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Abstract 

In this paper, an integer linear programming formulation is developed for a novel fuzzy multi-period multi-depot 

vehicle routing problem. The novelty belongs to both the model and the solution methodology. In the proposed model, 

vehicles are not forced to return to their starting depots. The fuzzy problem is transformed into a mixed-integer 

programming problem by applying credibility measure whose optimal solution is an (α,β)-credibility optimal solution to 

the fuzzy problem. To solve the problem, a hybrid genetic-simulated annealing-auction algorithm (HGSA), empowered 

by a modern simulated annealing cooling schedule function, is developed. Finally, the efficiency of the algorithm is 

illustrated by employing a variety of test problems and benchmark examples. The obtained results showed that the 

algorithm provides satisfactory results in terms of different performance criteria. 

Keywords. Periodic Routing Problem; Multi-Depot; Hybrid Algorithm; Auction Algorithm; Genetic Algorithm; 

Simulated Annealing Algorithm.  

 

1. Introduction  

Millions of people are affected by natural or man-made disasters thus delivering the aftermath services in the least possible time is 

of essential importance (Thomas and Kopczak, 2005). This entails a fast but deliberate operational planning for best managing of 

the humanitarian relief chain. Some studies estimate that the logistics and supply chain management activities include more than 

80% of the total humanitarian relief operations (Van Wassenhove, 2006). In this regard, operational research models can be 

successfully applied (Van Wassenhove and Pedraza Martinez, 2012). The aim is to minimize the time of responding to the 

damaged areas and maximize the satisfaction level and fairness in the distribution of commodities (Saffarian et al., 2017). 

In multi-depot vehicle routing problems, customers are serviced by vehicles located in several depots. This problem was 

firstly appeared in 1995 (Sumichras and Markham, 1995). Since then, various versions of the vehicle routing problem have 

been studied in the literature. Giosa et al. (2002) considered a multi-depot vehicle routing problem with time windows. 

Nagy and Salhi (2005) studied a multi-depot vehicle routing problem with pick up and deliveries. Crevier et al. (2007) 

proposed a multi-depot vehicle routing model with inter-depot routes.  

Since multi-depot vehicle routing problems are NP-Hard, a multitude of studies adopted heuristic and metaheuristic 

algorithms as solution methodologies. For instance, Wu et al. (2002) provided heuristic solutions for a multi-depot 

location-routing problem. Genetic algorithm, which is a popular metaheuristic among researchers, was used in a number of 

studies 
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(Dondo and Cerdá, 2009; Ho et al., 2008; Thangiah and Salhi, 2001). A memetic algorithm was proposed by Ngueveu et 

al. (2010) for a cumulative capacitated VRP (CCVRP) aiming to minimize total time of visiting customers. Ribeiro and 

Laporte (2012) devised an adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing 

problem and compared it with the memetic algorithm proposed by Ngueveu et al. (2010). Ke and Feng (2013) proposed a 

two-phase metaheuristic for solving CCVRP and evaluated its performance using a number of test problems. 

Periodic routing problems (PRP) are routing problems that aims to provide services for customers over a specified time 

horizon such that total routing costs be minimized. It was introduced by Beltrami and Bodin (1974) for the first time. There is 

a wide applicability for periodic routing problems from optimizing periodic maintenance operations for Schindler Elevator 

Corporation (Blakeley et al., 2003) to periodic milk collection problem (Claassen and Hendriks, 2007). PRP belongs to NP-

hard problems for which a wide variety of heuristic and metaheuristic algorithms are developed including tabu search, 

variable neighborhood search and genetic algorithm (Alonso et al., 2008; Drummond et al., 2001; Hemmelmayr et al., 2009). 

Multi-depot PRP is a generalized case of PRP in which several depots can be used to serve customers. While it has more 

applicability in real world, it is not sufficiently addressed in the existing literature (Kang et al., 2005; Angelelli and Speranza, 

2002).  

In spite of the vast body of the literature studying VRPs, a small proportion has considered uncertainties (Maity et al. 

2019). Saffarian et al. (2015) considered a bi-objective model for relief chain logistic in uncertainty condition including 

uncertainty in traveling time and demand in damaged areas. Roy and Midya (2019) proposed a Multi-objective fixed-

charge solid transportation problem with product blending under intuitionistic fuzzy environment. Furthermore, an 

intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain is studied 

by Midya et al. (2020). Rabbani et al. (2018) considered environmental issues for designing a municipal solid waste system 

and proposed a new mathematical model. Uncertainty and budget constraint in multi-objective multi-item fixed charge 

solid transportation problem were also studied by Majumder et al. (2019). Also, Mohamadi et al. (2015) introduced a 

credibility-based chance-constrained transfer point location model for the relief logistics design. The results were applied 

for earthquake disaster management on region 1 of Tehran city. Das et al. (2020) considered the application of type-2 

fuzzy logic to a multi-objective green solid transportation-location problem with dwell time under carbon tax, cap and 

offset policy. They compared fuzzy vs. non-fuzzy techniques for the problem. Hasan and Mashud (2019) proposed an 

Economic Order Quantity model for decaying products with the frequency of advertisement, selling price and continuous 

time-dependent demand under partially backlogged shortage. Mashud et al. (2019) extended their previous work by 

employing a two-level trade-credit approach to an integrated price-sensitive inventory model with shortages. Table 1 

summarizes new researches on vehicle routing problem that have considered uncertainty conditions. 

