main costs: namely, the total cost of equipment (TCE), the total accumulated discounted cost of delivery 

(TDCD), and the total discounted social cost of CO2 pollution (TDCP). One objective of this research is to find the 

optimal allocation of AVs and TVs, the allocation through which the total cost is minimum, among all CLCs under 

certain nominal/maximum service capacity (NCpa) of these CLCs.  

The second risk model is proposed for another research objective – evaluating the infection risks, during pandemic 

periods, of potential urban logistics activities categorized into four patterns, as shown in Fig.1. The optimal allocation in 

the first pattern is that under the most reasonable NCpa value defined in the first model.  

 

Figure1. An illustration of four potential patterns of logistics between CLCs and customers 

 

In this research, the optimization model integrates the objectives of minimizing both the economic costs and the 

environmental impact. The economic costs include TCE, which is incurred due to initial investment on vehicles, and 

TDCD, which is the accumulated discounted value of all the delivery costs during the service life of these vehicles. The 

environmental impact, which refers to CO2 pollution in this research, is usually measured in tons of emission. In this 

research, the CO2 emissions are multiplied by the trade price of CO2, and the results represent the social cost of carbon 

(SCC). In this way, the accumulated CO2 pollution is represented as a kind of cost that can be added directly with the 

economic expenses. The concept of SCC is prevalently used to measure environment costs among scholars such as 

Hänsel and Quaas (2018); Hepburn (2017); Ricke et al. (2018). 
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Another advantage of the optimization model is that it uses the discounted cash flow (DCF) method to reflect the time 

value of money. This method, discounting each cost that will happen in the future to the initial time of equipment, 

makes it more reasonable and acceptable to add the delivery costs and pollution costs incurred in different years and the 

initial TCE together.  

In the infection risk model, the infection risk is evaluated by the accumulated infected population (AIP), which depends 

on the probability of being infected for any individual when a customer meets another person within a certain society 

(𝐼𝑃𝑤
∗). The calculation of AIP is based on the assumption made by Kissler et al. (2020) that the pandemic period will last 

in the long term. The accumulated infected risk, represented as the accumulated probability of being infected, cannot be 

directly calculated through the continued product of the infected probability/risk per week, because people who have the 

risk of being infected in one week are not those already infected in any previous weeks, but those survivors uninfected 

in all previous weeks. In this research, the problem is solved by calculating the accumulated infected risk by one minus 

the continued product of the uninfected probability per week. Another merit of this model is that it considers the value 

of 𝐼𝑃𝑤
∗ varies in any year due to seasonal variation in virus transmission. As suggested by Kissler et al. (2020), the risk 

or probability of being infected is assumed to be seasonal with a period of 52 weeks.   

This research is based on the following main assumptions: 

 Each CLC is equipped with the same number of only one kind of delivery vehicles – AVs or TVs. 

 AVs and TVs are assumed to be homogenous with the same capacity. 

 All AVs are energized by electricity, and for CLCs equipped with AVs, the main delivery cost is the energy cost. 

 All TVs are energized by traditional fuel energy, and for CLCs equipped with TVs, the main delivery cost 

included fuel cost and driver-based cost. 

 Each CLC serves at least one customer zone, and each customer zone is only served by one CLC. 

 The impact of pandemic risk is in the long term. 

 The discount rate is constant in the long term. 

 

The following nomenclature collects all the abbreviations used in this paper and all the sets, parameters, and decision 

variables that are considered for the mathematical formulae and models. 

Sets: 

𝐼 Set of CLCs, 𝑖 ∈ 𝐼, 𝑁 is the number of CLCs 

𝐽 Set of customer zones, 𝑗 ∈ 𝐽, 𝑀 is the number of customer zones 

𝑇 Set of periods (in years), 𝑡 ∈ 𝑇, 𝑁𝑇 is the number of total years in this study 

𝑊 Set of periods (in weeks), 𝑤 ∈ 𝑊, 𝑁𝑊 is the number of weeks 

  

Parameters: 

𝐶𝑜𝑑𝐴𝑖𝑗  Per delivery cost from CLC 𝑖 to customer zone 𝑗 using autonomous vehicles. 

𝐶𝑜𝑑𝑇𝑖𝑗 Per delivery cost from CLC 𝑖 to customer zone 𝑗 using traditional vehicles. 

