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Abstract 

The conjugate gradient (CG) scheme is regarded as among the efficient methods for large-scale optimization problems. 

Several versions of CG methods have been presented recently owing to their rapid convergence, simplicity, and their less 

memory requirements. In this article, we construct a new CG algorithm via the combination of the classical methods of 

Fletcher-Reeves (FR), and Hestenes-Stiefel (HS). The new CG method possesses the descent properties and converge 

globally provided the exact minimization condition is satisfied. The tests of the new CG method using MATLAB are 

analysed in terms of iteration number and CPU time. Numerical results have been reported which shows that the proposed 

CG method performs better compare to other CG methods. 
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1. Introduction 

The CG techniques is known as one of the most efficient optimization procedures for solving applications 

problems in the field of medicine, science, engineering, and many more. The method also plays a significant 

role for unconstrained optimization problems (UOP) (Umar et al., 2020). The general UOP is stated as follows, 

min
𝑥∈𝑅𝑛

𝑓(𝑥) (1) 

where 𝑅𝑛 refers to the 𝑛-dimensional Euclidean space, 𝑓: 𝑅𝑛 → 𝑅 is smooth, 𝑥 ∈ 𝑅𝑛 is a vector and 𝑓(𝑥) is 

an objective function (Sulaiman et al., 2020a). The efficiency of the any CG method is the less memory storage 

and the ability to obtain the solution of the problem defined in (1) (Yuan & Sun 1999; Hamoda et al., 2015). 

The CG methods are computed using iterative procedures  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,   𝑘 ≥ 0, (2) 

with the step length 𝛼𝑘 > 0 and 𝑑𝑘 is the direction of search (Sulaiman et al., 2020). The step-length can be obtained 

using either the exact or inexact line search procedure (Sulaiman et al., 2015a; 2015b). Recently, many researchers tend 

to employ the inexact procedure due to it rapid convergence (Mamat et al., 2020). However, this process only produces 

an approximate solution rather the real solution. Thus, in this paper, the exact minimization procedure is selected for 

computing the step-length. Basically 𝑑𝑘 is obtained using: 
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(3) 

𝛽𝑘 and 𝑔𝑘 is the CG parameter of 𝑓(𝑥) and the gradient at 𝑥𝑘 respectively. We have 𝛽𝑘 ∈  𝑅 is a scalar that differentiate 

various CG methods while 𝑔𝑘 = 𝛻𝑓(𝑥𝑘) at the point 𝑥𝑘. Some well-known CG formulas are: 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1

            
 

(4) 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇 𝑔𝑘

𝑔𝑘−1
𝑇  𝑔𝑘−1

 
 

(5) 

𝛽𝑘
𝐿𝑆 = −

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇  𝑔𝑘−1

 
 

(6) 

𝛽𝑘
𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑑𝑘−1
𝑇  𝑑𝑘−1

     
 

(7) 

𝛽𝑘
𝐶𝐷 =

𝑔𝑘 
𝑇 𝑔𝑘

𝑑𝑘−1
𝑇  𝑔𝑘−1

   
 

(8) 

𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

𝑔𝑘−1
𝑇  𝑔𝑘−1

     
 

(9) 

𝛽𝑘
𝐷𝑌 =

𝑔𝑘
𝑇  𝑔𝑘

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
 

 

(10) 

The conjugate gradient coefficients 𝛽𝑘 ∈  𝑅 are scalars, which determine different CG methods. Some known formulas for 

CG coefficients HS (Hestenes & Stiefel 1952), FR (Fletcher & Reeves 1964), LS (Liu-Storey 1992), RMIL (Rivaie et al., 

2012), CD (Fletcher 1987), PR (Polak-Ribiere 1969) and the lastly DY (Dai-Yuan 1999). In this paper, we run the results on 

the convergence analysis using exact minimization procedures. An important property of convergence is choosing a suitable 

step-length 𝛼𝑘 (Sulaiman et al., 2019). The most commonly used search is done under exact line search: 

𝑓(𝑥𝑘 + 𝛼𝜅𝑑𝑘) =  𝑓(𝑥𝑘𝛼≥0
𝑚𝑖𝑛 + 𝛼 𝑑𝑘) (11) 

In this study, we developed a simple CG parameter 𝛽𝑘. In Section 2, there is the algorithm with our new CG parameter. The 

descent and convergence of the proposed coefficient under exact line search technique is established in Section 3. Section 4, 

contains the numerical results, the selected benchmark functions and the discussion. Finally, our conclusion in Section 5. 

