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Abstract 

In this paper we developed an uncertain LNG marine inventory-routing problem. For this purpose, we set a scenario 

for a hypothetical LNG manufacturer in Iran selling products in long-term and spot contracts. The purpose of the study 

was to compare shipping expenses of split and non-split delivery strategies in deterministic and uncertain situations. 

The objective function was to minimize total costs consisting operational costs, contract penalties, and spot fees 

regarding liquefaction port operational constraints, ship flows, customer and contractual constraints. Considering 
uncertainty in the problem is one of this paper's contributions which is modeled by assuming vessels speed a fuzzy 

parameter. As a solution method, we propose a metaheuristic that combines a heuristic with GA. According to the 

computational results, split delivery policy is only cost effective in the deterministic problem, hence split delivery is 

not recommended in maritime transportation with uncertain nature.   

Keywords: Marine Inventory; Routing; Uncertainty; LNG.  

1. Introduction 

Inventory-routing problem (IRP), starting point of Bell and others (1983), is an integrated problem, covering two 

important sections of logistics value chain, "inventory management" and "vehicle routing." In the IRP, the most 

important issue is to optimize sending one or more types of products to several customers at different times, taking into 

account service level, the storage restrictions on the supply and the demand side. One of the strategic IRP application 

fields which are in maritime transportation sector is called marine inventory-routing problem (MIRP). In 2011, 80% of 
the world's exchanges took place through water transportation UNCTAD (2012) which shows its importance. 

Presenting a holistic view and modeling approaches, we have categorized MIRP components in Table 1. 

Among marine cargos, liquefied natural gas (LNG) is one the most critical and strategic products. LNG is an odorless, 

colorless, non-destructive and non-toxic natural gas that is produced in a particular process by cooling the natural gas 

to the minus 161 ° C at atmospheric pressure; it is one of the main ways of exchanging gas in pipelines (Hashemi and 

Javan, 2005). Natural gas is one of the most important energy carriers, accounting for about 24 percent of the world's 

energy consumption portfolio. According to BP forecasts, this fuel will have the highest consumption growth rate 

among other fossil fuels by 2035, most of which will be due to increased gas reserves, including US shale gas and 

LNG. The exchange of gas as liquefied natural gas has had a growing trend in the last two decades, and by 2035 the 

volume of trade will surpass the pipelines. Increased demand and exchanges of liquefied natural gas have made the 

supply chain more complicated, and given the high costs of investment in the manufacturing and distribution sector in 

this industry, as well as price fluctuations it requires detailed planning and comprehensive management in this field. 

In this research, a hypothetical LNG producer in Iran produces one kind of liquefied natural gas. The product is 

temporarily stored and then shipped to destination ports at a specified time window. In addition to long-term contracts, 

the producer sells parts of its products to the Spot Market. This paper develops a model for LNG inventory-routing 

problem in the context of tactical planning under travel time uncertainty and with the approach of reducing operational 

costs and contractual penalties. 
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Table1. MIRP modelling components 

 

 

 

 

 

 

 

 

 

 

 

 

     
Figure1. Hypothetical LNG producer and destination ports 

The purpose of the study is to compare the cost of one of the important policies in the field of maritime transportation, 

namely, split delivery (serving one destination on each trip from the origin) and non-split delivery (serving multiple 

destinations on each trip from the origin). (See Figure2). 

 

 

 

 

 

 

 

 

 

 
Figure2. Split versus non-split delivery 

 
The rest of this paper is organized as follows: first previous studies in this field are reviewed in section two and then in 

the third section, the problem and the main assumptions are described. In the fourth part the mathematical model is 

presented and in section 5 the algorithm is described. The results of the model implementation are presented in section 

6 and finally in section 7 we present some concluding remarks. 
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Inventory management (Lot sizing, not lot sizing) 
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Transportation structure (1-1,1-m,m-m-m) 

Transportation type (Successive, not successive) 

Maintenance 

Unloading & Storage 
Storage in unloading port(storage considerations in only demand side/on both sides) 

Port type(offshore) 

Consumption 

Consumption rate(fix,varaible) 

Contract type(long-term,spot,futures) 

Delivery(FOB،CIF،DES) 
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2. Literature Review 

The studies in the field of maritime routing can be categorized and reviewed from the perspective of solving methods. 

The basis for categorizing in this research is derived from the paper by SteadieSeifi et al. (2014). Accordingly, the 

solving methods are grouped into exact, approximation, heuristic, metaheuristic, and hybrid heuristic methods. 

2.1. Exact methods 

2.1.1. Arc-flow models 

Ethan et al. (2018) developed a large-scale, discrete time, path-based integer-programming for liquid helium global 

supply chain planning. Gustavo et al. (2016) improved the decision-making process in a Brazilian petroleum company 

significantly using a mixed-integer linear programming (MILP) model to represent crude oil offloading and supply 

problem. Nguyen et al. (2016) modeledd and solved container shipping route design incorporating the costs of 

shipping, inland/feeder transport, and inventory and CO2 emission. Agra et al. (2013a) defined the MIRPs in a 

discrete-time mode and used branching and constraint methods to solve them. Agra et al. (2012), looking at strategies 

to strengthen the proposed models, provided a new model that combines two discrete and continuous modes. Hewitt et 

al. (2013) used the guided search method of the branch and the price in order to provide a more effective approach to 

solve the real MIRP. Using the knapsack inequality, Rocha et al. (2013) remodeled the problem of crude-oil 

distribution. Rakke et al. (2014) who aimed at preparing a long-term LNG program took into account both spot and 
long-term contracts, as well as discussing penalties, to provide a model with minimal costs. Al-Khayyal and Hwang 

(2007) studied and modeled the marine routing problem with inventory constraints for multi-commodity shipments of 

liquid products. Halverson and Fagerholt (2013a) considered the real LNG maritime inventory-routing at the tactical 

level and in the form of a simple network structure. Fodstad et al. (2010) presented an optimization model as a 

decision-making tool for the LNG supply chain planning. 

