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Abstract 

Reneging and Balking are two facts of customer impatience. In traditional queuing literature, customer impatience was 

not often considered. However, for the last few decades, queuing theorists have been trying to integrate aspect of balking 

and reneging into modeling of queues in a holistic way. This paper is an extension of the work in the same direction. We 

consider a multiserver Markovian queuing model under the assumption that customers are state aware so that their 

impatience is state dependent. We derive the generating function of the stationary system size distribution and obtain 

mean system size along with other performance measures. 
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1. Introduction 

Queues are a very common day phenomenon which is present almost. Because of constraints with service delivery 

mechanism, queues or waiting lines arise when the customers does not get service immediately i.e. when the demand for 

a service facility goes beyond the capacity of that facility. Waiting is disliked as customers are hard pressed for time. The 

act of having to wait in a line or queue often induces impatience in arriving customers. In queuing systems, such 

impatience can be of two types – balking and reneging. If an arriving customer finds the service facility to be non-empty 

and leaves without joining the queue, then such a phenomenon is called balking. Haight (1957) was possibly the first to 

introduce the concept of balking.  

Reneging is the other commonly observed impatient customer behavior. It occurs when arriving customers join the 

queuing system, get impatient and leave before completion of service. Barrer (1957) has outlined two types of reneging - 

viz. reneging till beginning of service (R_BOS) and reneging till end of service (R_EOS). Additionally, depending on the 

nature of the reneging rate, queuing literature provides for splitting reneging into two types viz. position independent 

reneging (PIR) and position dependent reneging (PDR). Choudhury and Medhi (2011B) have illustrated these two types 

of reneging. Similar to reneging, the balking can also be classified into two parts viz. state independent balking (SIB) and 

state dependent balking (SDB). (Choudhury and Medhi, 2012). 

In this paper, we analyze a multiserver Markovian queuing system under the assumtion that customers may balk as well 

as renege. We consider a specific balking rule where the balking probability of the customer decreases as the state of the 

system goes up i.e. balking is state dependent (SDB). We also assume position dependent reneging (PDR) which is very 

relevant from practical point of view. Here the reneging rate is a function of the position of the customer. For example, 

in case of life insurance business where the purchase of a policy refers to the arrival of a customer into the queuing system 

(insurance firm), the processed application can be called the departure from the queuing system, the claim processing 

department is considered as a server and the system capacity (the number of policies it can accommodate) is taken as 

infinite. The claims are processed in order of their arrival (i.e. the queue discipline is FCFS). Jain et al., (2014) have 

assumed that the probability of joining the firm (i.e. chances of purchasing a policy) is higher when it has more number 
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of insured customers with it and vice-versa. We also assume that the probability of joining is directly proportional to the 

number of customers. 

The subsequent sections of this paper are arranged as follows - section 2 contains a brief review of the literature. Section 

3 contains the description of the model. Sections 4 and 5 contain the derivation of steady state probabilities and 

performance measures considering the reneging rule as R_BOS and R_EOS respectively. Section 6 deals with the 

conclusions. Appendix A and Appendix B contains some derivations. 

 

2. Literature Survey 

One of the earliest works on balking was by Haight (1957). Barrer (1957) has carried out one of the early work on reneging 

where he considered deterministic reneging with single server Markovian arrival and service rates. Customers were 

selected randomly for service. In his subsequent work, Barrer (1957) also considered deterministic reneging (of both 

R_BOS and R_EOS type) in a multi-server scenario with FCFS discipline. The general method of solution was extended 

to two related queuing problems. Ancker and Gafarian (1963) have assumed the both reneging and balking in a M/M/1/N 

Markovian model. Rao (1965) has investigated the M/G/1 process subject to interruptions of service and where units balk 

and renege, and have obtained the steady state queue length probabilities and certain associated operational measures. 

Rao (1969) has considered the effect of post-ponable interruptions on a M/G/1 queuing process where customers balk 

with some probability and renege after having waited for a random length of time. Haghighi et al., (1986) have analyzed 

balking and reneging in a multi-server queuing model. Steady state distribution of the number of customers in the system 

was obtained. An expression for the average loss of customers during a fixed duration of time was also discussed.  

Ke and Wang (1999) have done their work considering the M/M/R machine repair problem in which the failed machines 

balk with a constant probability (1 − 𝑏)and reneging in which breakdown and repair time distributions of the servers 

follow the negative exponential distribution. They have also performed the sensitivity analysis part. Wang and Chang 

(2002) have derived the M/M/R queuing system with finite capacity considering balking, reneging and server breakdowns 

where the arriving customers balk with a probability (1 − 𝑏𝑛) and renege according to a negative exponential distribution. 

Sensitivity analysis of that model was also derived by them and they determined the optimal number of servers at 

minimum cost. Choudhury and Medhi (2011) have also analyzed a multiserver Markovian queuing system under the 

assumption that customers may balk as well as renege. They assumed that the reneging rate of the customers standing at 

a distance from the service facility is higher than those placed near the service facility i.e. reneging rate is a function of 

system state. State independent balking is considered with the assumption that each customer arriving at the system has 

a probability ‘p’ of balking from a non-empty queue. Explicit closed form expressions were presented. A numerical 

example with design aspects was also discussed to demonstrate results derived. Kuila  (2013) has discussed about a steady 

state solution of the ordered queuing problem with balking and reneging. She has taken the waiting line is of chi-square 

queue with Poisson balking probability which depend not only on the number of customers in the system, but also the 

rate of services in the system. A very recent work that have done by Wang and Zhang (2018) where they have investigated 

an M/M/c queuing model impatience customers and dynamic service ability. Agarwal and Singh (2018) have illustrated 

the development of a queuing model consist of reneging and jockeying. In their work, the complex system includes three 

service terminals these all three were connected in parallel in tri-cum bi-serial way with a common service terminal. 

Jain et al. (2014) developed and possibly introduced the concept of reverse balking in a single server Markovian queuing 

system having finite capacity. The concept of reverse balking evolves from its application in investment business. In such 

business, more number of customers associated with a firm becomes the attracting factor for investing customers and 

conversely. The steady-state solution of the model was obtained and different measures of effectiveness were derived. 