In most vehicle routing problem studies, except for open-routing problems, it is assumed that vehicles are obliged to return 

to their starting depot after serving a subset of customers. In this study, in order to improve productivity, a new version of 

multi-period VRP with several depots is considered wherein vehicles are allowed to return to a depot other than the initial 

one; an idea brought up by Kek et al. (2008). This relaxation can lead to better response times in relief chains, where 

impacted areas can be rapidly visited by nearby vehicles. Also, due to the inherent uncertainties in the transportation 

problems, there are uncertainties in precisely calculating the parameters of the vehicle routing problem such as traveling 

cost and demand of customers. To deal with vague and imprecise data in real transportation networks, in this paper fuzzy 

multi-depot multi-period vehicle routing problem is considered. The reasons for using fuzzy approach to deal with 

uncertainties are as follows: Firstly, transportation problems deal with linguistic descriptions like high cost, high demand, 

etc., that can only be modeled by fuzzy approaches. Secondly, few studies have been conducted in the field of vehicle 

routing problems by time-varying traveling cost that are not applicable in large-scale networks due to the rapidly 

increasing the dimension of the problem. Finally, calculations in probabilistic space are very complex. Therefore, this 

approach cannot always meet the needs of the problem for real and large-scale applications. 

The rest of the paper is organized as follows. In section 2, the problem is introduced and modeled by a fully fuzzy integer 

programming problem. The solution methodology is proposed in section 3. Experimental results are given in section 4. 

Finally, the paper ends with a brief conclusion and future directions in section 5.   

 
 
 
 
 
 



Saffarian, Niksirat and Kazemi 

 

 

  

Int J Supply Oper Manage (IJSOM), Vol.8, No.2 98 

 
 
 
 

Table 1. Summary of the researches on vehicle routing problem under uncertainty conditions.  

Reference Description of the problem Proposed model Solution method 

Das et al. (2020) 

Green solid transportation-location problem 

with dwell time under carbon tax, cap and 

offset policy 

Multi-objective  

integrated 

mathematical model 

Fuzzy technique and  

nonfuzzy technique 

Mohamadi et al. (2015) 

Relief logistics design by credibility-based 

chance-constrained transfer point location 

model 

Fuzzy mathematical 

programming model 
Global criterion method 

Rabbani et al. (2018) 
Municipal Solid Waste System Considering 

Environmentally Issues 

Bi-objective model 

based on location-

routing problem 

NSGA-II 

Roy and Midya (2019) 

Fixed-charge solid transportation problem 

with product blending under intuitionistic 

fuzzy environment 

Intuitionistic  fuzzy 

programming 

The Technique for 

Order of Preference by 

Similarity to Ideal 

Solution (TOPSIS) 

Saffarian et al. (2015) 

Relief chain logistic in uncertainty condition 

including uncertainty in traveling time and 

demand 

Bi-objective model 
Global Criterion 

method 

Majumder et al. (2019) 
Multi-objective multi-item fixed charge solid 

transportation problem with budget constraint 

Expected value model 

Chance-constrained 

model 

Dependent chance-

constrained model 

Linear weighted 

method, 

Global criterion method 

Fuzzy programming 

method 

Midya et al. (2020) 

Multi-stage multi-objective fixed-charge solid 

transportation problem (MMFSTP) with a 

green supply chain network system under an 

intuitionistic fuzzy environment. 

Multi-objective 

programming model 

Weighted Tchebycheff 

metrics programming 

Min-max goal 

programming 

Hasan and Mashud 

(2019) 

Decaying products with the frequency of 

advertisement, selling price and continuous 

time-dependent demand under partially 

backlogged shortage. 

Economic Order 

Quantity model 

Generalized reduced 

gradient (GRG) method. 

 

2. Problem formulation 

In this section, a fuzzy integer programming model is proposed for the fully fuzzy multi-depot multi-period vehicle 

routing problem wherein vehicles are not forced to return to their starting depots. The basic of the model is adapted 

from Eydi and Abdorahimi (2012). Since in real applications, certainty and precision of data are often illusory, in order 

to make the proposed model closer to real applications, the objective function and constraints are considered to be 

fuzzy. 

2.1. Assumptions 

The formulation is based on the following assumptions: 

 A limited number of periods is given. 

 Number of depots is fixed. 

 A heterogeneous fleet of vehicles is available. 

 The capacity of vehicles is predetermined. 

 Demand of each customer in each period is specified as a fuzzy parameter. 

 The number of customers that should be serviced in each period is defined. 

 The customers of each period are different from those of other periods. 

 Distance-dependent transportation costs are assumed. 

 Each vehicle starts its journey from one depot and ends to another depot, although the starting and ending depots 

could be also identical. 

 A symmetric transportation network is considered. 

 The traversing cost, customer’s demand and vehicle’s capacity are considered as fuzzy parameters.  
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2.2. Indices 

I An index assigned to customers located at the beginning of an edge. (i=1,2,…,N) 

J An index assigned to customers located at the end of an edge. (j=1,2,…,N and j≠i) 

T Index of periods (t=1,2,…,T) 

K Index of vehicles (k=1,2,…,V) 

D Index of depots (d=1,2,…,D) 

2.3. Parameters 

, ,i j tc  Fuzzy traversing cost of edge (i,j) between customers i and j in period t. 