2.2.2. Path-flow models 

Archetti et al. (2020) proposed and solved the Inventory Routing Problem with Pickups and Deliveries (IRP-PD) to 

solve the instances by a branch-and-cut algorithm and tested it on a large set of instances and showed the proper 

performance of the method. Fokkema et al. (2020) addressed supply driven IRP in continuous-time, inventory levels 

through a novel formulation model. Soroush and Al-Yakoob (2018) studied a stochastic maritime scheduling 

transportation-inventory problem to transport crude oil from a source using a set of fully loaded heterogeneous vessels 
to be fully unloaded at a destination over a finite time horizon. Gronhaug et al. (2010) examined the issue LNG-IRP at 

tactical level and in cases where fixed deterioration rates were considered. Engineer et al. (2012) solved a Marine 

Inventory using a price-cutting algorithm. Anderson et al. (2015a) proposed a decomposition algorithm for the LNG 

inventory-routing problem with regard to the rate of LNG boil-off. Anderson et al. (2015b) developed an annual 

delivery plan (ADP) for one of the large LNG manufacturers with two types of products using exact algorithms. Li et 

al. (2010) aimed at maintaining the flow between production and consumption and modeled shipping chemicals. 

Considering the preparation time for operation in ports, as well as the structure of fixed and variable costs, Yongheng 

and Grossmann (2015) addressed the issue. Nikhalat-Jahromi et al. (2016), by combining financial discussions and 

considering the arbiter discussion on the LNG spot sales, developed a model for extracting LNG short-term trade 

policies. 

2.2.3. Arc-flow & Path-flow models 

Christensen (1999) used decomposition method to solve the combined problem of inventory management and routing 
for ammonia carriers. To solve the LNG IRP, Giami et al. (2016) used both models. 

2.2. Approximation methods 

To minimize logestic costs and satisfy service level, Yadollahi et al. (2019) solved a stochastic periodic inventory 

routing problem. Papageorgiou et al. (2014b) presented a definite marine inventory-routing problem in the long-term 

horizons with approximate dynamic programming. 

2.3. Heuristic method 

2.3.1. Arc-flow models 

Arijit et al. (2017) modeled and solved the sustainable maritime inventory routing problem with time window 

employing PSO-CP. Chengliang, et al. (2017) solved maritime Inventory Routing Problems with Delivery Time 

Windows through finding flexible solutions that can accommodate unplanned disruptions. Dung-Ying and Chang 

(2018) modeled and solved ship routing and freight assignment problem for liner shipping. They applied the model to 
the Northern Sea Route planning problem. Ronen et al. (2002) formulated the problem of scheduling ships in the form 

of arc-flow model based on mixed integer programming. Persson and Gothe-Lundgren (2005) investigated the issue of 

ship scheduling in oil refineries (Ninas Oil Refinery) suggesting the solutions based on column generation. Goel et al. 

(2012) presented a new version of LNG IRP for designing and analyzing supply chains, optimizing vessel shipments 

and inventory management on both sides of supply and demand. Hemmati et al. (2015) considered vendor managed 

inventory (VMI) service in tramp shipping. Papageorgio, et al. (2014a) presented a two-stage decomposition algorithm 

for the deep-seated and tactical level in the form of flow-path models. Goel et al. (2015) used a constraint 

programming method to solve the LNG inventory-routing problem. Song and Ferman (2013) presented a flexible 

modeling structure that incorporates many operational aspects on the basis of Fremen et al. (2011). Agra et al. (2016) 

studied the problem of MIRP for liquid petroleum, taking into account the stochastic travel time. With the goal of 

designing an optimal delivery plan for LNG, Al-Haidous (2016) designed a model to reduce the number of ships. 
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2.3.2. Path-flow models 

Rakke et al. (2011) used a heuristic method of rolling the horizon based on the flow path model to prepare a LNG 

annual delivery plan for a large LNG manufacturer. 

2.3.3. Arc-flow & Path-flow models 

Urgent et al. (2011) proposed a new optimization method for marine-based navigation-based on fix and relax time 

decomposition. Stalhane, et al. (2012), in their research on creating and developing a heuristic method for the 
inventory-routing problem, solved the problem for the manufacturer and distributor of different products. Mutlu et al. 

(2015) modeled the problem and solved it using a heuristic algorithm called "vehicle routing". 

2.4. Metaheuristic method 

2.4.1. Arc-flow models 

Siswanto et al. (2013) addressed a genetic algorithm to solve the marine-inventory-routing problem for bulk liquid 

products. Christiansen, et al. (2011) examined the same issue in the field of cement and multi-product. With a view to 

presenting a more efficient MIRP Shao, et al (2015) presented an innovative approach in this area which is a 

combination of rolling the horizon, grasp and neighborhood search methods. 

2.5. Hybrid method 

2.5.1. Arc-flow models  

Alkaabneh et al. (2020) considered green inventory routing problem for perishable. They applied warm- a meta-

heuristic (GRASP) and mathematical programming formulations. Mirzapour Al-e-hashem et al. (2019) solved a green 
inventory routing problem in a bi-objective model using a hybrid approach. Bertazzi et al. (2019), using a novel cluster 

base three-phase mehaheristic, solved a practical Multi-Depot Inventory Routing Problem (MDIRP). Giami et al. 