𝐶𝑜𝑝𝐴𝑖𝑗  Cost of CO2 pollution per delivery from CLC 𝑖 to customer zone 𝑗 using autonomous vehicles. 

𝐶𝑜𝑝𝑇𝑖𝑗  Cost of CO2 pollution per delivery from CLC 𝑖 to customer zone 𝑗 using traditional vehicles. 

𝐸𝐶𝐴𝑖 Equipment cost of autonomous vehicles for CLC 𝑖. 

𝐸𝐶𝑇𝑖 Equipment cost of traditional vans/vehicles for CLC 𝑖. 

𝑃𝑜𝑝𝑗  Population of customer zone 𝑗. 

𝑁𝐶𝑝𝑎 Nominal capacity – maximum average population each CLC can serve. 

𝑑𝑖𝑗  The distance (in km) from CLC 𝑖 to customer zone 𝑗. 

𝐼𝑃𝑤
∗  Average probability of being infected for each customer when he or she meets one another 

person at week 𝑤. 

𝑛𝑐 Number of people contacted by each customer per time whenever he or she goes to CLCs or is 

delivered. 
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Constants 

𝑁𝑑 Number of deliveries per year for each vehicle 

𝑁𝑣 Number of autonomous or traditional vehicles equipped by each CLC 

𝐴𝐶𝑝𝑎 Actual capacity (actual average population that each CLC serves) 

𝑝𝑟𝑖𝑐𝑒𝐴 The unit price of each autonomous vehicle 

𝑝𝑟𝑖𝑐𝑒𝑇  The unit price of each traditional manned vehicle/van 

𝑝𝑟𝑖𝑐𝑒𝑒 Electricity price per kWh 

𝑝𝑟𝑖𝑐𝑒𝐶𝑂2 Social cost of CO2 emission per ton 

𝑐𝑝𝑘𝑇  Delivery cost per km per traditional manned vehicle including fuel and diver costs 

𝑒𝑝𝑘𝐴 Electricity consumption per km for autonomous vehicles 

𝑝𝑙𝑇  CO2 emission/pollution per km for traditional manned vehicles/vans 

𝑝𝑙𝐴 CO2 emission/pollution per km for autonomous vehicles 

𝑇𝑃𝑜𝑝 Total population of Great London including all customer zones 

𝐼𝑃𝑚𝑖𝑛
∗  Minimum probability of being infected for each customer when he or she meets one another 

person 

𝐼𝑃𝑚𝑎𝑥
∗  Maximum probability of being infected for each customer when he or she meets one another 

person 

𝑓 Average frequency of going to CLCs or being delivered for each customer per week 

  

Integer decision variables: 

𝑘 The number of CLCs equipped with autonomous vehicles (TAAV) 

𝑛𝑐 Number of people contacted by each customer per time whenever he or she goes to CLCs or is 

delivered (0 for using autonomous vehicles, 1 for delivering by traditional manned vans, 20 for 

normal shopping, and 5 for ordering online and picking-up) 

  

Binary decision variables: 

𝑋𝑖𝑗 1 if autonomous vehicles are used for delivery from CLC 𝑖 to customer zone 𝑗, otherwise 0. 

𝑌𝑖 1 if CLC 𝑖 is only equipped with autonomous vehicles, 0 if CLC 𝑖 is only equipped with 

traditional manned vehicles/vans  

𝑍𝑖𝑗 1 if traditional manned vehicles are used for delivery from CLC 𝑖 to customer zone 𝑗, otherwise 

0. 

 

3.1 Total cost optimization model 

3.1.1 NPV (Net Present Value) Method 

Net present value is calculated as the sum of the initial cost (CF0) and all the future discounted annual cash flows over a 

period (Brealey et al., 2010) and is an important indicator of investment (Gilchrist and Himmelberg, 1995).  

𝑁𝑃𝑉𝑐𝑜𝑠𝑡 = 𝐶𝐹0 + ∑
𝐶𝐹𝑜𝑢𝑡

(1 + 𝑟)𝑡

𝑁𝑇

𝑡=1

 (1) 

As defined in Eqs. (1), this research focuses on the NPV of the total cost, and, therefore, the annual cashflow only 

includes annual cash outflow (CFout), i.e., the annual cost. 