Sensitivity analysis of the model was also performed. Kumar et al. (2015) have assumed M/M/1/N feedback queuing 

system with reverse balking. Feedback customer in queuing literature refers to a customer who is unsatisfied with 

incomplete, partial or unsatisfactory service. The steady state solution and performance measures of the model have been 

computed. Som and Kumar (2017) have also considered a single server, finite capacity queuing system with customer 

retention and balking in which the inter-arrival and service times follow negative-exponential distribution. The reneging 

times were assumed to be exponentially distributed. An arriving customer may not join the queue if there was at least one 

customer in the system, i.e. the customer may balk. The steady state solution of the model has been obtained. Some 

performance measures have been computed. The sensitivity analysis of the model has been carried out. The effect of 

probability of retention on the average system size has been studied. The numerical results show that the average system 

size increases proportionately and steadily as the probability of retention increases. Some particular cases of the model 

have been derived and discussed. 
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3. Assumptions Of The Model 

The model we deal with is based on the following assumptions: 

a) Arrivals are described by Poisson probability distribution and the inter-arrival times are exponentially distributed 

with parameter λ. Arriving customers form a single queue. 

b) There are ‘k’ servers and the service times are exponentially distributed with parameter µ. All Servers are 

homogenous and function independent of each other.  

c) The capacity of the system is infinite. 

d) The queue discipline is ‘First-Come, First-served’. 

e) Customers joining the system are assumed to be of Markovian reneging type. We shall assume that on joining the 

system, the customer is aware of its state in the system. Consequently, the reneging rate is modeled as a function 

of the customer’s state in the system. In particular, a customer who is at state n will be assumed to have random 

patience time following exp (𝜈𝑛). Here, 𝜈𝑛is the reneging rate when state of the system is n. We considered 𝜈𝑛 

under R-BOS as 

a. 𝜈𝑛 = {
0; 𝑛 = 0,1,2, … … , 𝑘

𝜈𝑛−𝑘; 𝑛 = 𝑘 + 1, 𝑘 + 2… …
 

b. Here we also assume that 𝜈 > 1. Our aim behind this formulation is to ensure that higher the current 

state of a customer, higher is the reneging rate. Hence we considered the reneging is position dependent. 

f) We assume that balking is state dependent. It will be assumed that if the customer on arrival observes the system 

to be in state ‘n’, the probability that the customer will balk is 𝑝𝑛−𝑘 , where 𝑛 = 𝑘 + 1, 𝑘 + 2…… i.e. the balking 

probability of the customer decreases as the state of the system goes up. 

 

4. The Steady State Probabilites 

In this section, the steady state probabilities are derived by using the Markov process method. Let 𝑝𝑛denotes the 

probability that there are ‘n’ customers in the system. The steady state equations are 

𝜆𝑝0 =  µ𝑝1                                                                                                        (1) 

λ𝑝𝑛−1 + (𝑛 + 1)µ𝑝𝑛+1 = (𝜆 + 𝑛µ)𝑝𝑛 ;   n = 1,2,…., k-1                                                                        (2) 

λ𝑝𝑘−1 + (𝑘µ + 𝜈)𝑝𝑘+1 = [𝑘µ + 𝜆(1 − 𝑝)]𝑝𝑘   ;  n = k                                                                                                                       (3) 

𝜆(1 − 𝑝𝑛−𝑘)𝑝𝑛−1 + [𝑘µ +
𝜈(𝜈𝑛−𝑘+1−1)

(𝜈−1)
] 𝑝𝑛+1=[𝜆(1 − 𝑝𝑛−𝑘+1) + (𝑘µ +

𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
)] 𝑝𝑛 

n = k+1, k+2, ……,∞   (4) 

Solving recursively, we get    

𝑝𝑛 = [
𝜆𝑛

𝑛!µ𝑛] 𝑝0  ; n =0,1,2,…, k                                                  (5) 

𝑝𝑛 = [
𝜆𝑛 ∏ (1−𝑝𝑟−𝑘)𝑛

𝑟=𝑘+1

𝑘!µ𝑘 ∏ (𝑘µ+
𝜈(𝜈𝑟−𝑘−1)

(𝜈−1)
)𝑛

𝑟=𝑘+1

] 𝑝0  ; n = k+1, k+2, ……,∞                                                             (6) 

Where 𝑝0 is obtained from the normalizing condition ∑ 𝑝𝑛
∞
𝑛=0 = 1  and is given as  

               𝑝0 =

[
 
 
 
 
 

1

1 + ∑ [
𝜆𝑛

𝑛!µ𝑛]𝑘
𝑛=1  +∑

[
 
 
 

𝜆𝑛 ∏ (1−𝑝𝑟−𝑘)𝑛
𝑟=𝑘+1

𝑘!µ𝑘 ∏ (𝑘µ+
𝜈(𝜈𝑟−𝑘−1)

(𝜈−1) )𝑛
𝑟=𝑘+1 ]

 
 
 

∞
𝑛=𝑘+1

]
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Under R_EOS where customers may renege from queue as well as while being served. Let 𝑞𝑛 denote the probability that 

there are n customers in the system. Applying Markov theory, we obtain the following set of steady state equations. 

𝜆𝑞0 = (µ + 𝜈)𝑞1                                                                                                  (7) 

λ𝑞𝑛−1 + (𝑛 + 1)(µ + 𝜈)𝑞𝑛+1 = {𝜆 + 𝑛(µ + 𝜈)}𝑞𝑛 ;       n = 1,2,…., k-1                                (8) 

λ𝑞𝑘−1 + {𝑘(µ + 𝜈) + 𝜈}𝑞𝑘+1 = [𝑘(µ + 𝜈) + 𝜆(1 − 𝑝)]𝑞𝑘                                                                              (9) 

𝜆(1 − 𝑝𝑛−𝑘)𝑞𝑛−1 + [𝑘(µ + 𝜈) +
𝜈(𝜈𝑛−𝑘+1 − 1)

(𝜈 − 1)
] 𝑞𝑛+1 

=[𝜆(1 − 𝑝𝑛−𝑘+1) + (𝑘(µ + 𝜈) +
𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
)] 𝑞𝑛 

n = k+1, k+2, ……,∞    (10) 

Solving recursively under R_EOS,  we get    

𝑞𝑛 = [
𝜆𝑛

𝑛!(µ+𝜈)𝑛
] 𝑝0  ; n =0,1,2,…, k                                     (11) 

𝑞𝑛 = [
𝜆𝑛 ∏ (1−𝑝𝑟−𝑘)𝑛

𝑟=𝑘+1

𝑘!(µ+𝜈)𝑘 ∏ (𝑘(µ+𝜈)+
𝜈(𝜈𝑟−𝑘−1)

(𝜈−1)
)𝑛

𝑟=𝑘+1

] 𝑞0  ; n = k+1, k+2, ……,∞                                 (12) 

Where  𝑝0 is obtained from the normalizing condition ∑ 𝑞𝑛
∞
𝑛=0 = 1  and is given as 

                               𝑞0 =

[
 
 
 
 
 

1

1 + ∑ [
𝜆𝑛

𝑛!(µ+𝜈)𝑛
]𝑘

𝑛=1  +∑

[
 
 
 

𝜆𝑛 ∏ (1−𝑝𝑟−𝑘)𝑛
𝑟=𝑘+1

𝑘!(µ+𝜈)𝑘 ∏ (𝑘(µ+𝜈)+
𝜈(𝜈𝑟−𝑘−1)

(𝜈−1) )𝑛
𝑟=𝑘+1 ]

 
 
 

∞
𝑛=𝑘+1

]
 
 
 
 
 

. 