(2019) studied an inventory routing problem for inland distribution of LNG from a storage facility to several filling 

stations. They modeled the problem in an arc-flow model and solved it through a metaheuristic, a combination of a 

mixed integer programming formulation, and an adaptive large neighborhood algorithm. Hemmati et al. (2016) studied 

an iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem. 

2.5.2. Path-flow models 

Shen et al. (2011) solved the problem of routing-crude oil inventory from a supplier to several customers through the 

Lagrangian relaxation approach. 

Table 2 summarizes all of the studies mentioned above. Studies are categorized as ‘discrete’ and ‘continuous’ models. 

One of the factors influencing the structure of modeling is the nature of production and consumption rate. Generally, 
continuous models are used when the rate of production and consumption is constant and unchanged (Al-Khayyal and 

Hwang, 2007), and when these rates are variable or considered fixed but changing over the planning period, generally 

discrete-time models are used (Gronhaug et al., 2010; Ronen et al., 2002; Agra, Chistiansen,  2013). Discrete-time 

models consider the time intervals discrete, and assume that events (such as loading, unloading, etc.) occur at specific 

points in time. In contrast, in the continuous-time models, there is no limit to the occurrence of events in terms of time.  

 

Based on the modelling approaches, studies in the field are either "path-flow" or "arc- flow". Arc-flow models include 

decision variables for moving ships between ports and path-flow formulations include decision variables representing 

the entire sequence of ports visited by each vessel (Papageorgio et al., 2014).  

 

The main contribution of this study in comparision with other previous studies is that we examine uncertain marine 

inventory problem as a less considered area in the field. To the best of our knowledge, comparison of split and non-
split delivery strategies in uncertain conditions has never been studied before and it is a main contribution of this study. 

We consider a mixed-integer linear programming model for this problem and solve it for an LNG trading scenario for 

Iran through the proposed metaheuristic.  
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Table2. Literature review summery 

 
 
 
 

Author(s) Product level *Time *Model Solving Method 

    A BC-local search heuristic 

Agra, et al, 2013a L-BULK T D A BC 

Agra, et al, 2013b FUEL OIL O D/C A BSSDP 

Al-Khayyal and Hwang, 2007  LBULK T C A C-HUERISTIC 

Al-Haidous,et al, 2016 LNG T D   ADP 

Alkaabneh et al,2020 perishable products T D  GRASP 

Andersson, et al, 2015a LNG T C  P BC 

Andersson, et al, 2015b LNG T D P BC 

Anderson, et al, 2010  LNG T D P MODEL ONLY 

Arijit, et al. 2017  T D A PSO-CP 

Archetti et al,2020 GENERAL T D P  branch-and-cut algorithm 

Bertazzi, et al. 2019 GENERAL O D A cluster-based matheuristic 

Chengliang, et al. 2017  T  A Heuristic method 

Christiansen, 1999  AMMONIA T C A/P BPC 

Christiansen& Fagerholt, 2009  GENERAL T C  A construction-heuristic 

Christiansen, et al, 2011  CEMENT T     GENETIC 

Drazen-Papvic,et al, 2011  GENERAL O  D P HEURISTIC 

Dung-Ying & Chang ,2018 GENERAL O  A Heuristic method 

Engineer,et al, 2012 VGO T D P BPC 

 Ethan et al. (2018) liquid helium O D P Integer programmin 

Fokkema et al. 2020 biogas O C P Mixed-integer  

Fodstad,et al, 2010  LNG T D   DEFALT SOLVER 

Furman ,et al, 2011  VGO T D A DEFALT SOLVER 

Giami, et al, 2019 LNG O  D A/P Meta-Heuristic 

Giami, et al, 2016  LNG O  D A/P DEFALT SOLVER 

Goel ,et al, 2015 LNG S D A MIP BASED LS 

Goel ,et al, 2012 LNG T D A C&I- HEURISTIC 

Gronhaug,et al, 2010 LNG T D  P BPC 

Halvorsen ,et al, 2013 LNG T D A DECOMPOSITION 

Hemmati,et al, 2016  GENERAL T C  A HYBRID-HUERISTIC 

Hemmati,et al, 2015  GENERAL T C  A 2 PHASE HEURISTIC 

Hewitt, et al, 2013  VGO T D A BPGS 

Li ,et al, 2010  L-BULK O C A DEFALT SOLVER 

Mirzapour, et al. 2019 GENERAL O D P Hybrid Algorithm 

Mutlu, et al, 2015 LNG T D P VRH_HEURISTIC 

Nikhalat-Jahromi, et al, 2016  LNG O  C P MILP 

Papageorgio,et al, 2014a L-BULK S D A APPROX 

IMATE 

Papageorgio, et al, 2014b L-BULK T D A BENDERS LIKE 

Person and Gothe, 2005  Oil Refinery  T D A/P CG-HEURISTIC 

Rakke, et al, 2014  LNG T D A BPC 

Rakke, et al, 2011  LNG T D P ROLLING HORIZEN 

Rocha, et al,  2013  CRUDE T D A BB 

Ronen ,et al,  2002  L-BULK T D A GRASP 

Shao,  Furman, et al, 2015  LNG S D A LAGRANGIAN  

Shen,et al, 2011  CRUDE S D P GENETC 

Siswanto,et al, 2011 L-BULK     A CIH 

Stalhane, et al, 2012 LNG T D P MILP BASED LS 

Song and Furman, 2013 VGO T D A FIX-RELAX 

Uggen,Fodstad ,et al, 2011  LNG T D P  FIX-RELAX 
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Yonneng ,et al, 2015 GENERAL T D  P MODEL ONLY 
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3. Problem description 

The overall problem in the form of the supply chain of liquid natural gas from the exploration to consumption is as 

shown in Figure3. 