, ,d i tc   Fuzzy traversing cost of edge (i,d) or edge (d,i) between customer i and depot d in period t. 

,i td  Fuzzy demand of customer i in period t. 

tN  Number of customers in period t. 

kc  Capacity of vehicle k. 

V Number of available vehicles in each period. 

T Number of periods in the planning horizon. 

D Number of depots. 

M A big number. 

2.4. Sets  

B  A subset of customers in each period. 

A Set of depots. 

G Set of all customers and depots  in each period. 

2.5. Decision variables 

 , , , 0,1i j k tx   Equals to 1 if vehicle k traverses edge (i,j) in period t, otherwise 0. 

 , , , 0,1d i k ty   Equals to 1 if vehicle k traverses edge (d,i) in period t, otherwise 0. 

 , , , 0,1i d k tz   Equals to 1 if vehicle k traverses edge (i,d) in period t, otherwise 0. 

 , , 0,1k d ts   Equals to 1 if vehicle k is located in depot d at the beginning of period t, otherwise 0. 

 , , 0,1k d tf   Equals to 1 if vehicle k is located in depot d at the end of period t, otherwise 0. 

 2.6. Mathematical model 

The fuzzy integer programming model of the problem is as follows. 

t t t

t

T N N V T D N V

1 i,j,k,t i, j,t d,i,k,t d,i,t
t 1 i 1 k 1 t 1 d 1 i 1 k 1

T N D V

, ,k,t d,i,t
t 1 i 1 d 1 k 1

Min  x *c y *c  

z *c

j

j i

i d


      



   

 



       

   
 (1) 
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Subjected to:   

tD V N V

1d,i,k,t , ,k,t
d 1 k 1 k 1

y x 1j j i

j i


  



      i, t   (2) 

tN V D V

1 i, j,k,t i,d,k,t
k 1 d 1 k 1

x z 1j

j i


  



      i, t   (3) 

t tD N N D

d,i,k,t j,d,k,t
d 1 1 j 1 d 1

y z 0
i   

      k, t  (4) 

t t tD N N N

1d,i,k,t i,t i, j,k,t j,t k
d 1 i 1 i 1

y *d x *d cj

j i


  



      k, t  (5) 

t tD N N D

1 1d,i,k,t j,i,k,t i, j,k,t i,d,k,t
d 1 d 1

y x x z 0j j

j i j i

 
 

 

        i,k, t  (6) 

t t tN N D N

1 i, j,k,t d,i,k,t
i 1 d 1 i 1

x y *Mj

j i


  



 
  
      k, t  (7) 

t tN N

i, j,k,t
i B

x B 1 j B

j i






     k, t,    B G \ A ,  B 2     (8) 

tD N

d,i,k,t
d 1 i 1

y 1 
 

   k, t  (9) 

D

k,d,t
d 1

s 1


  k, t  (10) 

D

k,d,t
d 1

f 1 


  k, t  (11) 

tN

d,i,k,t k,d,t
i 1

y s


  k,d, t  (12) 

tN

i,d,k,t k,d,t
i 1

z f


  k,d, t  (13) 

k,d,t 1 k,d,tf s   k,d      t 2    (14) 

 i, j,k,tx 0,1  i,k, t,         j i    (15) 

 d,i,k,ty 0,1  d,i,k, t  (16) 

 i,d,k,tz 0,1   d,i,k, t  (17) 

 k,d,ts   0,1  k,d, t  (18) 
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 k,d,tf   0,1  k,d, t  (19) 

The objective function (1) minimizes total routing costs during the planning horizon. Routing costs consist of three 

parts: cost of traversing between customers, cost of traversing between depots and customers and cost of traversing 

between customers and depots. Since the traversing cost parameters are considered to be fuzzy, a fuzzy objective 

function is considered. 

Constraints (2) and (3) ensure that each customer is served exactly once in each period. Constraint (4) ensures that each 

vehicle’s route starts from one depot and ends to another, which is not necessarily the same as the initial depot. Fuzzy 

constraint (5) guarantees that the total demand of all customers in the route of each vehicle must be less than the 

capacity of that vehicle. Flow conservation constraints are given by constraint (6). Constraint (7) states that vehicle’s 

route must start from a depot. Constraint (8) prevents the creation of subtours. Constraint (9) states that a number of 

vehicles may be idle at each time period. Constraint (10) and (11) indicate that at the beginning and end of each time 

period, each vehicle is located in one depot. Constraint (12) and (13) show the relationship between variables d,i,k,ty

and k,d,ts and i,d,k,tz  and k,d,tf , respectively. Also, the relationship between variable k,d,tf and  k,d,ts is stated in 

constraint (14). Constraints (15) – (19) show that all decision variables are binary. 

Credibility relation is used to obtain the (α,β)–optimal solution of  the fully fuzzy multi-period and multi-depot vehicle 

routing problem, in which α and β are the satisfaction degrees in the constraints and the objective function of the 

problem, respectively. For this aim, the following theorem is applied (Niksirat, 2016). 