 

5. Performance Measures 

The aim of all investigations in queueing theory is to get the main performance measures of the system which are the 

probabilistic properties of the following random variables: number of customers in the system, number of waiting 

customers, utilization of the server/s, response time of a customer, waiting time of a customer, idle time of the server, 

busy time of a server. Of course, the answers heavily depends on the assumptions concerning the distribution of inter 

arrival times, service times, number of servers, capacity and service discipline. It is quite rare, except for elementary or 

Markovian systems, that the distributions can be computed. Usually their mean or transforms can be calculated. 

The average number of customers in the system is an important measure of system performance, which is denoted by  𝐿𝑠. 

Let P(s) be the p.g.f of the steady state probability. Then we note that  

    𝐿𝑠(𝑅_𝐵𝑂𝑆) = 𝑃/(1)  =  
𝑑

𝑑𝑠
 𝑃(𝑠) |S=1 

By solving this, we get (See the Appendix A and Appendix B for the derivations) 

𝑃/(𝑠)  =
1

µ
[𝜆𝑃(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑝𝑛(𝑝𝑠)𝑛

∞

𝑛=𝑘

+  µ ∑ 𝑛𝑝𝑛𝑠𝑛−1

∞

𝑛=𝑘

−
1

𝑠(𝜈 − 1)𝜈𝑘−1
∑ 𝑝𝑛(𝜈𝑠)𝑛

∞

𝑛=𝑘+1

+
ν

𝑠(𝜈 − 1)
∑ 𝑝𝑛𝑠𝑛

∞

𝑛=𝑘+1

−
𝑘µ

𝑠
∑ 𝑝𝑛𝑠𝑛

∞

𝑛=𝑘

] 

Similarly under R_EOS, we get  
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𝑄/(𝑠)  =
1

µ + 𝜈
[𝜆𝑄(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑞𝑛(𝑝𝑠)𝑛

∞

𝑛=𝑘

+ ( µ + 𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1

∞

𝑛=𝑘

−
1

𝑠(𝜈 − 1)𝜈𝑘−1
∑ 𝑞𝑛(𝜈𝑠)𝑛

∞

𝑛=𝑘+1

+
ν

𝑠(𝜈 − 1)
∑ 𝑞𝑛𝑠𝑛

∞

𝑛=𝑘+1

−
𝑘(µ + ν)

𝑠
∑ 𝑞𝑛𝑠𝑛

∞

𝑛=𝑘

] 

Putting s=1 in the above equations, we get the average number of customers in the system i.e.  

𝐿𝑠(𝑅_𝐵𝑂𝑆)    =
1

µ
[𝜆 − ∑ 𝑝𝑛(λ𝑝𝑛−𝑘+1 − 𝑛µ + 𝑘µ) −

1

(𝜈 − 1)
∑ 𝑝𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

𝐿𝑠(𝑅_𝐸𝑂𝑆) 

=
1

µ + 𝜈
[𝜆 − ∑ 𝑞𝑛(λ𝑝𝑛−𝑘+1 − 𝑛(µ + 𝜈) + 𝑘(µ + 𝜈)) −

1

(𝜈 − 1)
∑ 𝑞𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

Mean queue size can now be obtained and given by (under R_BOS) 

𝐿𝑞(𝑅_𝐵𝑂𝑆) = ∑ (𝑛 − 𝑘)𝑝𝑛

∞

𝑛=𝑘+1

 

= 𝐿𝑠(𝑅_𝐵𝑂𝑆) − ∑ 𝑛𝑝𝑛 −

𝑘

𝑛=1

𝑘 (∑ 𝑛𝑝𝑛 −

∞

𝑛=𝑘

𝑝𝑘) 

=
1

µ
[𝜆 − ∑ 𝑝𝑛(λ𝑝𝑛−𝑘+1 − 𝑛µ + 𝑘µ) −

1

(𝜈 − 1)
∑ 𝑝𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

− µ ∑ 𝑛𝑝𝑛 −

𝑘

𝑛=1

𝑘µ(∑ 𝑛𝑝𝑛 −

∞

𝑛=𝑘

𝑝𝑘)] 

Similarly, Under R_EOS, we get 

𝐿𝑞(𝑅_𝐸𝑂𝑆) = ∑ (𝑛 − 𝑘)𝑞𝑛

∞

𝑛=𝑘+1

 

= 𝐿𝑠(𝑅_𝐸𝑂𝑆) − ∑ 𝑛𝑞𝑛 −

𝑘

𝑛=1

𝑘 (∑ 𝑛𝑞𝑛 −

∞

𝑛=𝑘

𝑞𝑘) 

=
1

µ + 𝜈

[
 
 
 
 
 𝜆 − ∑ 𝑞𝑛 (

λ𝑝𝑛−𝑘+1 − 𝑛(µ + 𝜈)

+𝑘(µ + ν)
) −

1

(𝜈 − 1)
∑ 𝑞𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

−(µ + 𝜈) ∑ 𝑛𝑞𝑛 −

𝑘

𝑛=1

𝑘µ(∑ 𝑛𝑞𝑛 −

∞

𝑛=𝑘

𝑞𝑘)
]
 
 
 
 
 

 

Using Little’s formula, we can calculate the average waiting time in the system and average waiting time in queue from 

the above-mentioned mean lengths as follows: 

Average waiting time in the system (𝑊𝑠) is obtained as ( under R_BOS) 

𝑊𝑠(𝑅_𝐵𝑂𝑆) =
𝐿𝑠(𝑅_𝐵𝑂𝑆)

𝜆
 

 =
1

𝜆µ
[𝜆 − ∑ 𝑝𝑛(λ𝑝𝑛−𝑘+1 − 𝑛µ + 𝑘µ) −

1

(𝜈 − 1)
∑ 𝑝𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

Under R_EOS, 



Analyzing Impatience in Multiserver Markovian Queues 

 

 
  

Int J Supply Oper Manage (IJSOM), Vol.7, No.4 315 

 

𝑊𝑠(𝑅_𝐸𝑂𝑆) =
𝐿𝑠(𝑅_𝐸𝑂𝑆)

𝜆
 

 =
1

𝜆(µ + ν)
[𝜆 − ∑ 𝑞𝑛 (

λ𝑝𝑛−𝑘+1 − 𝑛(µ + 𝜈)

+𝑘(µ + ν)
) −

1

(𝜈 − 1)
∑ 𝑞𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

and average waiting time in queue (W) obtained as (Under R_BOS) 

𝑊𝑞(𝑅_𝐵𝑂𝑆) = 𝑊𝑠(𝑅_𝐵𝑂𝑆) − 
1

µ
 

 =
1

𝜆µ
[∑ 𝑝𝑛(𝑛µ − λ𝑝𝑛−𝑘+1 − 𝑘µ) −

1

(𝜈 − 1)
∑ 𝑝𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

Similarly, under R_EOS, 

𝑊𝑞(𝑅_𝐸𝑂𝑆) = 𝑊𝑠(𝑅_𝐸𝑂𝑆) − 
1

µ + 𝜈
 

 =
1

𝜆(µ + ν)
[∑ 𝑞𝑛(𝑛(µ + ν) − λ𝑝𝑛−𝑘+1 − 𝑘(µ + ν)) −

1

(𝜈 − 1)
∑ 𝑞𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

Arrival rate of a customer into the system is λ. However, because of balking, all the customers who arrive do not join the 

system. Thus the effective arrival rate into the system is different from the overall arrival rate which is given by (R_BOS) 