𝐶𝐹0 = ∑ 𝐸𝐶𝐴𝑖 × 𝑌𝑖

𝑁

𝑖=1

+ ∑ 𝐸𝐶𝑇𝑖 × (1 − 𝑌𝑖)

𝑁

𝑖=1

 

where 

(2) 

𝐸𝐶𝐴𝑖 = 𝑁𝑣 × 𝑝𝑟𝑖𝑐𝑒𝐴 (3) 

𝐸𝐶𝑇𝑖 = 𝑁𝑣 × 𝑝𝑟𝑖𝑐𝑒𝑇 (4) 
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𝐶𝐹𝑜𝑢𝑡 = ∑ ∑(𝐶𝑜𝑑𝐴𝑖𝑗 + 𝐶𝑜𝑝𝐴𝑖𝑗) × 𝑁𝑑 × 𝑁𝑣 × 𝑋𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

+ ∑ ∑(𝐶𝑜𝑑𝑇𝑖𝑗 + 𝐶𝑜𝑝𝑇𝑖𝑗) × 𝑁𝑑 × 𝑁𝑣 × 𝑍𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

 (5) 

where  

𝐶𝑜𝑑𝐴𝑖𝑗 = 𝑑𝑖𝑗 × 𝑒𝑝𝑘𝐴 × 𝑝𝑟𝑖𝑐𝑒𝑒  (6) 

𝐶𝑜𝑑𝑇𝑖𝑗 = 𝑑𝑖𝑗 × 𝑐𝑝𝑘𝑇  (7) 

𝐶𝑜𝑝𝐴𝑖𝑗 = 𝑑𝑖𝑗 × 𝑝𝑙𝐴 × 𝑝𝑟𝑖𝑐𝑒𝐶𝑂2 (8) 

𝐶𝑜𝑝𝑇𝑖𝑗 = 𝑑𝑖𝑗 × 𝑝𝑙𝑇 × 𝑝𝑟𝑖𝑐𝑒𝐶𝑂2 (9) 

 

In this paper, the NPV of cost is an important indicator for LSPs, such as delivery companies and merchants, which own 

some CLCs equipped with delivery vehicles and aim at minimizing their NPV of cost through optimizing the allocation 

of service zones and delivery methods – AVs or TVs – for each CLC. For these LSPs, this research assumes that CF0 is 

only comprised of the equipment cost of delivery vehicles, as defined by Eqs. (2)-(4), and that the annual CFout in future 

years only includes the delivery cost and social cost of CO2 emission, as defined by Eqs. (5)-(9). CF0 and the 

accumulated discounted CFout together comprise the total cost to these LSPs. The objective of this research is to 

minimize the NPV of the total cost. 

3.1.2 Total cost optimization model 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁𝑃𝑉𝑐𝑜𝑠𝑡

= ∑ 𝐸𝐶𝐴𝑖 × 𝑌𝑖

𝑁

𝑖=1

+ ∑ 𝐸𝐶𝑇𝑖 × (1 − 𝑌𝑖)

𝑁

𝑖=1

+ ∑ ∑ ∑
(𝐶𝑜𝑑𝐴𝑖𝑗 + 𝐶𝑜𝑝𝐴𝑖𝑗) × 𝑁𝑑 × 𝑁𝑣 × 𝑋𝑖𝑗

(1 + 𝑟)𝑡

𝑀

𝑗=1

𝑁

𝑖=1

𝑁𝑇

𝑡=1

+ ∑ ∑ ∑
(𝐶𝑜𝑑𝑇𝑖𝑗 + 𝐶𝑜𝑝𝑇𝑖𝑗) × 𝑁𝑑 × 𝑁𝑣 × 𝑍𝑖𝑗

(1 + 𝑟)𝑡

𝑀

𝑗=1

𝑁

𝑖=1

𝑁𝑇

𝑡=1

 

 

(10) 

Constraints:  

∑ 𝑌𝑖

𝑁

𝑖=1

= 𝑘 

(11) 

∑ 𝑋𝑖𝑗

𝑁

𝑖=1

+ ∑ 𝑍𝑖𝑗

𝑁

𝑖=1

= 1, ∀ 𝑗 = 1, … , 𝑀 

(12) 

∑ 𝑋𝑖𝑗

𝑀

𝑗=1

≤ 𝑀 × 𝑌𝑖 , ∀ 𝑖 = 1, … , 𝑁 

(13) 