Consider the general fully fuzzy mathematical programming problem  

1 1 2 2min    n nz c x c x c x  
 

s.t.  

11 1 12 2 1 1n na x a x a x b  
 

… 

1 1 2 2m m mn n ma x a x a x b  
 

1, , 0nx x 
 

Let     L L

j jβ 1 β
max c , c   cj 

      R R

j jβ 1 β
min c , c   ,  1, ,  j n


   and  , 0,1   , the optimal solution of the 

following problem is an (α,β)–credibility optimal solution for the above problem . 

1 1 2 2min    n nz c x c x c x  
 

       
1 1 1 1

11 1 12 2 1 11 1 1 1

R

n

L L L

na x a x a x b
      

  
 

       
1 1 1 1

11 1 12 2 1 12 2 2 2

LR R

n

R

na x a x a x b
          

  
 

… 

       1 2 21 1 1 1m m m m
m m mn

R

n

L L L

ma a x a x b
      
  

 

       1 1 2 22 2 2 2m m m m

LR

m m n

R R

mn ma x a x a x b
          

  
 

   1, , 0,  0,2 1 2 ,1 ,  1, ,n ix x max min i m           
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Based on the aforementioned theorem, the (α,β)–credibility optimal solution of the considered fully fuzzy multi-depot 

multi-period vehicle routing problem is obtained by solving the following problem: 

t t t

t

T N N V T D N V

1 i,j,k,t i, j,t d,i,k,t d,i,t
t 1 i 1 k 1 t 1 d 1 i 1 k 1

T N D V

, ,k,t d,i,t
t 1 i 1 d 1 k 1

Min  x *c y *c

z *c

j

j i

i d


      



   





       

   
 (20) 

S.t:   

tN V D V

1 , ,k,t d, ,k,t
k 1 d 1 k 1

x y 1j j i i

j i


  



      i, t   (21) 

tN V D V

1 i, j,k,t i,d,k,t
k 1 d 1 k 1

x z 1j

j i


  



      i, t   (22) 

t tD N N D

d,i,k,t j,d,k,t
d 1 j 1 j 1 d 1

y z
   

     , t k  (23) 

     
t t t

,, ,

D N N N

1d,i,k,t i,t i, j,k,t j,t k 1d 1 i 1 i 11 1
y * d x * d c

k tk t k t

R

j

j i

R L

 


   


      , t k  (24) 

     
t t t

,, ,

D N N N

1d,i,k,t i,t i, j,k,t j,t k 2d 1 i 1 i 12 2
y * d x * d c

k tk t k t

j

j i

L L R

    


   


      , t k  (25) 

t tD N N D

1 1d,i,k,t j,i,k,t i, j,k,t i,d,k,t
d 1 d 1

y x x z 0j j

j i j i

 
 

 

        , , t i k  (26) 

t t tN N D N

1 i, j,k,t d,i,k,t
i 1 d 1 i 1

x y *M j

j i


  



 
  
      , t k  (27) 

t tN N

i,j,k,t
i B

x B 1        j B

j i






    
 

k, t,

B G \ A ,  B 2



  
 (28) 

tD N

d,i,k,t
d 1 i 1

y 1
 

   , t k  (29) 

D

k,d,t
d 1

s 1 


  , t k  (30) 

D

k,d,t
d 1

f 1 


  , t k  (31) 

tN

d,i,k,t k,d,t
i 1

y s


  ,d, t k  (32) 

tN

i,d,k,t k,d,t
i 1

z f


  ,d, t k  (33) 
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k,d,t 1 k,d,tf s     k,d , t 2    (34) 

 i, j,k,tx 0,1  i,k, t, j i    (35) 

 d,i,k,ty 0,1  d,i,k, t  (36) 

 i,d,k,ty 0,1  d,i,k, t  (37) 

 k,d,ts   0,1  ,d, t k  (38) 

 k,d,tf   0,1  ,d, t k  (39) 

   ,0,2 1 2 ,1k tmax min       (40) 

in which  

         L L R R

, , I, j,t , , , , i, j,t
β 1 β β 1 β

max c , c   c min c , c  i j t i j t i j t
 

   

and  

         L L R R

, , d,i,t , , , , d,i,tβ 1 β β 1 β
max c , c   c min c , c   .d i t d i t d i t 

       

 
3. Solution methodology 

In this section, the hybrid genetic-simulated annealing-auction (HGSA) algorithm is proposed to solve the considered 

problem. The structure of genetic algorithm is adapted from Eydi and Abdorahimi (2012). Auction and simulated 

annealing algorithms are used within the genetic algorithm to improve the speed and efficiency of HGSA algorithm. In 

the subsequent sub-sections, genetic, simulated annealing and auction algorithms are descried and then the hybrid 

algorithm is introduced.  

3.1. Genetic algorithm  

The genetic algorithm, is a stochastic method to solve constrained and unconstrained optimization problems (Thangiah 

and Salhi, 2001). Genetic algorithm is based on the natural selection, a process that imitates biological evolution. The 

genetic algorithm repeatedly modifies a population of individuals named chromosomes. Generally, the initial population 

is selected randomly. At each step, the genetic algorithm selects chromosomes from the current population based on 

their fitness and combines them to produce the next generation. The population evolves over successive generations. 