𝜆(𝑅_𝐵𝑂𝑆)
𝑒 = 𝜆 ∑ 𝑝𝑛

𝑘−1

𝑛=0

+  𝜆 ∑ 𝑝𝑛(1 − 𝑝𝑛−𝑘+1) 

∞

𝑛=𝑘

 

Similarly, under R_EOS, 

𝜆(𝑅_𝐸𝑂𝑆)
𝑒 = 𝜆 ∑ 𝑞𝑛

𝑘−1

𝑛=0

+  𝜆 ∑ 𝑞𝑛(1 − 𝑝𝑛−𝑘+1) 

∞

𝑛=𝑘

 

We have assumed here that each customer has a random patience time following exp (𝜈𝑛) where 𝜈𝑛has been defined in 

Section 3. Reneging rate is a function of system state. Clearly then, the reneging rate of the system would depend on the 

state of the system as well as the reneging rule. The average reneging rates (Avgrr) is given by (R_BOS) 

𝐴𝑣𝑔𝑟𝑟𝑅_𝐵𝑂𝑆 = ∑
𝜈(𝜈𝑛−𝑘 − 1)

(𝜈 − 1)
𝑝𝑛

∞

𝑛=𝑘+1

 

Similarly, under R_EOS, 

𝐴𝑣𝑔𝑟𝑟𝑅_𝐸𝑂𝑆 = ∑
𝜈(𝜈𝑛−𝑘 − 1)

(𝜈 − 1)
𝑞𝑛

∞

𝑛=𝑘+1

 

In a real life situation, customers who balk or renege represent the business lost. Generally, customers are lost to the 

system in two ways, due to balking and due to reneging. Management would like to know the proportion of total customers 

lost in order to have an idea of total business lost. 

Hence, the mean rate at which customers are lost under R_BOS is  

𝜆 − 𝜆(𝑅_𝐵𝑂𝑆)
𝑒 + 𝐴𝑣𝑔𝑟𝑟𝑅_𝐵𝑂𝑆 = = 𝜆 − µ ∑ 𝑛𝑝𝑛 −

𝑘

𝑛=1

𝑘µ(∑ 𝑛𝑝𝑛 −

∞

𝑛=𝑘

𝑝𝑘) 

Similarly, the mean rate at which customers are lost under R_EOS is 
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𝜆 − 𝜆(𝑅𝐸𝑂𝑆)
𝑒 + 𝐴𝑣𝑔𝑟𝑟𝑅𝐸𝑂𝑆

= = 𝜆 − (µ + 𝜈) ∑ 𝑛𝑞𝑛 −

𝑘

𝑛=1

𝑘(µ + 𝜈) (∑ 𝑛𝑞𝑛 −

∞

𝑛=𝑘

𝑞𝑘) 

These rates helps in determining the proportion of customers lost which is of interest to the system manager as also an 

important measure of business lost. This proportion is  

{𝜆 − 𝜆(𝑅_𝐵𝑂𝑆)
𝑒 + 𝐴𝑣𝑔𝑟𝑟𝑅_𝐵𝑂𝑆}/𝜆  and  {𝜆 − 𝜆(𝑅_𝐸𝑂𝑆)

𝑒 + 𝐴𝑣𝑔𝑟𝑟𝑅_𝐸𝑂𝑆}/𝜆  

under R_BOS and R_EOS respectively. The proportion of customer completing receipt of service can now be easily 

determined from the above proportion. 

 

6. Numerical Example 

To illustrate the use of our results, we apply them to a queuing problem. We quote below an example from (Allen , 2005). 

“KAMAKAZY AIRLINES is planning a new telephone reservation center. Each agent will have a reservation terminal and 

can serve a typical caller in 5 minutes, the service time being exponentially distributed. Calls arrive randomly and the system 

has a large message buffering system to hold calls that arrive when no agent is free. An average of 36 calls per hour is 

expected during the peak period of the day. The design criteria for the new facility is The probability a caller will find all 

agents busy must not exceed 0.1 (10%). How many agents (and terminals) should be provided?” (Table 1 should be here) 

 
Table 1. Calculation of Difference Performance Measures 

Performance measure Number of agents 

 K=7 K=8 K=9 

Probability that an arriving customer receive service immediately  

(=∑ 𝒑𝒏
∞
𝒏=𝒌+𝟏 ) 

0.15732 0.05229 0.0156 

 

Probability that an arriving customer get all busy server  (=𝟏 −
 ∑ 𝒑𝒏

∞
𝒏=𝒌+𝟏 ) 

0.84278 0.94771 0.9844 

∑ 𝒑𝒏

∞

𝒏=𝟎

 
1 1 1 

𝒑𝟎 0.050009 0.049853 0.049805 

Proportion of customers lost due to reneging and balking 0.031352 0.011307 0.003656 

Arrival rate of customers reaching service station ( = 𝝀𝒔) 35.84149 35.94512 35.98274 

Average number of customers in the system (= L) 3.06065 3.02748 3.00750 

 

In order to meet the design requirement that the probability a caller will find all agents busy must not exceed 0.1 (10%), we 

observe from Table 1 that the number of agents should be 8 or more.  Keeping cost consideration in view, fewer numbers of 

agents is better. We can thus settle for 8 agents. The proportion of customer lost is 1.1% where in the proportion of customer 

lost in (Choudhury and Medhi, 2011B) was 2.2%.The reason is that  in (Choudhury and Medhi, 2011B), the balking probability 

was assumed to be constant whereas in our analysis, the probability of balking goes down as the system size increases. The 

probability of losing a customer is very small (1.1%) because the average length of the system is 3.02 in case the number of 

servers is 8 (i.e. k=8). Further the probability that an arriving customer receives service is 0.95. Thus 95% of customer do not 

balk or renege.  Only 5% customers are lost (reneged or balked) and leave the system without service.  

