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Abstract 

In this paper, a general methodology for reducing computing times in procedures for solving road network design 

problems is proposed. Such problems which are studied extensively in the related literature concern the design of road 

networks, in terms of flow directions, capacity expansion and signal settings in urban contexts, and in terms of link 

addition and capacity expansion in rural contexts. The solution to them is almost always formulated as a bi-level model, 

where the upper level operates on the network design decision variables while the lower level estimates the equilibrium 

traffic flows, which must be known in order to determine objective function values. Computing times required for 

calculating equilibrium traffic flows at each iteration of the network design procedure significantly affect the total 

solution time. Hence, any reduction in computing times of the lower level, which has to be implemented numerous times 

at any step of the upper-level algorithm, allows the global computing time to be considerably reduced. In this context, 

the methodology proposed herein seeks to reduce computing times of the traffic assignment problem and in turn of the 

whole network design procedure, acting on the traffic flows adopted in the initialisation phase of the assignment 

algorithm. Obviously, this approach is feasible only if the topology of the network configuration remains unchanged and 

therefore only if the network design decision variables are limited to capacity expansion in rural contexts, or signal 

settings and capacity expansion in urban contexts. The proposed approach is tested on a real-scale case study: the rural 

road network of Vilnius County (Lithuania). Preliminary results underline the feasibility of the proposal and a significant 

reduction in computing times -- up to 80% -- compared to traditional approaches. 

Keywords: Road network design problem; Bi-level optimisation model; Rural road network analysis; Road capacity 

expansion; Computing times reduction. 

1. Introduction 

Road network design both in rural and urban contexts is important for achieving several transport planning objectives 

such as travel time reduction, accessibility improvement, as well as noise and air pollution reduction. In the urban context, 

the problem often concerns only the management of existing roads (directions of links, signal setting optimisation, 

parking lot allocation, pricing). Less commonly, there is the possibility of adding new roads to the network or improving 

existing ones (capacity expansion). By contrast, in the rural context, the problem usually lies in the possibility of adding 

new roads to the network and improving the performance of existing roads. At times, only improvement interventions 

are considered (capacity expansion). 

These problems are known in the literature as road network design problems (RNDPs) and are usually schematised with 

discrete, continuous or mixed optimisation models, depending on the kind of decision variables. Such optimisation 

problems, even in the simplest cases, are very difficult to solve: the variables are numerous and sometimes 

heterogeneous, some constraints are non-linear and others inexpressible in a closed form, the problem is often 

combinatorial, and the feasible solutions are so numerous that it is impossible to adopt, except for toy networks, exact - 
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solution methods or exhaustive approaches. Indeed, almost all RNDPs are NP-hard and it is possible to find only local 

optimal solutions with heuristic or meta-heuristic algorithms, usually with high computing times. 

A crucial point in these problems is assignment constraint, which is the main reason behind the high computing times. 

This constraint links traffic flows, which are considered ‘descriptive’ variables since it is impracticable to directly operate 

upon them, to decision variables: a configuration of equilibrium traffic flows corresponds to each configuration of the 

network. To calculate the performance of each network configuration it is necessary to compute the equilibrium traffic 

flows by means of equilibrium traffic assignment algorithms. Such procedures are well consolidated in the literature, but 

may prove extremely time-consuming since they have to be repeated several times as subroutines of the network design 

solution algorithms. 

This paper contributes to the current literature by proposing a general method for reducing computing times of network 

design solution procedures. Indeed, since RNDPs may be formulated as bi-level optimisation problems where the lower 

level represents the assignment problem which has to be implemented at any objective function evaluation, any reduction 

in computing times of the single lower level phase may allow a reduction in global times of the overall procedure. In the 

traditional approach, assignment algorithms generally start from an initial solution where the traffic flows are all equal 

to zero. This paper proposes to use a different starting point: the equilibrium traffic flows estimated in the previous 

iteration of the network design procedure. Obviously, this innovative methodology is applicable only if the network 

topology remains unchanged throughout the iterations of the design algorithm and hence when the decision variables are 

limited to road improvements in rural contexts (no changes in road directions and no new links are feasible). This network 

design problem is common when the decision maker has to choose where to invest public money for improving the 

performance of a rural network. In this case, the decision variables are usually binary and refer to each road; the value 0 

indicates that the road is unimproved, while the value 1 that the road is improved. 

However, in order to show the main advantages in terms of computing time reduction of the proposed methodology, it 

was implemented and tested on a real-scale network, and some theoretical aspects were studied and explored. 