The algorithm ends when the termination conditions of the algorithm are satisfied.   

3.2. Auction algorithm  

The auction algorithm is developed originally to solve the classical assignment problem in parallel computation (Freling 

et al., 2001). In this work, auction algorithm is used to generate a near-optimal feasible initial solution for the 

considered problem. To do this, the problem is transformed into an assignment problem as follows. In a directed path 

from customer i to customer j, in fact, customer i is forward assigned to customer j and customer j is backward assigned 

to i. An assignment is feasible if each customer is forward and backward assigned to another customer or a depot. By 

this transformation, auction algorithm is applied to find a feasible solution to the problem. The generated initial solution 

is improved by the HGSA algorithm.  

3.3. Simulated annealing-based mutation method 

Genetic algorithm is naturally stochastic. Therefore, the algorithm may fall in local optima during the search process. 

To overcome, diversification and intensification strategies should be implemented. Mutation method, by accepting 
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worse solutions, implies diversity to let the algorithm escape from local optima. Intensification is also imposed by 

reducing the probability of selecting worse solutions.    

The mutation method in the genetic algorithm is empowered by employing simulated annealing algorithm due to its 

capability to escape from local optima. By making a small change in a selected chromosome, a mutated one is 

produced. The chromosome is selected with respect to the mutation rate mp . If the fitness of the mutated chromosome 

is improved, that chromosome is accepted and replaced by the selected chromosome. Otherwise, the algorithm accepts 

the mutated solution with a probability of 

E

TP e



 , in which, E  is the difference between the fitness of the selected 

chromosome and the mutated one and T  is the temperature. The acceptance of worse solutions decreases during the 

search process by the appropriate cooling schedule function to provide intensification in the final steps of the algorithm.  

3.4. Hybrid genetic-simulated annealing-auction algorithm   

In this section, the proposed HGSA algorithm is demonstrated. The flowchart of the algorithm is presented in Figure 1. 

The procedure is elaborated in detail in the following.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1. Flowchart of the hybrid genetic-simulate annealing-auction algorithm 
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Figure 2. The structure of chromosomes in HGSA algorithm 

3.4.1. Chromosome structure  

The chromosome structure of HGSA algorithm is depicted in Figure 2. Figure 2 shows that each chromosome contains 

all the information of one feasible solution. For each period, an array of the vehicle’s routes is considered.  The length 

of each chromosome is up to 

1

5
T

t

t

N VT


 . The vehicle’s route for each period is encoded as Figure 3. Figure 3 shows 

the routing information of one period which contains 12 customers, 3 depots and 3 vehicles.  

 

 
Figure 3. Encoding of the vehicle’s routes for each period (Eydi and Abdorahimi, 2012). 

 

In Figure 3, the route of first vehicle is 1 1a b c    , the route of the second vehicle is 

2 3d e f g h i        and the route of the third vehicle is 1 2j k l    .  

3.4.2. Initial population 

To generate a near-optimal initial population for the genetic algorithm, a two-phase approach is applied for each period. 

In the first phase, an auction algorithm is used to arrange visits of customers and in the second phase vehicles are 

assigned to the routes generated in the first phase. In what follows, the details of the aforementioned phases are 

described.  

 

3.4.2.1. First phase 

In the first phase, a set of routes is generated that shows the order of customer visits. To apply the auction algorithm, the 

problem of finding routes with minimum cost is transformed into a single depot vehicle routing (SDVR) problem. Note 

that the vehicle’s capacity constraints are neglected in this phase and enforced in the second phase. To transform the 

problem into a SDVR problem, two dummy depots are considered.  An arc is drawn from the first dummy depot to 

other depots as well as from each depot to the second dummy depot.  The cost of these arcs are zero. As a result, the 
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auction algorithm is implemented in a network structure, such as the one illustrated in Figure 4. The auction algorithm 

for SDVR problem is adapted from Freling et al. (2001).  

 

 
 

Figure 4. network structure to finding routes in the first population 

 

By removing dummy depots in the first phase, the output of the first phase are a set of routes started from a depot and 

ends in another.   

3.4.2.2. Second phase 

In the second phase, the generated routes in the first phase are assigned to vehicles as follows.  

Step1: For each depot, consider the subset of routes originated from that depot.  

Step 2: A set of vehicles available at the depot is selected so that total capacity of these vehicles exceeds the total 

demand of customers in the routes considered in Step 1.  

Step 3: Based on the total demand of customers and the capacity of the vehicles, each route is assigned to the 

appropriate vehicle.   

3.4.3. Fitness function 

The fitness of each chromosome is equal to total routing cost for all periods which is equal to the value of the objective 

function of problem.  

3.4.4. Selection process  

The selection process in the genetic algorithm is based on the roulette wheel method (Eydi and Abdorahimi, 2012). 