 

7. Conclusions 

Analysis of a multi-server Markovian queuing system with state dependent balking and state dependent reneging has been 

presented. Closed form expressions of a number of performance measures have also been presented. To the best of our 

knowledge, this has not been attempted in literature. The assumptions of state dependent balking and state dependent 

reneging are the focus of this paper. Since balking and reneging is a commonly observed phenomenon, it is our belief that 

results presented in this work will be used by practitioners of queuing theory. One can obtain results of the traditional 

M/M/k models by substituting 𝜈 = 0 and 𝑝 = 0 in our results. An example from management prospective has been 

included to demonstrate the usefulness of our results. 
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Appendix A 

Derivation of  𝑷/(𝟏) under R_BOS 

Let P(s)denote the probability generating function, defined by 

   𝑃/(𝑠) = ∑ 𝑝𝑛𝑠𝑛∞
𝑛=0  

https://link.springer.com/journal/184
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From equation (2) we have 

λ𝑝𝑛−1 + (𝑛 + 1)µ𝑝𝑛+1 = (𝜆 + 𝑛µ)𝑝𝑛 ;   n = 1,2,…., k-1 

Multiplying both sides of the equation by  snand summing over  ‘n’ 

𝜆𝑠 [∑ 𝑝𝑛−1𝑠
𝑛−1𝑘−1

𝑛=1
] −  𝜆[∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=1 ] =  µ∑ 𝑛𝑝𝑛𝑠𝑛𝑘−1
𝑛=1 − 

1

𝑠
µ ∑ (𝑛 + 1)𝑝𝑛+1𝑠

𝑛+1𝑘−1

𝑛=1
             (a)             

From equation (3) we have 

λ𝑝𝑘−1 + (𝑘µ + 𝜈)𝑝𝑘+1 = [𝑛µ + 𝜆(1 − 𝑝)]𝑝𝑘 

Multiplying both sides of the equation by sk 

𝜆𝑠𝑝𝑘−1𝑠
𝑘−1 − 𝜆(1 − 𝑝)𝑝𝑘𝑠

𝑘 = 𝑘µ𝑝𝑘𝑠
𝑘 −

1

𝑠
(𝑘µ + 𝜈)𝑝𝑘+1𝑠

𝑘+1         (b) 

From equation (4) we have 

𝜆(1 − 𝑝𝑛−𝑘)𝑝𝑛−1 + [𝑘µ +
𝜈(𝜈𝑛−𝑘+1−1)

(𝜈−1)
] 𝑝𝑛+1=[𝜆(1 − 𝑝𝑛−𝑘+1) + (𝑘µ +

𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
)] 𝑝𝑛 

n = k+1, k+2, ……,∞  

Multiplying both sides of the equation by  sn and summing over  ‘n’ 

𝜆𝑠 [ ∑ (1 − 𝑝𝑛−𝑘)𝑝𝑛−1𝑠
𝑛−1

∞

𝑛=𝑘+1

] −  𝜆 [ ∑ (1 − 𝑝𝑛−𝑘+1)𝑝𝑛𝑠𝑛

∞

𝑛=𝑘+1

]

=  ∑ [𝑘µ +
𝜈(𝜈𝑛−𝑘 − 1)

(𝜈 − 1)
] 𝑝𝑛𝑠𝑛

∞

𝑛=𝑘+1

− 
1

𝑠
∑ [𝑘µ +

𝜈(𝜈𝑛−𝑘+1 − 1)

(𝜈 − 1)
] 𝑝𝑛+1𝑠

𝑛+1

∞

𝑛=𝑘+1

 

     ...   (c) 

Now adding (a), (b)and (c) 

 𝜆𝑠 [∑ 𝑝𝑛−1𝑠
𝑛−1𝑘−1

𝑛=1
+ 𝑝𝑘−1𝑠

𝑘−1 + ∑ (1 − 𝑝𝑛−𝑘)𝑝𝑛−1𝑠
𝑛−1∞

𝑛=𝑘+1
] − 𝜆[∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=1 + (1 − 𝑝)𝑝𝑘𝑠
𝑘 +

∑ (1 − 𝑝𝑛−𝑘+1)𝑝𝑛𝑠𝑛∞

𝑛=𝑘+1
] =  µ∑ 𝑛𝑝𝑛𝑠𝑛𝑘−1

𝑛=1 +  𝑘µ𝑝𝑘𝑠
𝑘 + ∑ [𝑘µ +

𝜈(𝜈𝑛−𝑘+1−1)

(𝜈−1)
] 𝑝𝑛𝑠𝑛

∞

𝑛=𝑘+1
−

 
1

𝑠
[µ ∑ (𝑛 + 1)𝑝𝑛+1𝑠

𝑛+1𝑘−1
𝑛=1  + (𝑘µ + 𝜈)𝑝𝑘+1

𝑘+1 + ∑ [𝑘µ +  
𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
] 𝑝𝑛+1𝑠

𝑛+1
∞

𝑛=𝑘+1
] 

 𝜆𝑠[∑ 𝑝𝑛𝑠𝑛𝑘−1
𝑛=0 + ∑ 𝑝𝑛−1𝑠

𝑛−1∞

𝑛=𝑘+1
− 𝑝1−𝑘 ∑ 𝑝𝑛−1(𝑝𝑠)𝑛−1∞

𝑛=𝑘+1
] − 𝜆[∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=1 ] − 𝜆[∑ 𝑝𝑛𝑠𝑛∞
𝑛=𝑘 ] +

𝜆𝑝1−𝑘[∑ 𝑝𝑛(𝑝𝑠)𝑛∞

𝑛=𝑘+1
] =  µ𝑠[𝑃/(𝑠) − ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
] +  𝑘µ[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 ] +

𝜈1−𝑘

𝜈−1
[∑ 𝑝𝑛(𝜈𝑠)𝑛∞

𝑛=𝑘+1
] −

ν

𝜈−1
[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘

𝑛=0 ] −  
1

𝑠
[µ𝑠[𝑃/(𝑠) − 𝑝1 − ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘+1
] + 𝑘µ[P(𝑠) −

∑ 𝑝𝑛𝑠𝑛𝑘
𝑛=0 ]   + 𝜈𝑝𝑘+1𝑠

𝑘+1 + ∑ (
(𝜈𝑛−𝑘+2−𝜈)

(𝜈−1)
) 𝑝𝑛+1𝑠

𝑛+1
∞

𝑛=𝑘+1
] 

 𝜆𝑠{𝑃(𝑠)} − 𝜆𝑠𝑝1−𝑘[𝑃(𝑝𝑠) − ∑ 𝑝𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 ] − 𝜆[𝑃(𝑠) − 𝑝0] + 𝜆𝑝1−𝑘 [𝑃(𝑝𝑠) − ∑ 𝑝𝑛(𝑝𝑠)𝑛𝑘−1

𝑛=0
] =

 µ𝑠[𝑃/(𝑠) − ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
] +  𝑘µ[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 ] +
𝜈1−𝑘

𝜈−1
[𝑃(𝜈𝑠) − ∑ 𝑝𝑛(𝜈𝑠)𝑛𝑘

𝑛=0
] −

ν

𝜈−1
[P(𝑠) −

∑ 𝑝𝑛𝑠𝑛𝑘
𝑛=0 ] − µ[𝑃/(𝑠) − 𝑝1 − ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘+1
] −

𝑘µ

𝑠
[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘

𝑛=0 ] −
𝜈

𝑠
𝑝𝑘+1𝑠

𝑘+1 −

1

𝑠(𝜈−1)𝜈𝑘−1 ∑ 𝑝𝑛+1(𝜈𝑠)
𝑛+1∞

𝑛=𝑘+1
+ 

𝜈

𝑠(𝜈−1)
∑ 𝑝𝑛+1𝑠

𝑛+1∞

𝑛=𝑘+1
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 𝜆𝑠{𝑃(𝑠)} − 𝜆𝑠𝑝1−𝑘𝑃(𝑝𝑠) + 𝜆𝑠𝑝1−𝑘 ∑ 𝑝𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 − 𝜆𝑃(𝑠) + 𝜆𝑝0 + 𝜆𝑝1−𝑘𝑃(𝑝𝑠) −