2. New CG Coefficient 

This section presents the proposed 𝛽𝑘
𝑆𝑀 based on combination of FR and HS methods where SM denotes Saleh, Sulaiman, 

and Mamat as below: 

𝛽𝑘
𝑆𝑆𝑀 =

𝛽𝑘
𝐻𝑆 + 𝛽𝑘

𝐹𝑅

2
 

 

(12) 

which can be rewritten  

𝛽𝑘
𝑆𝑆𝑀 =

𝑔𝑘
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
+

𝑔𝑘
𝑇 𝑔𝑘

𝑔𝑘−1
𝑇  𝑔𝑘−1

2
 

The Algorithm of the proposed SSM coefficient is as follows. 
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Algorithm 1. 

Stage 1: Given 𝑥0, fixe 𝑘 = 0. If ∥ 𝑔𝑘 ∥= 0, stop. 

Stage 2: Determine 𝛽𝑘 by (13). 

Stage 3: Compute 𝑑𝑘 by (3) 

Stage 4: Determine 𝛼𝑘 by (11). 

Stage 5: Update 𝑥𝑘+1 by (2)     

Stage 6: Check If ‖𝑔𝑘‖ ≤ 𝜀, stop. Else, go to Stage 2 and set 𝑘 = 𝑘 + 1. 

Convergence Analysis 

This section discussed the convergence of 𝛽𝑘
𝑆𝑀. The convergence of FR parameter has been established under various 

line search (Dai et al., Dai & Yuan, 1999). To prove the convergence of the proposed method, we assumed that 𝑑𝑘 should 

possess the following condition 

𝑔𝑘
𝑇𝑑𝑘 < 0 (13) 

for all 𝑘 ≥ 0. If  ∋ 𝑐 > 0, then, 𝑑𝑘 would satisfy the following condition known as the sufficient descent condition 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶‖𝑔𝑘‖2 (14) 

Theorem 1:  

For any CG method (2) and (3) with CG coefficient 𝛽𝑘
𝑆𝑆𝑀 given as (3) and (12) respectively, then (13) holds for all 𝑘 ≥ 0. 

 

Proof:  

The proof of this Theorem would be by induction. That is, if 𝑘 = 0, it is obvious 𝑔0
𝑇𝑑0 = −𝑐 ∥ 𝑔0 ∥2. Thus, (13) is true. 

Now, we want to prove (13) holds for 𝑘 ≥ 1.  

Multiply (3) by 𝑔𝑘+1
𝑇 ,  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘+1
𝑆𝑀 𝑑𝑘) 

= − ∥ 𝑔𝑘+1 ∥2+ 𝛽𝑘+1
𝑆𝑆𝑀𝑔𝑘+1

𝑇 𝑑𝑘 
For exact line search, 𝑔𝑘+1

𝑇 𝑑𝑘 = 0. Then,  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = − ∥ 𝑔𝑘+1 ∥2 

Hence, (14) holds true for 𝑘 + 1. Alternatively, we would show that HS method can reduce to FR under (11) as the 

following proof: 

𝛽𝑘
𝑆𝑆𝑀 =

𝛽𝑘
𝐻𝑆 + 𝛽𝑘

𝐹𝑅

2
 

From the HS method, 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

=
𝑔𝑘

𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘 − 𝑑𝑘−1

𝑇 𝑔𝑘−1

 

It is known that by using (11), 𝑔𝑘
𝑇𝑑𝑘−1 = 0, hence 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

−𝑑𝑘−1
𝑇 𝑔𝑘−1

 

From (13), 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2 where 𝑐 > 0 is a constant, therefore, 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

−𝑑𝑘−1
𝑇 𝑔𝑘−1

≤
𝑔𝑘

𝑇(𝑔𝑘 − 𝑔𝑘−1)

−(−𝑐‖𝑔𝑘‖2)
≤

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑐‖𝑔𝑘‖2
 

That is mean, 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

=
𝑔𝑘

𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘 − 𝑑𝑘−1

𝑇 𝑔𝑘−1)
=

‖𝑔𝑘‖2 − 𝑔𝑘
𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇 𝑔𝑘 − 𝑑𝑘−1

𝑇 𝑔𝑘−1

 