3.4.5. Crossover and mutation method 

In the crossover operation, a pair of chromosomes are selected from the population and combined to form two new 

chromosomes. To perform the single-point crossover method, the crossover parameter ( )cp  is set.  Then, a random 

number is selected from  1,..., 1T  . The information of the periods after the random number are switched between two 

parents and two children are born; see Figure 5. Also, the proposed simulated annealing-based mutation method is 

applied in each iteration of HGSA algorithm.  
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Figure 5. The single-point crossover method 

4. Experimental results 

In this section, several numerical tests are designed to show the efficiency of the proposed HGSA algorithm. A small 

example is solved to demonstrate the main concepts and results. Then, sensitivity analysis is done on the cooling 

schedule functions in simulated annealing-based mutation method. Finally, benchmark examples are solved to illustrate 

the performance of the proposed algorithm to solve large-scale and real problems. To implement the algorithm, 

MATLAB software is used on a computer with 8 GB RAM and 1.6-1.8 GHz CPU. 

4.1. Small example 

A fuzzy multi-depot and multi-period vehicle routing problem is considered with two periods and two depots. In each 

period, there are seven customers and three vehicles. It is assumed that fuzzy parameters are triangular fuzzy numbers. 

The demand of customers is presented in Table 2. Also, the fuzzy numbers for the capacity of vehicles are 

(100,105,110), (110,115,120) and (100,105,110), respectively. The values of parameters i, j,tc and , ,tcd i  for 

, 1,...,7,  1,2i j d   and 1,2t   are given in Table 3, Table 4, Table 5 and Table 6.  

Table 2. Fuzzy demand of customers in two periods. 

Customers 

Periods 
1 2 3 4 5 6 7 

1 (6,11,15) (17,20,21) (8,16,17) (14,15,16) (8,16,18) (8,11,16) (13,14,21) 

2 (8,18,19) (16,16,17) (7,11,17) (6,14,15) (15,24,25) (11,18,19) (16,16,23) 

Table 3. The values of parameters i, j,tc for 1t  . 

            ustomers 

customers  
1 2 3 4 5 6 7 

1 - (10,12,21) (10,19,29) (27,31,32) (15,22,28) (16,17,26) (13,22,32) 

2 (10,12,14) - (14,15,18) (29,37,39) (17,21,26) (21,28,37) (30,34,4) 

3 (13,19,20) (7,15,16) - (41,49,51) (30,36,37) (34,35,45) (30,35,40) 

4 (23,31,32) (29,37,41) (42,49,59) - (20,21,31) (31,37,38) (15,23,27) 

5 (13,22,24) (16,21,31) (33,36,39) (13,20,29) - (32,40,41) (29,30,36) 

6 (14,16,22) (20,28,33) (30,35,45) (20,21,31) (22,25,29) - (37,45,49) 

7 (12,22,32) (31,34,35) (25,35,37) (32,37,38) (30,40,47) (9,16,24) - 

Table 4. The values of parameters i, j,tc for 2t  . 

            customers 

customers   
1 2 3 4 5 6 7 

1 - (35,36,40) (43,45,46) (17,23,33) (28,30,40) (42,45,46) (26,27,32) 

2 (34,35,38) - (10,12,20) (6,12,18) (11,21,22) (42,47,55) (40,41,42) 

3 (38,45,54) (6,12,13) - (19,21,25) (14,22,26) (37,46,47) (43,44,54) 

4 (8,12,14) (17,21,28) (6,14,15) - (24,30,35) (21,31 ,33) (35,37,38) 

5 (20,21,22) (18,22,25) (13,14,16) (20,26,30) - (14,22,25) (12,21,28) 

6 (44,47,53) (44,46,56) (39,40,45) (25,26,27) (8,18,21) - (27,28,33) 

7 (31,41,42) (35,44,50) (22,30,39) (20,21,31) (13,18,20) (14,22,27) - 
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Table 5. The values of parameters , ,tcd i  for 1t  . 

             ustomers 

depots  
1 2 3 4 5 6 7 

1 (29,36,37) (41,42,48) (49,54,61) (1,6,13) (17,22,29) (22,27,37) (35,43,44) 

2 (5,13,17) (18,21,24) (30,32,36) (14,17,24) (8,14,15) (4,11,15) (18,26,28) 

Table 6. The values of parameters , ,tcd i  for 2t  . 

            customers 

depots  
1 2 3 4 5 6 7 

1 (41,43,46) (29,34,35) (22,31,32) (27,30,35) (8,16,21) (6,14,15) (22,23,29) 

2 (20,22,28) (23,24,29) (18,28,29) (11,12,17) (7,8,10) (25,29,35) (8,18,24) 
 

In Table 7, the credibility (α,β)-optimal solutions for different values of parameter α and β=0.8 are reported. Table 7 

shows that by increasing the satisfaction degree α, the total cost is increased. In fact, by increasing parameter α, the 

generated solution is more robust to changes in the problem’s parameters and the degree of confidence of the decision 

maker in the produced solution increases. Thus, more cost is paid for more reliability and robustness. 

Table 7. The credibility (α,β)-optimal solutions for different values of parameter α and β=0.8 

α  Β Period  Vehicle’s route Total cost 

0.7 0.8 

1 
2

8 5 6 0 2 1 4 8        
1

7 3 7   
275.6 

2 
2

8 3 1 2 4 8      
1

7 5 6 0 8     

0.9 0.8 

1 
2

8 0 1 2 6 5 8       
3

7 3 4 8    
285.3 

2 
1

8 0 6 5 7     
2

8 4 2 1 3 8      

 

 For each    i, j,t i, j,t i, j,tc c c
L R

 
  and    d,i,t d,i,t d,i,tc c c

L R

 
   , a credibility (α,β)-optimal solution of the problem 

can be obtained.  Different ranking functions can be used to select the values of i, j,tc and d,i,tc . The credibility (α,β)-

optimal solution of the problem by using Adamo’s and Yager’s ranking functions (Brunelli and Mezei, 2013) are 

reported in Table 8 in which 0.7  and 0.8  .   