𝜆𝑝1−𝑘 ∑ 𝑝𝑛(𝑝𝑠)𝑛𝑘−1

𝑛=0
=  µ𝑠𝑃/(𝑠) − µ𝑠 ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
+ 𝑘µP(𝑠) − 𝑘µ∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 +
1

(𝜈−1)𝜈𝑘−1 𝑃(𝜈𝑠) −

1

(𝜈−1)𝜈𝑘−1
∑ 𝑝𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 −
ν

𝜈−1
P(𝑠) +

ν

𝜈−1
∑ 𝑝𝑛𝑠𝑛𝑘

𝑛=0 − µ𝑃/(𝑠) + 𝜆𝑝0 + µ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
− 𝑘µ𝑝𝑘𝑠

𝑘−1 −

𝑘µ

𝑠
P(𝑠) +

𝑘µ

𝑠
∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 +
𝑘µ

𝑠
𝑝𝑘𝑠

𝑘 −
𝜈

𝑠
𝑝𝑘+1𝑠

𝑘+1 −
1

𝑠(𝜈−1)𝜈𝑘−1 [𝑃(𝜈𝑠) − ∑ 𝑝𝑛(𝜈𝑠)𝑛 − 𝑝𝑘+1(𝜈𝑠)
𝑘+1𝑘

𝑛=0
] +

 
𝜈

𝑠(𝜈−1)
[𝑃(𝑠) − ∑ 𝑝𝑛(𝑠)𝑛 − 𝑝𝑘+1(𝑠)

𝑘+1𝑘

𝑛=0
] 

 𝜆𝑃(𝑠)(𝑠 − 1) − 𝜆𝑝1−𝑘𝑃(𝑝𝑠)(𝑠 − 1) + 𝜆𝑝1−𝑘(𝑠 − 1)∑ 𝑝𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 =  µ𝑃/(𝑠)(𝑠 − 1) −

µ∑ 𝑛𝑝𝑛𝑠𝑛−1(𝑠 − 1)
∞

𝑛=𝑘
+ 𝑘µP(𝑠)(1 −

1

𝑠
) − 𝑘µ(1 −

1

𝑠
)∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 +
𝑃(𝜈𝑠)

(𝜈−1)𝜈𝑘−1 (1 −
1

𝑠
) −

1

(𝜈−1)𝜈𝑘−1 (1 −

1

𝑠
)∑ 𝑝𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 −
ν

𝜈−1
P(𝑠)(1 −

1

𝑠
) +

𝜈

(𝜈−1)
(1 −

1

𝑠
)∑ 𝑝𝑛(𝑠)𝑛𝑘

𝑛=0 −
𝑝𝑘+1𝑠𝑘+1

𝑠
[𝜈 +

𝜈

(𝜈−1)
−

𝜈1+𝑘

(𝜈−1)𝜈𝑘−1] 

 𝜆𝑃(𝑠)(𝑠 − 1) − 𝜆𝑝1−𝑘𝑃(𝑝𝑠)(𝑠 − 1) + 𝜆𝑝1−𝑘(𝑠 − 1)[𝑃(𝑝𝑠) − ∑ 𝑝𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 ] +  µ∑ 𝑛𝑝𝑛𝑠𝑛−1(𝑠 −

∞

𝑛=𝑘

1) −
𝑘µ

𝑠
P(𝑠)(𝑠 − 1) −

𝑘µ

𝑠
(𝑠 − 1)∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 −
𝑃(𝜈𝑠)

𝑠(𝜈−1)𝜈𝑘−1
(𝑠 − 1) +

1

𝑠(𝜈−1)𝜈𝑘−1
(𝑠 − 1) ∑ 𝑝𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 +

ν

𝑠(𝜈−1)
P(𝑠)(𝑠 − 1) −

𝜈

𝑠(𝜈−1)
(𝑠 − 1) ∑ 𝑝𝑛𝑠𝑛𝑘

𝑛=0 =  µ𝑃/(𝑠)(𝑠 − 1) 

 µ𝑃/(𝑠)  = 𝜆𝑃(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑝𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 +  µ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
−

𝑘µ

𝑠
[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘−1

𝑛=0 ] −

1

𝑠(𝜈−1)𝜈𝑘−1
[𝑃(𝜈𝑠) − ∑ 𝑝𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 ] +
ν

𝑠(𝜈−1)
[P(𝑠) − ∑ 𝑝𝑛𝑠𝑛𝑘

𝑛=0 ] 

 µ𝑃 (𝑠)  = 𝜆𝑃(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑝𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 +  µ ∑ 𝑛𝑝𝑛𝑠𝑛−1∞

𝑛=𝑘
−

𝑘µ

𝑠
∑ 𝑝𝑛𝑠𝑛∞

𝑛=𝑘 −

1

𝑠(𝜈−1)𝜈𝑘−1
∑ 𝑝𝑛(𝜈𝑠)𝑛∞

𝑛=𝑘+1 +
ν

𝑠(𝜈−1)
∑ 𝑝𝑛𝑠𝑛∞

𝑛=𝑘+1  

Now putting s=1,  we get the average number of customers in the system i.e. 𝐿𝑠 

  𝐿𝑠 =  𝑃/(1) 

=
1

µ
[𝜆 − 𝜆 ∑ 𝑝𝑛𝑝𝑛−𝑘+1

∞

𝑛=𝑘

+ µ ∑ 𝑛𝑝𝑛

∞

𝑛=𝑘

− 𝑘µ ∑ 𝑝𝑛

∞

𝑛=𝑘

−
1

(𝜈 − 1)𝜈𝑘−1
∑ 𝑝𝑛𝜈𝑛

∞

𝑛=𝑘+1

+
ν

(𝜈 − 1)
∑ 𝑝𝑛

∞

𝑛=𝑘+1

]

=
1

µ
[𝜆 − ∑ 𝑝𝑛(λ𝑝𝑛−𝑘+1 − 𝑛µ + 𝑘µ) −

1

(𝜈 − 1)
∑ 𝑝𝑛(𝜈𝑛−𝑘+1 − 𝜈)

∞

𝑛=𝑘+1

∞

𝑛=𝑘

] 

Appendix B 

Derivation of  𝑸/(𝟏) under R_EOS 

Let Q(s) denote the probability generating function, defined by 

   𝑄/(𝑠) = ∑ 𝑞𝑛𝑠𝑛∞
𝑛=0  

From equation (8) we have 

λ𝑞𝑛−1 + (𝑛 + 1)(µ + 𝜈)𝑞𝑛+1 = {𝜆 + 𝑛(µ + 𝜈)}𝑞𝑛 ;   n = 1,2,…., k-1 

Multiplying both sides of the equation by  sn and summing over  ‘n’ 