 
Figure3. LNG inventory routing problem 

 Liquefaction: In this case, a producer is considered producing one kind of liquefied natural gas in a liquidation 

terminal. The product is temporarily stored and then loaded into the special vessels. Due to the technical 
specifications of the liquidation terminal, the production level is possible within a certain range and the daily 

production rate is considered as one of the parameters in the model. 

 Storage and berth restrictions: Liquefied natural gas is stored in special tanks prior to being transferred to ships 

and that storage should be carried out at low temperatures, so the level of the LNG cannot be less than a certain 

amount. Therefore, minimum and maximum inventory levels should be included in the model. On the other hand, 

the number of ships that can be loaded in the port is also limited according to berth capacity. 

 Transportation: One of the most important parts of the LNG scheduling model is shipping to meet long-term 

contracts demands. The producer has a fleet of specially transported liquefied natural-gas vessels. On the other 

hand, each customer has a set of long-term contracts with main characteristics of the volume, acceptable interval 

of delivery and acceptable delivery period, which will be penalized outside the specified intervals. In this section 

we want to determine the route and time of ships according to the problem limits. Generally, in maritime routing 

successive travelling is assumed to be appropriate. That is, ships should only go from one source to one 
destination and not allowed to go to several destinations. In this research, this hypothesis which is examined in 

the uncertainty conditions is discussed later. 

 Maintenance: ships have been scheduled for maintenance and repair program. The list of available ships is 

defined according to it. 

 Unloading and regasification: For each customer, a port is considered and according to the port type, ships are 

allowed to enter. 

 Spot sale: Depending on market conditions and probable imbalance between demand and supply, liquid natural-

gas terminals sell part of the produced liquefied natural gas in the spot market. 

The main objective of this problem is to determine logistics and inventory management policies to minimize costs. The 

optimization model is developed considering constraints of transportation, inventory management and contract 

obligations. 

One of the important aspects of sea trips is climate change. In this study, the speed of ships is considered as a fuzzy 

parameter and the producer's goal is to minimize shipping costs which includes travel and operational costs, cost of 

penalties, and the cost of shipping spots. 

4. Mathematical model 

In this study, the model proposed by Mutlu et al. (2015) is considered and is developed considering the fuzzy 

uncertainty for the ships’ speed parameter. 

Problem parameters 

 T            Planning horizon (Time in this model is discrete and day-to-day) 
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tr             Daily Production Decisions in min max

,R R minimum and maximum production capacity 

ts             LNG inventory levels per day port in  min max

,S S minimum and maximum storage levels 

              LNG specialized fleet 

l              Loading port 

B             Berth number 

dl             Artificial Port 

G           Isolated tanks 

C           Tank's capacity 

tg           Number of full tanks at the end of day t 

i               Customers' actual port 

di             Customers' artificial port 

i
C            

1 2
, , ...,

i i iNi
C C C  Customers' contracts 

inD           Customers' demand in  min max

,
in in

D D range in expected time
e

in
T  and allowed time

a

in
T . 

o               Artificial origin port 

d              Artificial destination port 

i            A set of ships that are allowed to enter the port i 

p
          A  set of ports that vessel   is allowed to enter  

ip
          A  set of ports that vessel   can sail from port i 

0

ip
          A  set of ports from where vessel   can reach to port i 

ijT           Travel time from i to j 

0T            
  

 0T  

exT           
0 0

1, ...,T T T t     , 
0

t is max vessels' travel time 

m            Vessels that should go to maintenance 

mT            Maintenance time window 

, dm m      Actual and artificial maintenance ports 

ijC           Operational cost from i to j 

inp 

/ inp 

  Unit rate penalty for each cubic meter (over/under) 

ind 

/ ind 

  (over /under ) volume deviation  

intp           Sending out of expected time penalty 

sC           Spot vessel capacity 

S             Spot vessel operational cost 

Problem variables 

ijtx 
    Binary variable which is 1 I f vessel  arrives at port j from port i on day and 0 else. 

ty        Binary variable which is 1 I f spot vessel  is available on day t. 

itq       Number of tanks loaded/unloaded on day t for vessel   

 
Objective function and constraints: 

                                                               (1) 

Subject to                                                                                                                             

int

min
i c

x in i

d
c i a

in i in

ij ijt in in in in

t T n C Ci p j p i p

i it t

n C C t Ti p t T

C x P d P d

p x st y

 




 







   

    

   

  



    

    
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0 1,oox                                                                                                                                   (2) 

 0 \

1,
o

ojt

t T j o

x






 
 

                                                                                                                   (3) 

 0, \ 0 ,, o

ojt ojx t Tj p

                                                                                                 (4) 

 0, \ 0 , , ,, o i

ojt oj oj ijx t T j p t T Tj p 

                                                                   (5)     

 (6)                                                                                                                 
1, 0\,ddt xt T Tx                                                                                                                    

 
1

\

,
d

xo

vidt

t Ti p d

x




 



                                                                                                                   (7) 

0(t T ), ,,
i i

o

kit ij ij

k p j p

x x t Ti p
 



    
 

                                                                               (8) 

1, ,
j

ijt x

i p j p

x t T
 

  
 

                                                                                                           (9) 

1 , ,
c

t t it lt

i p

g g q q t T


     