The paper is structured as follows: Section 2 explores the literature on road network design problems; Section 3 provides 

the analytical formulation of the proposed approach; an application to a real dimension network is described in Section 

4; finally, conclusions and research prospects are summarised in Section 5. 

2. Background 

Road network design problems (RNDPs) belong to the class of transportation network design problems (TNDPs) which 

include all problems where decisions have to be taken to change and improve transportation systems. These problems 

can be classified in several ways, according to the transportation system to design (road network, mass-transit network, 

multimodal network), the decision variables (topology, performance, pricing), the kind of variables (continuous, discrete, 

mixed) and the assumption on travel demand (rigid, elastic). The literature on TNDPs is so extensive that a review would 

merit a paper on its own. What follows is limited to the analysis of some significant contributions, focusing mainly on 

RNDPs. 

Literature reviews on TNDPs can be found in Magnanti and Wong (1984), while Feremans et al. (2003) focused on the 

formal generalisation of network design, including transportation-related problems. Chen et al. (2011) explored TNDPs 

under uncertainty. Yang and Bell (1998) reviewed models and algorithms for RNDPs, and Farahani et al. (2013) focused 

on urban road networks. Guihaire and Hao (2008), instead, reviewed transit network design problems. In D’Acierno et 

al. (2013), some applications of metaheuristic algorithms to large-scale transportation network design problems are 

summarised. Xu et al. (2016) reviewed the sustainable road network design problem, considering three dimensions of 

sustainable development (economic, environmental and social). Interaction with land use and the sustainability aspects 

of the problem were also considered by Szeto et al. (2015), while Fontaine and Minner (2018) studied the TNDP for 

minimising the risk of shipment of hazardous goods on roads.  

Focusing on RNDPs, it is possible to identify two main classes: urban (URNDPs) and rural (RRNDPs). In the former 

case, the decision variables are usually (i) the directions of links and, in some cases, also the insertion of new roads or 

capacity expansion and (ii) signal settings (Cantarella et al. 2006; Gallo et al., 2010; Khooban et al., 2015). Some 

problems also consider parking variables (Cantarella and Vitetta, 2006) or road tolls (Yang, 1997; Dimitriou et al., 2008). 

The decision variables are at times limited only to signal settings (Cascetta et al., 2006; Cantarella et al., 2015a; Memoli 

et al., 2017). In URNDPs, the objective function is often given only by total user costs; where applicable, construction 

costs are also considered. In some cases, other objective functions have been proposed, such as maximisation of 

consumer surplus, maximisation of reserve capacity, and minimisation of distances travelled. 

By contrast, RRNDPs usually consider the insertion (i.e. the construction) of new roads or the capacity expansion of 

some roads in an existing network as decision variables. In this case, besides user costs, construction/maintenance costs 

always have to be considered in the objective function. Examples of these problems can be found in Billheimer and Gray 

(1973), Abdulaal and Le Blanc (1979), Solanki et al. (1998), Drezner and Wesolowsky (2003), Chiou (2005), Gao et al. 
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(2005), Poorzahedy and Abulghasemi (2005), Poorzahedy and Rouhani (2007), Lo and Szeto (2009), Obreque et al. 

(2010), Wang and Lo (2010), Babazadeh et al. (2011), Ukkusuri and Patil (2011), Gallo et al. (2012), Cao et al. (2013), 

Wang et al. (2013), Wang et al. (2015), Liu and Wang (2015, 2016), Bagloee and Sarvi (2018), and Di et al. (2018). The 

main features of these papers are summarised in Table 1. Most consider discrete or binary decision variables (insertion 

of new roads or capacity expansion), while others assume continuous variables (capacity expansion). As for solution 

methods, few papers attempt exact approaches (branch-and-bound), with almost all proposing heuristic or metaheuristic 

algorithms. 

Other aspects of the problem are treated elsewhere. A time-dependent discrete network design problem was proposed by 

Hosseininasab and Shetab-Boushehri (2015). Tan et al. (2016) examined the problem in terms of different ownership 

regimes (free, public toll and private toll roads) and also investment returns. Bagloee et al. (2016) studied the problem 

vis-à-vis multimodal and multiclass traffic flows. Haas and Bekhor (2017) formulated a bi-level multi-objective 

optimisation model for also considering the maximisation of road safety within the problem. Xu et al. (2017) formulated 

a joint road toll pricing and capacity expansion network design problem. Di et al. (2018) optimised the network so as to 

maximise flow-based accessibility. 