𝜆𝑠 [∑ 𝑞𝑛−1𝑠
𝑛−1

𝑘−1

𝑛=1

] −  𝜆 [∑ 𝑞𝑛𝑠𝑛

𝑘−1

𝑛=1

] 



Saikia, Medhi and Choudhury 

 

 

  

Int J Supply Oper Manage (IJSOM), Vol.7, No.4 320 

 

=  (µ + 𝜈)∑ 𝑛𝑞𝑛𝑠𝑛𝑘−1
𝑛=1 − 

1

𝑠
(µ + 𝜈) ∑ (𝑛 + 1)𝑞𝑛+1𝑠

𝑛+1𝑘−1

𝑛=1
                          (d)             

From equation (9) we have 

λ𝑞𝑘−1 + (𝑘(µ + 𝜈) + 𝜈)𝑞𝑘+1 = {𝑛(µ + 𝜈) + 𝜆(1 − 𝑝)}𝑞𝑘 

Multiplying both sides of the equation by sk 

𝜆𝑠𝑞𝑘−1𝑠
𝑘−1 − 𝜆(1 − 𝑝)𝑞𝑘𝑠

𝑘 = 𝑘(µ + 𝜈)𝑞𝑘𝑠
𝑘 −

1

𝑠
(𝑘(µ + 𝜈) + 𝜈)𝑞𝑘+1𝑠

𝑘+1    (e) 

From equation (10) we have 

𝜆(1 − 𝑝𝑛−𝑘)𝑞𝑛−1 + [𝑘(µ + 𝜈) +
𝜈(𝜈𝑛−𝑘+1 − 1)

(𝜈 − 1)
] 𝑞𝑛+1 

=[𝜆(1 − 𝑝𝑛−𝑘+1) + (𝑘(µ + 𝜈) +
𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
)] 𝑞𝑛 

n = k+1, k+2, ……,∞  

Multiplying both sides of the equation by  sn and summing over  ‘n’ 

 𝜆𝑠[∑ (1 − 𝑝𝑛−𝑘)𝑞𝑛−1𝑠
𝑛−1∞

𝑛=𝑘+1
] −  𝜆[∑ (1 − 𝑝𝑛−𝑘+1)𝑞𝑛𝑠𝑛∞

𝑛=𝑘+1
] =  ∑ [𝑘(µ + 𝜈) +

∞

𝑛=𝑘+1

𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
] 𝑞𝑛𝑠𝑛 − 

1

𝑠
∑ [𝑘(µ + 𝜈) +

𝜈(𝜈𝑛−𝑘+1−1)

(𝜈−1)
] 𝑞𝑛+1𝑠

𝑛+1
∞

𝑛=𝑘+1
                                                (f) 

Now adding (d), (e) and (f) 

 𝜆𝑠 [∑ 𝑞𝑛−1𝑠
𝑛−1𝑘−1

𝑛=1
+ 𝑞𝑘−1𝑠

𝑘−1 + ∑ (1 − 𝑝𝑛−𝑘)𝑞𝑛−1𝑠
𝑛−1∞

𝑛=𝑘+1
] − 𝜆[∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=1 + (1 − 𝑝)𝑞𝑘𝑠
𝑘 +

∑ (1 − 𝑝𝑛−𝑘+1)𝑞𝑛𝑠𝑛∞

𝑛=𝑘+1
] =  (µ + 𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛𝑘−1

𝑛=1 +  𝑘(µ + 𝜈)𝑞𝑘𝑠
𝑘 + ∑ [𝑘(µ + 𝜈) +

∞

𝑛=𝑘+1

𝜈(𝜈𝑛−𝑘+1−1)

(𝜈−1)
] 𝑞𝑛𝑠𝑛 − 

1

𝑠
[(µ + 𝜈) ∑ (𝑛 + 1)𝑝𝑛+1𝑠

𝑛+1𝑘−1
𝑛=1  + (𝑘(µ + 𝜈) + 𝜈)𝑞𝑘+1

𝑘+1 + ∑ [𝑘(µ +
∞

𝑛=𝑘+1

𝜈) +  
𝜈(𝜈𝑛−𝑘−1)

(𝜈−1)
] 𝑞𝑛+1𝑠

𝑛+1] 

 𝜆𝑠[∑ 𝑞𝑛𝑠𝑛𝑘−1
𝑛=0 + ∑ 𝑞𝑛−1𝑠

𝑛−1∞

𝑛=𝑘+1
− 𝑝1−𝑘 ∑ 𝑞𝑛−1(𝑝𝑠)𝑛−1∞

𝑛=𝑘+1
] − 𝜆[∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=1 ] − 𝜆[∑ 𝑞𝑛𝑠𝑛∞
𝑛=𝑘 ] +

𝜆𝑝1−𝑘[∑ 𝑞𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘+1 ] = (µ + 𝜈)𝑠[𝑄/(𝑠) − ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
] +  𝑘(µ + 𝜈)[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=0 ] +

𝜈1−𝑘

𝜈−1
[∑ 𝑞𝑛(𝜈𝑠)𝑛∞

𝑛=𝑘+1
] −

ν

𝜈−1
[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 ] −  
1

𝑠
[(µ + 𝜈)𝑠[𝑄/(𝑠) − 𝑞1 − ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘+1
] +

𝑘(µ + 𝜈)[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘
𝑛=0 ]   + 𝜈𝑞𝑘+1𝑠

𝑘+1 + ∑ (
(𝜈𝑛−𝑘+2−𝜈)

(𝜈−1)
) 𝑞𝑛+1𝑠

𝑛+1
∞

𝑛=𝑘+1
] 

 𝜆𝑠{𝑄(𝑠)} − 𝜆𝑠𝑝1−𝑘[𝑄(𝑝𝑠) − ∑ 𝑞𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 ] − 𝜆[𝑄(𝑠) − 𝑞0] + 𝜆𝑝1−𝑘 [𝑄(𝑝𝑠) − ∑ 𝑞𝑛(𝑝𝑠)𝑛𝑘−1

𝑛=0
] =  (µ +

𝜈)𝑠[𝑄/(𝑠) − ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
] +  𝑘(µ + 𝜈)[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=0 ] +
𝜈1−𝑘

𝜈−1
[𝑄(𝜈𝑠) − ∑ 𝑞𝑛(𝜈𝑠)𝑛𝑘

𝑛=0
] −

ν

𝜈−1
[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 ] − (µ + 𝜈)[𝑄/(𝑠) − 𝑞1 − ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘+1
] −

𝑘(µ+𝜈)

𝑠
[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 ] −

𝜈

𝑠
𝑞𝑘+1𝑠

𝑘+1 −
1

𝑠(𝜈−1)𝜈𝑘−1 ∑ 𝑞𝑛+1(𝜈𝑠)
𝑛+1∞

𝑛=𝑘+1
+ 

𝜈

𝑠(𝜈−1)
∑ 𝑞𝑛+1𝑠

𝑛+1∞

𝑛=𝑘+1
 

 𝜆𝑠{𝑄(𝑠)} − 𝜆𝑠𝑝1−𝑘𝑄(𝑝𝑠) + 𝜆𝑠𝑝1−𝑘 ∑ 𝑞𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 − 𝜆𝑄(𝑠) + 𝜆𝑞0 + 𝜆𝑝1−𝑘𝑄(𝑝𝑠) −