∑ 𝑍𝑖𝑗

𝑀

𝑗=1

≤ 𝑀 × (1 − 𝑌𝑖), ∀ 𝑖 = 1, … , 𝑁 

(14) 

∑ 𝑋𝑖𝑗

𝑀

𝑗=1

+ ∑ 𝑍𝑖𝑗

𝑀

𝑗=1

≥ 1, ∀ 𝑖 = 1, … , 𝑁 

(15) 
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∑ 𝑃𝑜𝑝𝑗 × 𝑋𝑖𝑗 +

𝑀

𝑗=1

∑ 𝑃𝑜𝑝𝑗 × 𝑍𝑖𝑗

𝑀

𝑗=1

≤ 𝑁𝐶𝑝𝑎, ∀𝑖 = 1, … , 𝑁 

(16) 

𝑋𝑖𝑗 , 𝑌𝑖 , 𝑍𝑖𝑗  ∈ [0,1] (17) 

 

 

Eqs. (10)-(17) defines the optimization model for the NPV of the total cost. The objective function (10) seeks to 

minimize both the delivery cost and the social cost of CO2 emission. Eq. (11) regulates the number of CLCs equipped 

with AVs. According to Eq. (12), each customer zone must be served by one CLC using only one type of delivery 

vehicles – AVs or TVs. Constraints (13)-(15) ensure that each CLC needs to serve at least one customer zone and no 

more than all zones. Eq. (16) defines that the accumulated population each CLC serves cannot exceed the maximum 

capacity of one CLC. Finally, the type of variables is determined by constraint (17). 

 

3.2 Model of evaluating infection risk 

𝐴𝐼𝑃𝑤 = ∑ 𝑃𝑜𝑝𝑗 × [1 − ∏(1 − 𝑓 × 𝑛𝑐 × 𝐼𝑃𝑤
∗)

𝑁𝑊

𝑤=1

]

𝑀

𝑗=1

 (18) 

where  

𝐼𝑃𝑤
∗ =

𝐼𝑃𝑚𝑎𝑥
∗

2
× cos (2π ×

𝑤 + 12

52
) + (

𝐼𝑃𝑚𝑎𝑥
∗

2
+ 𝐼𝑃𝑚𝑖𝑛

∗ ) (19) 

 

Eqs. (18)-(19) defines the risk model for evaluating the accumulated infected population (AIP) until week 𝑤 in urban 

logistics activities during pandemic periods. Eq. (19) defines that the probability of being infected for each customer 

when meeting one another person (𝐼𝑃𝑤
∗) is a seasonal parameter, whose value varies among 52 weeks within each year – 

high in autumn and winter with a peak at late autumn and low in spring and summer with a trough at the late spring. 

The idea that 𝐼𝑃𝑤
∗  is a seasonal parameter and can be represented as a cosine function derives from the dynamic 

transmission model proposed by Kissler et al. (2020), who studied the transmission dynamics of two previous 

contagions – HCoV-OC43 and HCoV-HKU1 happened in the United States.  

 

4. Results and analysis 

This section discusses remarkable observations related to the optimal allocation generated according to the proposed 

mathematical model. Two comparative sensitive analysis is conducted to demonstrate the impacts of different number 

of CLCs equipped with AVs and different NCpa on the optimal allocation. Then the infection risk model is used to 

calculate the accumulated infected population (AIP) in the long term for four patterns of urban logistics. The more use 

AVs for delivery, the fewer people will be infected.  

The proposed optimization formulations are solved using the MATLAB software. An Intel Core i5-8250U CPU (1.60 

GHz) laptop with 8 GB RAM is applied for carrying out all the computations.  

In this research, geographical data of 91 customer zones and 20 CLCLs in Great London are used as inputs for the 

mathematical model and for the risk calculation. London, the capital of the UK, is one of the largest cities garnering 

attention as new hubs of logistics activities for LSPs, and it has various factors such as social, economic, and 

environmental factors worth to be considered for research (Nakamura, 2020). Therefore, the analysis results based on 

the information of the Great London have reference significance in the similar projects in metropolitan cities 

worldwide. Great London is made up of 32 boroughs, which are evolved from the original 91 districts before the 

enactment of the London Government Act 1963 (Self, 2002). The original city map of 91 districts is more detailed than 

the current one and, thus, the 91 original districts are more appropriate to be defined as the 91 customer zones in this 

research. Besides, this research selects the largest 20 distribution centers of a leading glossary brand within the Great 

London to represent 20 CLCs for analyzing urban logistics activities.  
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A schematic city map, as shown in Fig. 2, is generated through MATLAB according to the latitude and longitude of 

each CLC and the center of each customer zone, showing the number and positions of all these locations. It should be 

noted that the approximate geographic center of each customer zone is used as the population center of this zone to 

represent the whole zone. 