The method described in this paper has not, to our knowledge, been proposed elsewhere. It can reduce the computing 

time for estimating the value of the objective function. All heuristic and meta-heuristic RNDP solution algorithms are 

based on the examination of solutions: the more the solutions examined, the better the final result. Therefore, by reducing 

the computing time of examining each solution, a better result can be obtained in the same total computing time. 

Table 1 . Main literature on RRNDPs 

Paper Design subject Decision 

variables 

Algorithm 

Billheimer and Gray (1973) Link addition Binary Heuristic 

Abdulaal and Le Blanc (1979) Capacity expansion Continuous Heuristic 

Solanki et al. (1998) Link addition Binary Heuristic 

Drezner and Wesolowsky (2003) Link addition Discrete Heuristic and metaheuristic 

Chiou (2005) Capacity expansion Continuous Gradient-based 

Gao et al. (2005) Link addition Binary Heuristic 

Poorzahedy and Abulghasemi 

(2005) 

Link addition and 

capacity expansion 

Binary Metaheuristic 

Poorzahedy and Rouhani (2007) Link addition Binary Metaheuristic 

Lo and Szeto (2009) Capacity expansion Continuous Gradient-based 

Obreque et al. (2010) Link addition Binary Branch-and-Cut 

Wang and Lo (2010) Capacity expansion Continuous Mixed-integer linear program 

Babazadeh et al. (2011) Link addition and 

capacity expansion 

Binary Metaheuristic 

Ukkusuri and Patil (2011) Capacity expansion Continuous Interior point method 

Gallo et al. (2012) Capacity expansion Binary Metaheuristic 

Cao et al. (2013) Link addition Binary Metaheuristic 

Wang et al. (2013) Capacity expansion Binary Heuristic 

Wang et al. (2015) Link addition and 

optimal capacity 

Mixed-

integer 

Heuristic 

Liu and Wang (2015) Capacity expansion Continuous Heuristic 

Liu and Wang (2016) Link addition Binary Branch-and-Bound and heuristic 

Bagloee and Sarvi (2018) Link addition Binary Hybrid exact-heuristic 

Di et al. (2018) Link addition Binary Heuristic 

3. Optimisation model and the proposed approach 

Any transportation network design problem (TNDP) can be formulated as a constrained optimisation problem. In this 

problem, the assignment constraint assumes an important role since it links user flows (descriptive variables) to decision 

variables (network configuration). In light of the above, the assignment constraint is almost always inexpressible in a 

closed form, requiring an algorithm for calculating user flows. The problem is formulated in bi-level terms, where the 

upper level concerns the decision variables and the lower level the solution of the assignment problem. This bi-level 

approach can be found in most papers dealing with TNDPs (see also Section 2). In the literature, the problem is usually 

analysed to refer to one or, less often, more simulation time windows. In this case, transportation demand changes with 

time (e.g. among hours of the day, days of the week) and the TNDP can be generalised as follows: 
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   


T

dZˆ
0

 ,  ,  min arg  yyfy
ySy

 (1) 

subject to: 

        yfyfyfΛyf  , 0 , ... ,  , 1 ,  ,  ,       T  (2) 

     Byfy  ,  ,     T  (3) 

where ŷ  is the optimal value of vector y; y is the vector of decision variables to be optimised (i.e. designed); Sy is the 

feasibility set of y; T is the analysed time period (such as the life-cycle of the designed intervention or the plan duration); 

 is the generic time period (or time interval); f() is the vector of passenger or vehicular flows; Z() is an integrand 

function whose primitive (i.e. antiderivative) function over the time interval T is the objective function to be minimised; 

() is the simulation function providing (passenger or vehicular) flows associated with period ;  () is a function 

expressing the budget consumed in the period ; and B() is a function expressing the budget constraint in the period . 

Constraint (2) imposes the coherence of transportation system performance and network flows. Indeed, network 

performance depends on the design solution considered (i.e. values of vector y), network flows in period  and network 

flows in the previous time periods. Likewise, network flows in period  depend on network performances since users 

make mobility choices based on them. 

Constraint (3) represents the budget constraint expressed in monetary terms and/or resource terms (such as the number 

of facilities or vehicles to be used). Expenditure depends on the intervention solution y adopted. Moreover, in some cases 

(such as the fleet sizing of public transport services), the required budget depends on passenger flows in any period . 