                                                                                              (10) 

0 ,tg G t T                                                                                                                      (11) 

 
0

, ,,
i

C

it jit

j p

q G x i p l t T




    


                                                                                   (12) 

1 ,t t t lt s ts s r q C C y t T 
 





                                                                                                (13) 

min max ,ts s s t T                                                                                                                    (14) 

 1 ,
d d d

m

l lt m lt m lt tx x x y B t T  

   



 

                                                                               (15) 

   30 1 30 , 0,...,11 , 2,...,30k kr r k                                                                                       (16) 

 min max , 30 1, 0,1,2,...tR r R t k k                                                                                     (17) 

 , , |
i a

in

c

in it in in i

t T

D q C D i p n C C 

  

                                                                                (18) 

 , , |
i a

in

c

it in in in in i

t T

q C d d D i p n C C 

 

 

 

                                                                           (19) 

, 0, , |c

in in in id d i p n C C                                                                                                          (20) 

1,

m
mmd

d
m

T T

m

l mt

t T

x
 



  




                                                                                                               (21) 

0,
d

M

m

l mt

t T

x



  


                                                                                                                    (22) 

The first part in the objective function is the total operational cost of sending LNG ships. The second and third parts 

represent total contractual penalties due to the violations in the volume and time. The last part refers to the operating 

costs of sending and selling through spot vessels. Constraints (2) to (5) are initialization constraints and ensure that all 

vessels start from the origin and do not go to the same destination at the same time interval. Constraints (6) and (7) 

guarantee that all vessels will eventually reach the destination port. Constraint (8) controls the flow of vessels during 

the planning period. In this constraint, if a vessel arrives at port i at time t, it should go from that port to port j which 

can be reached from port i. Constraint (9) ensures that a vessel will not be present at two different locations at a same 

time. Along with the initialization constraints, flow constraints ensure a connected route for vessels’ movement. 
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Constraint (10) is related to storage balance of vessels. Constraint (11) ensures storage capacity per vessel. Constraint 

(12) indicates that loading or unloading from the vessel to a port is possible when the vessel is present at the specified 

port at a certain time. 

Constraints (13) and (14) respectively indicate the inventory balance and loading port restrictions, and Constraint (15) 

is related to the limitation of berths capacity in the port. Constraint (16) ensures that the rate of production can only be 

changed in time horizon. Constraint (18) ensures that the volume is within the scope of the contract. Constraint (19) 
shows the violation of the sent volume with the amount agreed in the contract, and Constraint (20) indicates their being 

non-negative. Ultimately, constraint (21) represents the timely start of repairs and maintenance, and constraint (22) 

prevents access to maintenance beyond the scheduled time. As discussed in the previous sections, the aim of this study 

is to examine the total cost in split and non-split delivery modes. 

In this research, trapped membership function is considered for speed. When the vessel's speed is fuzzy due to climate 

changes, the travel time cannot be considered as a definite parameter. Travel time for the vessel from port i to j is 

calculated as follows: 

 
ij

Di  is the distance between port i and j and V


 is the speed of the vessel  . 

(23 )                                                                                                                                 ij

ij

Di
T

V


    

Accordingly, constraint (4) is replaced with constraint (24), constraint (8) with constraint (25) and constraint (8) with 

constraint (26) in the fuzzy model.   

  

(24)                                                                                          0, \ 0 ,, o

ojt ojx t Tj p

                                       

(25)                                                         0, \ 0 , , ,, o i

ojt oj oj ijx t T j p t T Tj p 

           

(26   )                                                                     0(t T ), ,,
i i

o

kit ij ij

k p j p

x x t Ti p
 



    
 

     

   
Jemines approach is used to defuzzify the related parameters and constraints. Accordingly, constraints (24) to (26) are 

changed as follows: 
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5. Solution method 

The basis of the metaheuristic algorithm used in this research is the Vehicle Routing Heuristic Algorithm (VRH), 

presented by Mutlu et al. (2015). Considering the delivery time window and volume required, the metaheuristic 

algorithm generates the annual delivery plans in a sequential manner. In order to simplify the general process, the 

algorithm is divided into 7 sub algorithms (See Table 4). 

• "Contract ranking" algorithm 

• "Available Vessels" algorithm 

• "Picking Vessels & the optimal number of trips" algorithm 

3 4 1 2

0
(1 )( (

2 2
(t ) )( )), ,

2 2
,ij ij ij ij

i i

o

kit ij

k p j p

T T T T
x x t Ti p   

 



 

 
 

 

 
      (30) 
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• "Preparing to send" algorithm 

• "Sending" algorithm 

• "Review undelivered contracts" algorithm. 

• "Spot sale" algorithm 

Algorithms sequences 

1. Set all vessels at the origin port. 
2.    Initialize the inventory level of the ships and port of loading. 
3.    Ranking contracts (call "Contract ranking" algorithm) 
4.      For all contracts, ranked respectively 
5.         Call " Available Vessels" algorithm 

6.         Call "Picking Vessels & the optimal number of trips "algorithm 
7.         Call "Preparing to send" algorithm 
8.         Call "Sending "algorithm 
9.         Define total cost 
10.    Are all contracts covered? 
11.        If "Yes "go to step (13) 
12.         If "No" go to step (5) 
13.     Bring all ships to the destination. 

14.     Call "Review undelivered contracts" algorithm 
15.     Call" Spot sale" algorithm 

6. Computational study 

The schematic diagram of the algorithms used and the general process of work are described in Figure 4. 