The assumed default values of some constants and the datasets used in the paper are presented as follows.  

First, the service life for each vehicle, no matter AV or TV, is assumed to be 8 years, i.e., 𝑁𝑇 = 8 and 𝑁𝑊 = 416 for 8 

years.  

Second, this research supposes that each CLC equips 20 AVs or TVs, i.e., 𝑁𝑣 = 20, and that the establishment cost for 

each CLC equals the product of the price per vehicle and 𝑁𝑣.  

Third, 𝑁𝑑 is assumed to be 500 – 250 working days per year and 2 deliveries per day. 

Fourth, the discounted rate used in this research is 3.5%, as defined by Price (2018). 

Fifth, the value of ACpa is defined as the result of the total population of Great London (𝑇𝑃𝑜𝑝) divided by the number 

of CLCs (𝑁=20). 

Sixth, for evaluating infection risk, this research assumes that 𝐼𝑃𝑚𝑖𝑛
∗  = 0.01%, 𝐼𝑃𝑚𝑎𝑥

∗  = 0.1%, and 𝑓 = 1. 

Besides, all datasets are available on the website https://github.com/bashirimahdi/AV_Delivery. 

 
Figure 2. A schematic map of the Great London including CLCs and customer zones for the selected case study  

https://github.com/bashirimahdi/AV_Delivery
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Figure 3. The optimization results when ACpa/NCpa = 60% 

 

 

4.1 Economic and ecological optimization 

4.1.1 The optimal TDC 

The optimization result in Fig. 3 is generated when ACpa/NCpa = 60%, i.e., the actual capacity (ACpa), a constant 

decided by the city population and number of CLCs, occupies 60% of the nominal capacity (NCpa). The larger NCpa is, 

the more extra spare capacity CLCLs will have. The extra spare capacity is a kind of resource waste because it cannot 

create any benefits after the delivery demands of the whole population are satisfied. NCpa should be greater than ACpa 

because the sum of the nominal/maximum capacity of all CLCs should satisfy at least the whole population of the city. 

However, in reality, each CLC has more or less extra spare capacity, which leads to ACpa/NCpa to be less than 1. In 

this research, 60% is assumed as reasonable value of ACpa/NCpa. 

Fig. 3 illustrates the change of TCE and the optimal result of TDC, TDCD, and TDCP when there are a different 

number of CLCs equipped with AVs, with each point represents the most optimal allocation when a certain number of 

CLCs equipped with AVs. TCE has a simple positive linear relationship with the number of CLCs equipped with AVs. 

While both TDCD and TDCP decrease when increasing the number of CLCs equipped with AVs at a diminishing rate 

of decrease. From the perspective of minimizing TDC, the most optimal allocation emerges when there are 11 CLCs 

equipped with AVs. At this time, the higher equipment cost and lower delivery and pollution cost of AVs than TVs 

achieves a balance, and more or fewer than 11 CLCs equipped with AVs will lead to a higher total cost. It can be seen 

from the vertical intercept that the optimal total cost is the highest when none of CLCs are equipped with AVs, even 

higher than when all CLCs are equipped with AVs. This result confirms that the cost advantage of AVs thanks to lower 

delivery and pollution costs will gradually overcome their disadvantage due to the higher equipment cost than TVs in 

the long term and that, after a certain point – 11CLCs with AVs, the marginal utility of equipping more CLCs with AVs 

will diminish.  