However, it is worth noting that in some conditions, resources which were left untapped during one period may be used 

in the next periods. In such contexts, equation (3) may be expressed as: 

       






tt

dxxdxxB
00

 ,  ,  ,  , yfyyfy           with Tt 0  (4) 

Under the hypothesis that travel demand and network features are constant over a reference period of sufficient length 

concerning the journey times of the system, it is possible to analyse the transportation system by considering a set of 

stationary conditions. Hence the problem may be formulated as follows: 

   


T
Zˆ

0
 ,  ,  min arg  yyfy

ySy
 (5) 

subject to: 

    yfyΛyf  ,  ,  ,       T  (6) 

     Byfy  ,  ,     T  (7) 

where   represents the duration of period  and constraint (6) is called assignment constraint. 

Obviously, in the case of resource re-use, equation (4) may be rewritten as follows: 

       






t

o

t
xxdxxB yfyyfy  ,  ,  ,  , 

0
       with Tt 0  (8) 

Since it is generally impossible to assert the convexity of the objective function or that the objective function is manifestly 

non-convex, solution algorithms for the upper level (i.e. equation 1 or, equivalently, 5) are often based on heuristics or 

metaheuristic algorithms, which explore a large number of feasible (i.e. within the set Sy) solutions satisfying budget 

constraints (i.e. equations 3 and 7 or, equivalently, equations 4 and 8). These algorithms are based on exploratory rules 

which identify the subsequent solutions to be analysed or the termination condition depending on the value assumed by 

the objective function. 

Calculation of the objective function requires the solution of the simulation problem (2) or, equivalently, (6) for any 

period. In the case of stationary conditions, the simulation problem (6), namely the assignment problem, may be 

formulated as a fixed-point problem whose theoretical property concerning the existence and uniqueness of the solution 

may be proved under generally verified conditions (Cantarella, 1997; Cascetta, 2009; D’Acierno et al., 2011). 
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Since the fixed-point problem is based on transcendental equations, it is impracticable to solve it in a closed form and it 

is therefore necessary to adopt recursive algorithms based on a sequence of network loading flows converging to the 

equilibrium solution (Sheffi and Powell, 1981; Daganzo, 1983; Cantarella, 1997; D’Acierno et al., 2006; Cantarella et 

al., 2015b). These algorithms terminate when two successive iterations provide similar results whose difference is lower 

than a prefixed threshold, , which means that the equilibrium condition is almost met. 

For the above reasons, it is necessary to highlight the difference between the theoretical value of the fixed-point solution 

and its numerical value obtained by means of recursive algorithms. Indeed, although the fixed-point solution exists and 

is unique, its numerical value may be non-unique due to the recursive algorithm adopted (i.e. different algorithms or the 

same algorithm adopted with different initial conditions may yield different numerical values of the fixed-point problem 

solution). 

Hence, theoretically, having fixed the value of the decisional variable y, it is possible to univocally calculate the 

equilibrium flows for any period   (i.e. lower level problem), that is: 

    T ,   !    yfyFSy y **   (9) 

where F * is a vector whose elements are equilibrium flow vectors, f *, for each period . 

Likewise, since the objective function is a single-value function, for each value of vector F*, it is possible to univocally 

determine its value, that is: 

        
T

o

*** Z  yyfyFyF  ,  ,   !     (10) 

where () is the objective function to be minimised. 

Thus, by combining equations (9) and (10), the following is obtained: 

      
T

o

** Z  yyfyFSy y  ,  ,   !     (11) 

The use of assignment recursive algorithms, which are based on termination thresholds, means that the computational 

value of vector F* is affected by the initialisation value F0 and the termination threshold . So, equations (9) and, 

consequently, (11) have to be changed to: 

    T00  ,  ,  ,  ,  ,   !    εε **
fyfFyFSy y   (12) 

      
T

o

** εZε  yfyfFyFSy y  ,  ,  ,  ,  ,  ,   !    00

 (13) 

where  T00 fF  . 

One of the most commonly used algorithms for solving the assignment problem is the Method of Successive Averages 

(MSA); this algorithm starts from an initial solution where all flows equal 0 (null vector), 
0

f  = 0, for each period . 

This assumption means that once the termination threshold is fixed, for any feasible solution the computational value of 

the objective function () is univocally determined. 

Although the use of this initial (null) flow vector allows the value of the objective function in an NDP to be determined 

univocally, the corresponding computing times could be high in real-scale networks since this assignment procedure has 

to be repeated at each iteration of the network design algorithm, often thousands of times. 

Focusing on the convergence of the MSA assignment algorithm (the case of a two-link network is reported in Figure 1), 

two phases may be identified: 

 A first phase, where initial flows approach the equilibrium solution (approach phase); 

 A second phase, where flows are slightly modified to reach the equilibrium condition (tuning phase). 