After determining the list of available vessels, the optimal number of each trip must be determined satisfying goal of 

minimizing operational and penalty costs through covering contractual obligations. The input variable of the genetic 
algorithm is the number of trips for the selected vessels, taking into account the limit of the maximum number of 

possible trips per vessel. Based on this, a randomized initial solution for the selected vessels is firstly created by 

considering the ceiling for each trip, which is the initial population for the genetic algorithm. Though multiple 

iterations, the optimum number of trips for the list of available vessels will be determined and next steps will be run 

according to the sequence described above. 

6.1. Scenario setting 

The model presented in this study is run for a hypothetical LNG plant in Iran; we suppose the producer sells its LNG 

via long term and spot contracts to its customers. Vessel characteristics, distances between the ports and other inputs of 

the model are derived from "Argos Global LNG" and neighboring countries. We conduct the computational study to 

assess split and non split delivery costs under both deterministic and uncertain conditions. To this end, we conduct a 

three step process; first, we evaluate performance of the proposed algorithm comparing it with a commercial solver, 
and; second, we run a sensitivity analysis on the quality of results and ultimately we test the split and non-split policy 

under deterministic and uncertain situations. 

All instances are implemented using MATLAB version 2016b and CPLEX version 12.6.1. on an Intel® Core ™ 17-

6500u CPU @ 2.50 GHZ processors and 8 GB of RAM. 

6.2. Definite model 

First, we set the metaheuristic algorithm parameters (genentic algorithm) through Taguchi method to gain qualified 

results in shorter calculation time; the resuls are provided in Table 5. 
 

Table3. Parameter setting results 

Parameters Definition Result 

Npop Population size 100 

Pc Cross-over percentage 0.9 

Pm Mutation percentage 0.1 

Mu Mutation rate 0.02 

 
Table 6 presents critical parameters of 12 instances. We implement all these instances in 3 different levels (36 

instances); according to contract volumes, level 1 is dedicated to 400,000 mcm LNG per year for each contact, second 
level is 600,000 mcm, and third level is 900,000 mcm. 
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Table4. Problem instances (V, P, C, Pr, St denote the number of vessels, customer ports, number of contracts, production rate and 
storage in loading port respectively) 

 
 

 

 
 

 

 

 

 

 

      
 

 

 

Feasible results in the exact method are achieved after average 22 hours of run time and in metaheuristic it takes 600 

seconds on average. Based on the lower bound calculated in the exact method, gaps and improvement are defined and 

results of the implementation of the meta-heuristic and exact algorithm are illustrated in Table 7. The optimal gap 

changes versus C/Pr rates in 3 contract levels and on average are shown in Figure 5 – Figure 8. 
 

Table5. Results of meta-heuristic and exact algorithm 

 

 

S/pr C/Pr C P V instance 

6 0.8 40 2 15 A1 

6 0.74 40 2 15 A2 

6 0.67 40 2 15 A3 

6 0.59 40 2 15 A4 

6 0.8 80 4 30 B1 

6 0.74 80 4 30 B2 

6 0.67 80 4 30 B3 

6 0.59 80 4 30 B4 

6 0.8 120 8 40 C1 

6 0.74 120 8 40 C2 

6 0.67 120 8 40 C3 

6 0.59 120 8 40 C4 

Metaheuristic 

Improvement 

Metaheuristic Exact method Lower bound instance Contract 

level Gap 

(%) 

Cost Gap 

(%) 

Cost 

0.19 18.40 476,802,318.00 34.10 590,395,586.48 389,070,691.49 A1  

 

 

 

 

 

 

Level 1 

0.12 21.90 477,082,563.00 31.20 541,571,921.08 372,601,481.70 A2 

0.19 19.20 482,075,826.00 34.70 596,504,237.99 389,517,267.41 A3 

0.12 22.30 477,368,163.00 31.70 543,067,441.66 370,915,062.65 A4 

0.54 25.10 4,305,648,180.00 65.40 9,320,608,343.41 3,224,930,486.82 B1 

0.47 21.60 4,328,581,119.00 58.60 8,197,119,800.23 3,393,607,597.30 B2 

0.52 20.20 4,323,305,826.00 62.00 9,078,942,234.60 3,449,998,049.15 B3 

0.48 21.70 4,305,589,275.00 59.60 8,344,743,570.11 3,371,276,402.33 B4 

0.68 26.80 13,121,146,965.00 76.80 41,399,480,941.29 9,604,679,578.38 C1 

0.43 20.60 13,109,895,231.00 55.10 23,183,200,029.88 10,409,256,813.41 C2 

0.51 20.80 13,138,682,613.00 61.20 26,819,166,570.87 10,405,836,629.50 C3 

0.64 21.80 13,175,029,086.00 71.50 36,150,430,685.09 10,302,872,745.25 C4 

0.09 27.00 876,522,073.00 33.60 963,646,254.95 639,861,113.29 A1  

 

 

 

 

 

 

Level 2 

0.15 22.00 876,800,533.00 33.90 1,034,651,158.46 683,904,415.74 A2 

0.18 18.80 871,525,240.00 33.50 1,064,178,187.79 707,678,494.88 A3 

0.09 27.00 866,535,547.00 33.40 949,806,230.20 632,570,949.31 A4 

0.54 27.20 7,541,633,465.00 66.30 16,291,718,583.15 5,490,309,162.52 B1 

0.57 25.10 7,517,560,364.00 67.90 17,540,974,182.67 5,630,652,712.64 B2 

0.63 27.10 7,486,878,932.00 73.10 20,289,720,228.36 5,457,934,741.43 B3 

0.53 19.80 7,500,876,257.00 62.40 15,999,209,463.07 6,015,702,758.11 B4 

0.72 28.60 22,709,710,305.00 80.30 82,308,290,140.96 16,214,733,157.77 C1 

0.74 23.20 22,722,690,276.00 79.80 86,391,218,475.09 17,451,026,131.97 C2 

0.78 27.60 22,722,690,276.00 84.10 103,466,841,256.76 16,451,227,759.82 C3 

0.76 28.60 22,750,827,822.00 83.10 96,118,882,040.88 16,244,091,064.91 C4 

0.17 24.90 1,276,520,288.00 37.60 1,536,324,897.90 958,666,736.29 A1  

 