4.1.2 The comparative sensitivity analysis of the optimal TDC under different values of NCpa 

When increasing the nominal/maximum capacity (NCpa) of CLCs, the value of ACpa/NCpa decrease. This sensitivity 

analysis of optimal cost is conducted under three ACpa/NCpa values: 60%, 50%, 40%. 
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Figure 4. Optimal total cost curve under three different values of NCpa 

The result in Fig.4 shows that, in order to minimize TDC, the most optimal number of CLCs equipped with AVs 

decrease as the NCpa increase. This move can be explained away as the average nominal/maximum capacity limits the 

customer number of some CLCs. If the maximum service capacity is increased, some CLCs will attract more customers 

who are allocated to other CLCs where the delivery distance and ensuing cost are disfavored by these customers, and 

the loss in customers makes it less attractive for those disfavored CLCs to equip AVs than to equip TVs because a CLC 

equipped with AVs enjoys cost advantage only when it serves enough customers. Although equipping AVs has lower 

delivery and pollution cost than equipping TVs per delivery, the difference is so small that only with enough customers 

and corresponding deliveries can the accumulated saving cost of equipping AVs offsets the excess cost of doing so 

caused by the significantly higher unit price of AVs than that of TVs. 

In Fig.5, the value of the most optimal TDC also decreases as the NCpa increases. This movement agrees fairly well 

with the fact that the disfavored CLCs have fewer customers when NCpa is high than when NCpa is low and that the 

equipment cost of TVs is significantly lower than that of AVs, a cost advantage that will make equipping TVs more 

attractive for a CLC, especially when this CLC only serve limited customers, than equipping AVs.   

4.2 Infected risk evaluation 

In this section, the effect of 𝑛𝑐 is evaluated. So, four scenarios of the customers’ behavior are considered. The four 

scenarios are considered as GCCI, OOCC, DCTV, and DCOA according to the 𝑛𝑐 values of 20, 5, and 1 for the first 

three scenarios, respectively. GCCI represents that a customer goes to CLCs and choose goods inside CLCs, OOCC 

means that a customer orders online first and then collects the parcels at special collection zones of CLCs, DCTV 

represents that CLCs deliver goods to customers by only using TVs, and DCOA is the optimal allocation mixed AVs 

with TVs when ACpa/NCpa = 60%. In the DCOA scenario, 𝑛𝑐 equals 0 for only using AVs and 1 for only using TVs. 

Therefore, the AIP for DCOA pattern is calculated as the sum of the AIP among customers who receive deliveries by 

AVs and the AIP among those who receive deliveries by TVs. 
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Figure 5. The curve of IP with seasonal values 

According to Eq. (19), the 𝐼𝑃𝑤
∗  is a seasonal parameter. As shown in Fig. 5, the curve of 𝐼𝑃𝑤

∗  has a peak at nearly week 

40, the end of autumn, and a trough at nearly week 14, the end of spring. In the periods of peak virus transmission, that 

is, in the late autumn and in the winter, Kissler et al. (2020) recorded the maximum weekly transmission rate for two 

virus – HCoV-OC43 and HCoV-HKU1 – that once broke out in America. 

 
Figure 6. Comparison of the AIP of four urban logistics patterns 

Fig.6 presents the growth trend of AIP of four urban logistics scenarios – GCCI, OOCC, DCTV, and DCOA. The red 

curve shows the trend of AIP of the optimal pattern - DCOA. It can be seen from Fig.6 that AIP increases the most fast 

in the GCCI pattern, then in OOCC pattern, while most slow in the optimal DCOA pattern. The increasing rates of 

GCCI and OOCC are significantly higher than those of another two patterns. This result can be explained away as the 

AIP and its increasing rate is positively correlated with the parameter 𝑛𝑐 – the number of people a customer meets in 

urban logistics activities.  

It is worth to be noted that all the four AIP curves in Fig. 6 are zigzag lines with their slopes, the increasing rates of 

AIP, vary with time because the infected probability per week is a seasonal variable that changes periodically over time. 

The grey area in Fig.6 represents the AIP curves when a different number of CLCs equipped with AVs.  
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Figure7. AIP curves when a different number of CLCs equipped with AVs 

 

Fig. 7 shows the details of the grey area in Fig.6. In Fig.7, curves from top to down are the AIP curves when the number 

of CLCs equipped with AVs increases from 0 to 20 separately. It is concluded that the more CLCs are equipped with 

AVs, the less AIP and its growth rate are, because using AVs to deliver goods to a customer can lead to no contact with 

another person and, therefore, zero infection risk. 