Table 8 indicates that, small changes are made in the vehicle’s routes by applying different ranking functions. However, 

Changes in the cost are significant. The reason is that the idea proposed in this paper, produces a robust solution. 

Therefore, with a small change in the traversing cost parameters, the optimal plan does not change significantly, but the 

value of the objective function changes. 

Also, AMPL (A Mathematical Programming Language) software is used to verify the accuracy of the generated 

solution. AMPL, is a mathematical modeling language to explain and solve optimization problems, developed in 1985 

by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories (https://ampl.com/).  For the small example, the 

optimal solution produced by HGSA algorithm and AMPL software are the same. The time required to solve the 

problem in AMPL software is almost three times the time required for the HGSA algorithm.  

 

 

 

 

https://en.wikipedia.org/wiki/Algebraic_modeling_language
https://en.wikipedia.org/wiki/Robert_Fourer
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Bell_Labs
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Table 8. Credibility (α,β)-optimal solutions by using different ranking functions 

Ranking function  Period  Vehicle’s route Total cost 

Adamo’s approach 1 

 i, j,t i, j,tc c
R


  

 d,i,t , ,tc c
R

d i 
   

1 

2
8 4 1 2 0 6 5 8        

3
7 3 7   

293.2 

2 

2
8 4 2 1 3 8      

3
7 5 6 0 8     

Adamo’s approach 2 

 i, j,t i, j,t i, j,t(c 1 )c c
R


    

 d,i,t , ,t , ,tc c c(1 )
R

d i d i 
    

1 

2
8 4 1 2 0 6 5 8        

3
7 3 7   

336.64 

2 

2
8 4 2 1 3 8      

3
7 5 6 0 8     

Yager’s approach 1 

   i, j,t i, j,t i, j,tc c c
1

2

R L

 

 
 





 

    , ,t , ,t , ,t

1

2
c c c

R L

d i d i d i 
    

1 

2
8 5 6 0 2 1 4 8        

1
7 3 7   

275.6 

2 

2
8 3 1 2 4 8      

1
7 5 6 0 8     

Yager’s approach 2 

   i, j,t i, j,t i, j,t i, j,tc c c c
1

3

R L

 

 
 





  

    , ,t , ,t , ,t , ,t

1
c c c c

3

R L

d i d i d i d i 
      

1 

2
8 4 1 2 0 6 5 8        

3
7 3 7   

288.4 

2 

1
7 5 6 0 8     

2
8 3 1 2 4 8      

 

 

4.2. Sensitivity analysis on cooling schedule functions  

In the next experiment, the effect of different cooling schedule functions on the convergence of the simulated annealing-based 

mutation method is investigated. Cooling schedule functions have an important role in the convergence speed of the simulated 

annealing algorithm. Several cooling schedule functions for the simulated annealing-based mutation method are examined. The 

information of these cooling schedule functions has been collected in Table 9. Cooling schedule function 
6T is proposed in this 

paper. In this function, temperature reduction is proportional to the fitness of the generated chromosome. Therefore, in iterations 

where the value of the fitness is improved, the temperature decreases further. Hence, an improved process is proposed to update the 

parameter T .  

Table 9. Comparing different cooling schedule functions for simulated annealing-based mutation method. 

Reference Cooling schedule function Description 

Geman and Geman, (1984) 
0

1( )
log( 1)

T
T r

t



 0T  is the initial temperature and t is the number of  

iterations 

Jalali and Boyce, (1995) 
0

2 3
( )

log( 1)

T
T t

t




 2T  is similar to 
1T  With the difference that in early 

iterations the temperature is reduced faster. 

Kirkpatrick et al., (1983) 3 0( ) tT t T    is a constant between 0.8 and 0.99. 

Lin et al., 2000 4 1

1
( ) tanh( )

1

t

tT t T 



   

 
[0.8,0.99]   and 4  . 

Ghatee and Niksirat, 2013 5 1

1 1
( )

1 1 tanh( )
tt

T t T
 



 
  

  

 [0.8,0.99]   and 4  . 

This paper 6 1

1 1
( )

1 ( )
t

t

T t T
fit c






 
  

  

 ( )tfit c is the fitness of the chromosome 
tc and 4  . 

To compare the effect of different cooling schedule functions on the performance of the simulated annealing algorithm, 

a performance measure is considered as the product of the number of iterations multiplied by the CPU-time. The results 

are shown in Table 10.  
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Table 10. The values of performance measure for different cooling schedule functions. 