 

 

 

 

 

Lenvel 3 

0.20 20.90 1,281,793,796.00 36.50 1,596,691,169.51 1,013,898,892.64 A2 

0.18 22.30 1,271,527,025.00 36.40 1,553,422,167.33 987,976,498.43 A3 

0.15 23.20 1,266,815,792.00 35.00 1,496,791,581.93 972,914,528.26 A4 

l0.62 27.60 10,716,329,785.00 72.80 28,524,348,398.31 7,758,622,764.34 B1 

l 29.20 10,721,791,432.00 89.10 69,642,461,778.50 7,591,028,333.86 B2 

0.63 28.00 10,695,013,699.00 73.70 29,279,124,955.44 7,700,409,863.28 B3 

0.54 27.30 10,709,633,989.00 66.20 23,035,218,668.65 7,785,903,910.00 B4 

;0.90 28.60 32,311,967,259.00 92.90 324,940,065,111.63 23,070,744,622.93 C1 

0.87 31.80 32,311,967,259.00 91.10 247,604,063,715.03 22,036,761,670.64 C2 

0.82 31.50 32,338,342,296.00 87.50 177,214,115,782.08 22,151,764,472.76 C3 

0.90 29.70 32,319,983,145.00 93.00 324,584,973,584.79 22,720,948,150.94 C4 
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Figure4. Metaheuristic process map 
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Figure 5. Optimaly gap vs. C/Pr % for  metaheuristic in level 1 
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Figure 6. Optimaly gap vs. C/Pr % for  metaheuristic in level 2 
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6.3. Fuzzy model 

In order to investigate and compare the costs of shipping in uncertain conditions, in split and non-split deliveries, a 

fuzzy model is generated; details are provided in the previous section. The membership function for speed is assumed 

to be as follows:  

(31)                                                                                
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The de-fuzzified model was run for different feasibility degrees (α). In order to select the appropriate feasibility 

degrees, the satisfaction function for the manufacturer is defined as the weighted average of the two factors of total 

cost (total travel cost and penalty cost) and the ratio of the operational cost to the total cost with the following 

coefficients and calculations:. 

1 20.9 0.1i i

i

w                                                                                                                (32)                                                              

Since the lower total and the smaller proportion of operational cost to the total cost will increase the percentage of 

producer's satisfaction, 1 and 2   are defined as follows: 

1  
            α                   

              
 

       
 

2   
α                 

α           

                                                                                                                               (34)        

Table6. Results of meta-heuristic and exact algorithm 

 
According to the results presented in Table 8, the feasibility degrees of 0.4 with the highest satisfaction percentage was 

selected.  

6.4. Sensivity analysis 

Implementation results of both deterministic and fuzzy models on 36 instances are provided in Table 9. According to 

the results, Split delivery policy in the deterministic instances saved about 4.3 % while employing this policy under 

uncertainty imposed an average of 35% raise of total costs. 

Comparing the total cost’s rate of change in both situations shows that increasing the complexity of the problem in 

uncertain situations has more negative effects and in deterministic conditions it changes a lot. (See Fig.9)   

 

Satisfaction degree Operational cost Total cost α instance 

21.08 403,655,347.00 478,415,347.00 0.1 1 

30.30 397,208,958.00 532,308,958.00 0.2 2 

17.09 409,084,960.00 457,244,960.00 0.3 3 

22.60 332,350,309.00 419,150,309.00 0.4 4 

18.48 388,883,401.00 446,703,401.00 0.5 5 

30.28 392,874,304.00 527,974,304.00 0.6 6 

17.09 410,119,546.00 458,279,546.00 0.7 7 

22.50 392,837,890.00 477,257,890.00 0.8 8 

19.64 411,190,546.00 476,290,546.00 0.9 9 

21.08 402,014,218.00 476,774,218.00 1 10 

(33) 
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Figure 7. Optimaly gap vs. C/Pr % for  metaheuristic in level 3 
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Figure9. Average absolute total cost's rate of change (d: determinsic, f: fuzzy)  

 

Table7. Results of meta-heuristic and exact algorithm 
Fuzzy VRHM VRHM  level 

Cost 

Reduction 

Non-Split Split Cost 

Reduction 

Non-Split Split 

-27.06 483,131,338.53 613,889,883.78 2.30 476,802,318.00 465,835,864.69 A1  

 

 

 

 

 

 