5. Discussions and Managerial implications  

This section discusses the implications of the research results on real-life managerial decisions. The findings of this 

research can be useful for many stakeholders enrolled in urban logistics activities. For example, the optimization results 

can help LSPs minimize cost through the appropriate allocation of AVs and TVs. Besides, minimizing pollutions such 

as CO2 emission can also help these LSPs build better reputations and attract impact investors who, focusing more on 

the intention to shift the future of the world, proactively use their investments to generate a tangible social or 

environmental impact alongside a financial return (Chatzitheodorou et al. 2019). The infection risk evaluation is 

conducive to predicting the social risk caused by urban logistics activities during pandemic periods. 

5.1 Least-cost frontier 

 
Figure 8. Cost curves of the optimal allocation when ACpa/NCpa = 60% 
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In Fig. 8, the dark areas separately mean the potential cost sets of TDC, TDCD, and TDCP. The frontier lines of these 

areas are the optimal cost curves when ACpa/NCpa = 60%, with each point on the lines representing the optimal cost-

minimum allocation when there are a certain number of CLCs equipped with AVs. Any point in the dark area above the 

frontier lines represents a relatively ineffective allocation that cannot achieve minimum cost. Although, according to the 

TDC frontier curve, the most optimal point is when there are 11 CLCs equipped with AVs, other points on the frontier 

line are meaningful because, in real practice, the LSPs may lack enough funds to purchase as many AVs as required by 

the most optimal point. Therefore, based on their affordable number of AVs, the LSPs can find the most optical 

allocation on the least-cost frontier curve of TDC. 

 

5.2 The impact of different maximum capacities 

The result in this research shows that the larger the NCpa for each DC, the lower the optimal total cost and the fewer 

CLCs equipped with AVs. However, this philosophy faces many challenges in real business practice because NCpa, the 

maximum capacity of a DC, is always limited and because the number of CLCs equipped with AVs is subject to the 

financial capability of the LSPs. In addition, it needs to be considered that a large NCpa may cause a loss in customers 

to some CLCs because these customers prefer to choose other nearby CLCs – if they have extra service capability.  

 
Table 2. CLCs equipped with AVs in three optimal allocations with three different values of NCpa 

No. of CLCs ACpa/NCpa = 60% ACpa/NCpa = 50% ACpa/NCpa = 40% 

1    

2     

3      

4      

5     

6      

7       

8       

9    

10       

11    

12    

13       

14      

15    

16    

17      

18    

19      

20     

 

 

In this research, the CLCs that need to be equipped with AVs to optimize total cost under three values of NCpa are 

listed in the Table. 2. It can be seen that the 7
th

 ,8
th

 ,10
th

, and 13
th

 CLCs keep attractive to customers when NCpa 

increases and that the 2
nd

, 5
th

, 6
th

, 14
th

, 17
th

, and 20
th

 CLCs lose customers when NCpa increases. LSPs who want to 

enter a city can conduct such sensitivity analysis to plan potential CLC locations and to avoid the waste of service 

capabilities of some CLCs before establishing them.  

 

5.3 The impact of infected risk 

The COVID-19 broke out at the beginning of 2020 has dramatically influenced the urban logistics industry and made 

people more worried about their safety when contacting other individuals in logistics activities, such as going shopping 

and receiving deliveries. The result of the risk model in this research shows that using AVs for delivery can greatly 

decrease the infection risk. Therefore, LSPs should equip more AVs than TVs to reduce social risk and to protect the 

health of their own employees. If building a delivery fleet fully equipped with AVs is not available or not cost-efficient, 

the LSPs can allocate more TVs for delivery in spring and summer when the infection risk is low and allocate more 
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AVs in autumn and winter when the infection risk is high, because the infection risk is a seasonal variable whose value 

varies within each year.   

5.4 Managerial implications 

Based on the findings of this research, some managerial implications for LSPs in London are presented as follows. 

First, this research fills the research gap – optimizing the allocation of AVs and TVs among the CLCs to minimize 

costs, GHG emissions, and infection risk. This achievement can help managers in LSPs to establish a sustainable 

logistics system by maximizing profits, minimizing CO2 emissions, and reducing public health risks simultaneously. 

Second, this research rules out that the use of AVs can greatly reduce the CO2 emissions in logistics activities. 

Companies such as LSPs can consider equipping AVs to reduce GHG pollutions and to satisfy the increasingly strict 

environmental requirements in many countries. 

Third, the substantial initial cost and the gradually diminishing marginal utility of equipping AVs suggest that, on the 

one hand, LSPs need to evaluate their financial budgets and cost structures to find the optimal number of AVs, while on 

the other hand, LSPs can invest funds in research of developing low-cost AVs to promote the mass application of AVs.  