Cooling schedule function 
Initial Temperature 

20 50 200 400 

1T  635098/76 
 

∞ ∞ ∞ 

2T  560/32 
 

334193/1 
 

∞ ∞ 

3T  70/23 90/14 111/65 178/9 

4T  57/36 
 

78/43 
 

105/26 
 

140/76 
 

5T  49/92 
 

70/99 
 

104/12 
 

135/7 
 

6T  43/93 64/79 
 

78/44 
 

128/04 
 

 

Based on the results of Table 10, the convergence speed of the algorithm is very slow for the cooling schedule functions 

1T  and 
2T . Also, these functions are sensitive to the initial temperature. At higher initial temperatures, convergence 

does not occur. The convergence speed for the cooling schedule functions 
3T , 

4T , 
5T  and 

6T has been improved and 

the sensitivity of the algorithm to select the initial temperature has been reduced. The value of performance measure for 

the cooling schedule function 
6T  is the least. Therefore, 

6T  has been used in the proposed HGSA algorithm. 

4.3. Benchmark examples 

In this section, some benchmark examples are used to investigate the efficiency of the proposed algorithm in large-scale 

problems. Since there are no benchmark examples for the proposed fuzzy problem in the literature, a number of 

benchmark examples of the multi-depot vehicle routing problem are considered and converted to the fuzzy one in the 

manner described below. The topology structure of these benchmark examples are preserved. The benchmark examples 

are combined to create a multi-period (each benchmark example for a period) problem. Fuzzy parameters are 

considered as triangular fuzzy numbers 1 2 3( , , )r r r in which 2r is the corresponding parameter in the related classical 

multi-depot vehicle routing problem and two parameters 1r and 3r are random numbers in intervals  2 210,r r and 

 2 2, 10r r  , respectively. The benchmark examples of the multi-depot vehicle routing problem can be downloaded 

from http://www.bernabe.dorronsoro.es/vrp/. 

To compare the results, a fuzzy simulation method is applied as follows. A scenario-based method is used to select the 

scenario that meets the highest customer demand with the least number of vehicles. So, the generated solution is more 

stable to changes in the parameters of the problem. To generate this scenario, let , 1,..., , 1,...,( )i t i N t Td d   be the vector of 

demand and 1,...,( )k k Vc c  be the vector of the capacity. M independent random vectors are generated for 

, 1,..., , 1,...,( )i t i N t Td d   and 1,...,( )k k Vc c  . Then, the scenario with the minimum value of  
R

d d


 and  
L

c c


  

is selected. Also, M  random values are generated for each parameter , ,i j tc  and , ,d i tc   and the values with the maximum 

membership value are selected. The classical multi-period multi-depot vehicle routing problem is solved with the 

selected scenario and the optimal solution is compared with credibility (α,β)-optimal solution. Benchmarks examples 

specifications and results are reported in Table 11.  

Table 11. The credibility (α,β)-optimal solution and simulated optimal solution for the benchmark examples (α=β=0.8). 

Instances 

# Vehicles # Customers 
# 

Depots 

Optimal Solution 
Error 

rate t=1 t=2 t=1 t=2 
Credibility (α,β)-

optimal solution 

Simulated 

optimal solution 

P01,P01 4 4 50 50 4 1144.104 1163.43 1.6611 

P01,P02 4 2 50 50 4 1043.231 1059.681 1.5525 

P01,P03 4 3 50 75 5 1213.681 1204.414 0.7694 

P02,P02 2 2 50 50 4 917.002 893.438 2.6374 

P02,P03 2 3 50 75 5 1079.525 1115.214 3.2002 

P03,P03 3 3 75 75 5 1226.596 1268.121 3.2745 
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Table 11 shows that the error rate between the credibility (α,β)-optimal solution and the simulated optimal solution in 

all cases is less than 3.5 in which 

 credibility ( , )-optimal solution-simulated optimal solution
Error rate 100*

simulated optimal solution

 
 .  

These results show that the solution obtained from the proposed HGSA algorithm is a relatively good approximation for 

the optimal solution of the problem. 

5. Conclusions 

In this paper, fully fuzzy multi-depot and multi-period vehicle routing problem with flexibility in specifying the last 

depot was investigated to handle the imprecise traveling cost and inexact customer’s demand. A fuzzy integer 

programming model was proposed for the problem. Credibility relation was used to deal with fuzzy objective function 

and fuzzy constraints. A new solution method called hybrid Genetic-Simulated Annealing-Auction algorithm was 

developed to obtain the credibility (α,β)-optimal solution for the fuzzy problem. Experimental results were reported to 

demonstrate the efficiency of the proposed model and solution approach. For the small example, AMPL software was 

used to solve the transformed non-fuzzy problem. Comparison of the results showed that the solution produced by the 

hybrid algorithm was sufficiently accurate. In addition, the time taken to generate the solution by the hybrid algorithm 

was one third of the time required in the AMPL software. Moreover, benchmark examples were used to investigate the 

performance of the algorithm in large-scale problems. The results were compared with a fuzzy simulation method. The 

maximum error percentage of 3.5 indicated desired accuracy of the proposed method. In the future researches, authors 

are going to consider other fuzzy relations and/or implement other metaheuristic algorithms to compare the results. The 

relief chain can be reconfigured with three echelons: central disaster facilities of the city as main suppliers, local 

emergency facilities as distributors, and urban areas as customer. Also, location and routing decisions can be considered 

simultaneously. Furthermore, considering a heterogeneous fleet of vehicles, multi-commodity feature, delay penalties 

and speed rewards is strongly recommended for creating a more generalized form of the model. Finally, a multi-

objective optimization approach can be employed in future researches. 
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