Level 1 

-30.04 491,736,304.89 639,449,031.06 8.44 477,082,563.00 436,816,794.68 A2 

-62.87 482,655,012.01 786,083,081.46 1.94 482,075,826.00 472,723,554.98 A3 

-19.33 487,757,395.52 582,049,398.00 2.25 477,368,163.00 466,627,379.33 A4 

-64.74 4,374,325,083.82 7,206,466,365.43 1.70 4,305,648,180.00 4,232,452,160.94 B1 

-30.89 4,363,928,943.44 5,711,948,878.85 2.27 4,328,581,119.00 4,230,322,327.60 B2 

-10.86 4,362,568,946.52 4,836,550,938.49 4.35 4,323,305,826.00 4,135,242,022.57 B3 

-9.65 4,398,844,784.43 4,823,294,719.77 3.11 4,305,589,275.00 4,171,685,448.55 B4 

-56.49 13,184,432,239.75 20,632,914,303.21 9.23 13,121,146,965.00 11,910,065,100.13 C1 

-31.06 13,515,355,908.25 17,713,441,557.34 4.30 13,109,895,231.00 12,546,169,736.07 C2 

-21.51 13,456,250,115.73 16,350,243,153.99 1.84 13,138,682,613.00 12,896,930,852.92 C3 

-20.63 13,650,050,855.78 16,465,682,576.33 9.04 13,175,029,086.00 11,984,006,456.63 C4 

-12.74 891,046,124.83 1,004,561,583.80 0.10 876,522,073.00 790,622,909.85 A1  

 

 

 

 

 

 

 

Level 2 

-50.15 905,785,674.59 1,360,038,550.43 0.04 876,800,533.00 838,308,989.60 A2 

-14.03 873,009,355.91 995,449,664.66 0.01 871,525,240.00 861,764,157.31 A3 

-20.92 869,579,073.76 1,051,486,183.50 0.03 866,535,547.00 844,092,276.33 A4 

-64.20 7,664,261,651.42 12,584,994,501.52 0.04 7,541,633,465.00 7,233,180,656.28 B1 

-51.06 7,722,991,949.87 11,666,150,981.67 0.06 7,517,560,364.00 7,070,265,522.34 B2 

-11.61 7,740,776,397.85 8,639,259,372.60 0.03 7,486,878,932.00 7,289,974,016.09 B3 

-43.27 7,657,080,703.35 10,970,029,660.96 0.06 7,500,876,257.00 7,048,573,418.70 B4 

-24.07 23,680,615,542.23 29,380,416,305.50 0.07 22,709,710,305.00 21,092,778,931.28 C1 

-84.50 23,571,255,473.03 43,489,401,241.75 0.02 22,722,690,276.00 22,218,246,551.87 C2 

-14.16 23,880,914,635.84 27,261,318,077.44 0.01 22,722,690,276.00 22,454,562,530.74 C3 

-30.21 23,372,537,314.57 30,432,991,295.01 0.03 22,750,827,822.00 22,075,128,235.69 C4 

-51.06 1,322,818,951.30 1,998,215,938.51 0.03 1,276,520,288.00 1,235,799,290.81 A1  

 

 

 

 

 

 

 

Level 3 

-35.14 1,288,623,500.55 1,741,383,108.86 0.04 1,281,793,796.00 1,227,317,559.67 A2 

-59.24 1,311,663,941.61 2,088,636,849.70 0.05 1,271,527,025.00 1,206,933,452.13 A3 

-46.84 1,318,226,630.59 1,935,721,924.51 0.01 1,266,815,792.00 1,255,921,176.19 A4 

-91.94 10,948,436,641.81 21,014,273,784.66 0.03 10,716,329,785.00 10,434,490,311.65 B1 

-13.77 10,771,339,594.13 12,254,083,724.84 0.08 10,721,791,432.00 9,861,903,759.15 B2 

-16.14 10,840,273,362.05 12,590,329,108.07 0.00 10,695,013,699.00 10,662,928,657.90 B3 

-16.96 10,792,738,072.16 12,623,085,464.51 0.09 10,709,633,989.00 9,714,708,991.42 B4 

-50.60 32,774,081,812.56 49,358,556,946.62 0.07 32,311,967,259.00 29,949,962,452.37 C1 

-53.37 33,042,199,876.27 50,678,220,669.12 0.05 32,311,967,259.00 30,731,912,060.03 C2 

-3.52 33,215,224,215.28 34,384,290,077.93 0.06 32,338,342,296.00 30,465,952,277.06 C3 

-14.68 33,077,456,908.20 37,932,863,426.83 0.02 32,319,983,145.00 31,550,767,546.15 C4 

 

7. Conclusion 

We focus on the LNG inventory-routing Problem in this paper. The issue is the planning of shipping fleet and the level 

of inventory in ports for LNG manufacturers with a cost minimization approach. Mathematical modeling of the 

problem is presented in the form of two deterministic and fuzzy models. The uncertainty parameter in this study is the 

speed of vessels that varies due to climate changes during travel. 
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For solving the model, the fuzzy parameter and related fuzzy constraints were de-fuzzified with the Jemines method 

and the model was solved with both an exact method and the proposed meta-heuristic algorithm in the paper. 

In order to investigate employing split and nonsplit delivery policy effect on total cost under both deterministic and 

uncertain conditions, 12 problems in 3 levels were designed based on the initial scenario and the model was 

implemented in all instances. Comparing the total costs shows that split policy in uncertain situations is not cost 

effective. One of the important factors in the price increase in the fuzzy conditions is the issue of contractual penalties. 
In other words, in conditions close to reality, the manufacturer acts more inappropriately to comply with the 

contractual obligations, which is multiplicative in split delivery due to increased travel time. 

Despite conducting significant studies on the maritime inventory-routing problem, there are still many ways to develop 

it in the future.The sustainable development in the green maritime routing problem, considering hazards in marine 

travelling, combining geo-location discussions with the help of software such as Arc-GIS, considering pricing policies 

with inventory-routing using game theory with optimization issues in mufti producer problems, use of neural network 

models to predict demand and price levels in the market are some suggested developing areas in marine inventory-

routing problems. 
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