𝜆𝑝1−𝑘 ∑ 𝑞𝑛(𝑝𝑠)𝑛𝑘−1

𝑛=0
= (µ + 𝜈)𝑠𝑄/(𝑠) − (µ + 𝜈)𝑠 ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
+ 𝑘(µ + 𝜈)Q(𝑠) − 𝑘(µ +

𝜈) ∑ 𝑞𝑛𝑠𝑛𝑘−1
𝑛=0 +

1

(𝜈−1)𝜈𝑘−1 𝑄(𝜈𝑠) −
1

(𝜈−1)𝜈𝑘−1
∑ 𝑞𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 −
ν

𝜈−1
Q(𝑠) +

ν

𝜈−1
∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 − (µ + 𝜈)𝑄/(𝑠) +
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𝜆𝑞0 + (µ + 𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
− 𝑘(µ + 𝜈)𝑞𝑘𝑠

𝑘−1 −
𝑘(µ+𝜈)

𝑠
Q(𝑠) +

𝑘(µ+𝜈)

𝑠
∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=0 +
𝑘(µ+𝜈)

𝑠
𝑞𝑘𝑠

𝑘 −

𝜈

𝑠
𝑞𝑘+1𝑠

𝑘+1 −
1

𝑠(𝜈−1)𝜈𝑘−1 [𝑄(𝜈𝑠) − ∑ 𝑞𝑛(𝜈𝑠)𝑛 − 𝑞𝑘+1(𝜈𝑠)
𝑘+1𝑘

𝑛=0
] +  

𝜈

𝑠(𝜈−1)
[𝑄(𝑠) − ∑ 𝑞𝑛𝑠𝑛 −

𝑘

𝑛=0

𝑞𝑘+1𝑠
𝑘+1] 

 𝜆𝑄(𝑠)(𝑠 − 1) − 𝜆𝑞1−𝑘𝑄(𝑝𝑠)(𝑠 − 1) + 𝜆𝑝1−𝑘(𝑠 − 1)∑ 𝑞𝑛(𝑝𝑠)𝑛𝑘−1
𝑛=0 = (µ + 𝜈)𝑄/(𝑠)(𝑠 − 1) − (µ +

𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1(𝑠 − 1)
∞

𝑛=𝑘
+ 𝑘(µ + 𝜈)Q(𝑠) (1 −

1

𝑠
) − 𝑘(µ + 𝜈)(1 −

1

𝑠
) ∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=0 +
𝑄(𝜈𝑠)

(𝜈−1)𝜈𝑘−1 (1 −
1

𝑠
) −

1

(𝜈−1)𝜈𝑘−1 (1 −
1

𝑠
) ∑ 𝑞𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 −
ν

𝜈−1
Q(𝑠)(1 −

1

𝑠
) +

𝜈

(𝜈−1)
(1 −

1

𝑠
)∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 −
𝑞𝑘+1𝑠𝑘+1

𝑠
[𝜈 +

𝜈

(𝜈−1)
−

𝜈1+𝑘

(𝜈−1)𝜈𝑘−1] 

 𝜆𝑄(𝑠)(𝑠 − 1) − 𝜆𝑝1−𝑘𝑄(𝑝𝑠)(𝑠 − 1) + 𝜆𝑝1−𝑘(𝑠 − 1)[𝑄(𝑝𝑠) − ∑ 𝑞𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 ] +  (µ +

𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1(𝑠 − 1)
∞

𝑛=𝑘
−

𝑘(µ+𝜈)

𝑠
Q(𝑠)(𝑠 − 1) −

𝑘(µ+𝜈)

𝑠
(𝑠 − 1)∑ 𝑞𝑛𝑠𝑛𝑘−1

𝑛=0 −
𝑄(𝜈𝑠)

𝑠(𝜈−1)𝜈𝑘−1
(𝑠 − 1) +

1

𝑠(𝜈−1)𝜈𝑘−1
(𝑠 − 1)∑ 𝑞𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 +
ν

𝑠(𝜈−1)
Q(𝑠)(𝑠 − 1) −

𝜈

𝑠(𝜈−1)
(𝑠 − 1)∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 = (µ + 𝜈)(𝑠 −

1)𝑄/(𝑠) 

 (µ + 𝜈)𝑄/(𝑠)  = 𝜆𝑄(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑞𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 + (µ + 𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
−

𝑘(µ+𝜈)

𝑠
[Q(𝑠) −

∑ 𝑞𝑛𝑠𝑛𝑘−1
𝑛=0 ] −

1

𝑠(𝜈−1)𝜈𝑘−1
[𝑄(𝜈𝑠) − ∑ 𝑞𝑛(𝜈𝑠)𝑛𝑘

𝑛=0 ] +
ν

𝑠(𝜈−1)
[Q(𝑠) − ∑ 𝑞𝑛𝑠𝑛𝑘

𝑛=0 ] 

 (µ + 𝜈)𝑄/(𝑠)  = 𝜆𝑄(𝑠) − 𝜆𝑝1−𝑘 ∑ 𝑞𝑛(𝑝𝑠)𝑛∞
𝑛=𝑘 + (µ + 𝜈) ∑ 𝑛𝑞𝑛𝑠𝑛−1∞

𝑛=𝑘
−

𝑘(µ+𝜈)

𝑠
∑ 𝑞𝑛𝑠𝑛∞

𝑛=𝑘 −

1

𝑠(𝜈−1)𝜈𝑘−1
∑ 𝑞𝑛(𝜈𝑠)𝑛∞

𝑛=𝑘+1 +
ν

𝑠(𝜈−1)
∑ 𝑞𝑛𝑠𝑛∞

𝑛=𝑘+1  

Now putting s=1,  we get the average number of customers in the system i.e. 𝐿𝑠 

 𝐿𝑠 =  𝑄/(1) =
1

(µ+𝜈)
[𝜆 − 𝜆 ∑ 𝑞𝑛𝑝𝑛−𝑘+1∞

𝑛=𝑘
+ (µ + 𝜈) ∑ 𝑛𝑞𝑛

∞
𝑛=𝑘 − 𝑘(µ + 𝜈) ∑ 𝑞𝑛

∞
𝑛=𝑘 −

1

(𝜈−1)𝜈𝑘−1
∑ 𝑞𝑛𝜈𝑛∞

𝑛=𝑘+1 +
ν

(𝜈−1)
∑ 𝑞𝑛

∞
𝑛=𝑘+1 ] =

1

(µ+𝜈)
[𝜆 − ∑ 𝑞𝑛(λ𝑝𝑛−𝑘+1 − (𝑛 − 𝑘)(µ + 𝜈)) −∞

𝑛=𝑘

1

(𝜈−1)
∑ 𝑞𝑛(𝜈𝑛−𝑘+1 − 𝜈)∞

𝑛=𝑘+1 ] 

  

 