Fourth, according to the seasonal characteristic of infection risk, LSPs, especially those that cannot equip AVs for all 

deliveries in the short term, can allocate more AVs for delivery when this risk is high and more TVs for delivery when 

it is low.   

Finally, the proposed multi-objective optimization model considering fixed equipment cost, delivery cost, and social 

cost of CO2 emission can be used by any companies or policymakers when they make decisions under the pressure of 

maximizing profit and minimizing environmental impact, simultaneously.  

6. Conclusion 

In this paper, an adequate literature review is firstly presented with identified knowledge gaps. Then an optimization 

model is presented to fill the identified gaps, considering the equipment cost, delivery cost, and the cost of CO2 

emissions at the same time. Using the data of 20 selected supermarkets as CLCs and 91 customer zones in Great 

London, this research obtains the optimal cost curve and conducts a sensitivity analysis to study the impact of the 

service capacity on the optimal result by comparing the optimal curves under three values of NCpa. The results show 

that the optimal cost and the number of CLCs equipped with AVs are less when the NCpa of each CLC increases. 

Finally, this research takes account of the delivery risk of infection during pandemic periods and calculates the 

accumulated infection population under four logistics patterns. The calculation result of the infection risk shows 

convincingly that the wide use of AVs can discourage the transmission of viruses, a social risk that challenges public 

health, especially during pandemic periods. 

The results of this research are helpful for LSPs, operators of warehouses, supermarkets, and even restaurants, to make 

decisions about whether it is necessary to equip AVs for delivery and how to allocate them among subbranches. These 

LSPs need to make a balance between different considerations. From the perspective of the total cost, there exists a 

breakpoint of the minimum total cost, and more CLCs equipped with AVs than the number required at this point will 

increase the total cost. However, from the perspective of infection risk, the more AVs, the less infection risk. 

Furthermore, it is very important for any LSP to make its allocation strategies based on its own managerial, economic, 

environmental, and social considerations. Joerss et al. (2016) argued that the use of AVs for delivery can reduce the 

total cost in developed countries where the labor cost is high, however, in developing countries, labor costs are more 

likely to remain low enough to impede any new technology changes in the next five to ten years. Besides the labor cost, 

James and Katsuaki (1984) found that the cost of introducing pioneer technologies is usually underestimated due to 

uncertainty, instability, and unrecognized problems. Therefore, the profitability of using autonomous delivery would 

depend on many factors and would need to be assessed on a case-by-case basis. Although a small ACpa/NCpa ratio 

leads to lower optimal total cost than a large one does, that ratio will be favored that maximizes the useable capability 

of each CLC and hence minimizes the waste due to excess service capability. In addition to the cost and risk 

perspectives in this research, other managerial factors need to be concerned when equipping AVs. For example, some 

CLC managers under pressure to maximize cost-cutting may resist innovation because they worry that more 

fundamental changes in the current delivery system will, especially in the short term, wreak havoc with the performance 

results on which they are measured. Therefore, only when a delivery system associates the AVs and TVs within it with 

the real economic, environmental, and risk demand may the entire system be considered sustainable. 
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This research provides some useful guides for delivery companies or distribution centers like supermarkets to develop 

their delivery methods. These companies can use the model in this paper to explore the optimal hybrid delivery 

allocation between traditional vehicles and AVs. As this research did, these entities need to consider the environmental 

cost and infection risk when make management decisions. For example, they can refer to the optimazition model and 

the infection risk model used in this research. 

This study has several limitations in need of further research. For instance, this research optimizes the allocation of AVs 

among all CLCs under the assumption that each CLC can only equip one kind of delivery vehicles – AVs or TVs. 

While, in practice, one CLC can equip AVs and TVs at the same time, and it would be interesting to optimize the 

allocation of AVs and TVs in each DC. Besides, this study evaluates the infection risk without considering stochastic 

parameters for uncertain situations that are popular in pandemic periods. So, evaluating this risk in a two-stage 

stochastic programming framework will be valuable and can be considered as a direction for future study. Furthermore, 

another possible area of future research would be to evaluate the advantage of AVs according to different development 

periods, because the manufacturing cost and technical risks of AVs will significantly decrease as the development of 

technology in the long term.  
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