Note that 𝑔𝑘
𝑇𝑑𝑘−1 = 0 and  𝑔𝑘−1 = −𝑑𝑘−1 thus,  



A New Hestenes-Stiefel and Fletcher-Reeves Conjugate Gradient Method with Descent Properties for Optimization Models 

 

 
  

Int J Supply Oper Manage (IJSOM), Vol.7, No.4 347 

 

𝛽𝑘
𝐻𝑆 ≤

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2
≤ 𝛽𝑘

𝐹𝑅  

Then,  

𝛽𝑘
𝑆𝑆𝑀 ≈

𝛽𝑘
𝐹𝑅 + 𝛽𝑘

𝐹𝑅

2
≈ 𝛽𝑘

𝐹𝑅 

 

Therefore, the convergence properties of 𝛽𝑘
𝑆𝑆𝑀 will follow 𝛽𝑘

𝐹𝑅. This complete the proof.  

 

Numerical Experiment 

This section compares the efficiency of the new algorithm SSM with the methods of HS, CD, FR and RMIL based on 

iteration number and CPU time. All the test functions considered are taken from Andrei (2008) and Molga (2005). The 

termination condition was set as ‖𝑔𝑘‖ ≤ 10−6. MATLAB R2018a was used in the computation which was run on an 

Intel Core i3 with RAM 3GB operation system. The list of test problems, the starting points, and their dimension are 

presented in Table 1 below. The researcher adopted four initial points with four dimensions for the computations of each 

test functions used ranging from points close to the solution points to points far away (Hilstrom 1977). 

Table 1. List of test functions 

N Functions Dimensions Initial Points 

1 Extended White & Holst 2, 4, 10, 100 (-3,...,-3), (3,…,3), (-12,…,-12), (12,…,12) 

2 Dixon and Price 4, 8, 20, 60 (3,…,3), (6,…,6), (10,…,10), (13,…,13) 

3 FLETCHCR 4, 10, 50, 100 (5,…,5), (10,…,10), (20,…,20), (30,…,30) 

4 Generalized Quartic 4, 10, 50, 100 (5,…,5), (10,…,10), (15,…,15), (20,…,20) 

5 Generalized Tridiagonal 1 4, 8, 10, 50 (5,…,5), (-5,…,-5), (13,…,13), (-10,…,-10) 

6 Generalized Tridiagonal 2 2, 8, 10, 20 (5,…,5), (10,…,10), (15,…,15), (20,…,20) 

7 Extended Block Diagonal BD1 2, 10, 100, 1000 (-2,…,-2), (2,…,2), (5,…,5), (7,…,7) 

8 Raydan 1 4, 10, 50, 100 (-9,…,-9), (-6,…,-6), (6,…,6), (9,…,9) 

9 Power 4, 10, 20, 80 (5 …, 5), (10…,10), (15,…,15), (20,…,20) 

1

0 

Sum Squares 2, 4, 10, 100 (3,…,3), (6,…,6), (9,…,9), (12,…,12) 

1

1 

Quadratic QF2 10, 20, 50, 100 (5,…,5), (10,…,10), (15,…,15), (20,…,20) 

1

2 

Extended Trigonometric 4, 10, 50, 100  (-16,…,-16), (-4,…,-4), (4,…,4), (16,…,16) 

1

3 

Extended Beale 2, 4, 10, 100 (3,…,3), (5,…,5), (7,…,7), (9,…,9) 

 
Under exact line search, Fig. 1 gives the iteration number graph and Fig. 2 is the graph to show the performance profile 

in terms of CPU time for SM, HS, CD, FR and RMIL methods. This is based on performance profile introduced by [13]. 

Obviously, the method of SM has the fastest followed by methods of HS, RMIL, CD, and the least of them is the FR 

method. This proposed method can be applied to an application problem. See Sulaiman et al., (2020b); Kazeem & 

Mohammed (2019); Hamid & Fahad (2019); Ali et al., (2018). 
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Figure 1. Performance based on number of iterations Figure 2. Performance based on the CPU times 

Conclusion 

In this article, the authors presented a new CG coefficient based on the combination of the methods of FR and HS for 

obtaining the solution of optimization problems with emphasis on unconstrained functions using exact minimization 

procedures. Based on the result, our parameter satisfied the sufficiently descent and global convergence properties. The 

results show that SM method gives the fastest performance in terms of CPU time and solves problems with minimum 

number of iterations. SM method gives the best performance compared to HS, CD, FR and RMIL. Thus, SM is a good 

alternative for to other existing methods. 
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