If the network design does not affect the topology but only some performance variables of roads (e.g. free-flow speed, 

capacity), the number of links is constant and the dimension of vector f  is independent of decisional variable y; all 

RRNDPs where the subject of design is road capacity expansion fall within this case. 
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Figure 1. Convergence of network flows in a two-link network 

The proposed approach is intended to exploit this feature of the problem in order to reduce the computing times of 

network design solution algorithms. For this purpose, at each iteration of the network design solution algorithm, except 

the first, the equilibrium traffic flows obtained at the end of the previous iteration are used as initial flows in the next 

assignment procedure. Operating in this way, a reduction in MSA iterations and in turn a significant benefit for global 

computing times in the network design procedure are expected. Naturally, this approach is applicable with regard to the 

same time interval . The actual benefits of this approach may be evaluated with experimental tests which will be 

performed in the next section. 

A technical limit of the proposed approach is the evaluation of the network design objective function. Indeed, the 

objective function strictly depends on the equilibrium traffic flows which can assume different values (albeit very close) 

if the MSA algorithm starts from different initial values. Therefore, the same value of decisional variable y, considered 

in different iterations of the solution algorithm, may yield different, albeit probably close, values of the objective function 

(because of the difference between the theoretical and numerical value of the fixed-point solution), that is: 

     h

*

k

*

hk yFyFyy          (14) 

This is, however, due only to the convergence threshold used for ending the algorithm: the assignment algorithm ends 

when the differences between flows of two successive iterations are lower than the fixed threshold. Theoretically 

speaking, instead, since it may be stated that the equilibrium solution exists and is unique (Cantarella, 1997) under some 

quite mild assumptions, the theoretical solution should be the same whatever the starting link flow vector. 

Based on the above considerations, the authors proposed to solve the network design problem in two stages: (a) adopting 

the proposed method for calculating the equilibrium traffic flows at each network design algorithm iteration; (b) 

restarting the network design algorithm from the solution generated in the previous stage using the classical approach, 

which assumes that the initial flows inside the assignment algorithm equal zero. 

4. Numerical results 

The effectiveness of the proposed approach in reducing network design computing times was tested in a real-scale case 

study. The study area is Vilnius County (Lithuania), which consists of eight municipalities (see Figure 2).  

The area was partitioned into 235 traffic zones (see Figure 3), using the grid-like division provided by the Lithuanian 

National Institute of Statistics. Zoning was obtained by using the 2.5 km grid in the Vilnius (city) area and the 10.0 km 

grid in the rest of the study area. Note that, unlike other countries usually providing non-regular territorial portions 

(census zones), in this case the territory is divided into squares and the socio-economic data are attributed to such 

elements.  

Our analysis specifically focused on the rural road network in the study area. The road network model was implemented 

using graph theory starting from the database of the road features: it represents 5,871 km of rural roads using 590 nodes 

(blue points), 250 centroids (red points), and 1,980 road links (see Figure 4). 
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Figure 2. Vilnius County (Lithuania) 

In accordance with Lithuanian road classification, all rural roads were attributed to three sets depending on their 

performance, namely: 

 1st type: main roads; 

 2nd type: national roads; 

 3rd type: regional roads. 

 
In the test in question, only the roads belonging to the first two sets were considered: 865 km of main roads and 1,713 

km of national roads were modelled (represented in Figure 5 with green and blue lines, respectively). 

In terms of demand models, the peak-hour OD matrix was estimated using a system of mathematical models (Cascetta, 

2009) which was calibrated in other case studies. The matrix generated was adjusted using traffic flows obtained from 

Google APIs, according to the procedures proposed in the literature based on traffic counts (Cascetta, 2009). The OD 

matrices corresponding to other periods were obtained starting from the peak-hour matrix according to the known data 

on the road traffic time variations. The demand thereby estimated can be assumed acceptable in a real-scale test. 

However, if the proposed procedure is adopted for actually designing a road network, a more accurate estimation of the 

demand has to be obtained with appropriate and specific surveys. Overall, eight hourly origin-destination matrices were 

generated, corresponding to eight different periods, as reported in Table 2. Considering several OD matrices is useful for 

evaluating the actual benefits of road improvements which could be overestimated if only the peak-hour period were to 

be considered in the network design problem. 

Table 2. Details of the time periods 

Day Time period Hours per 

year 

Working day Morning peak hour 486 

Afternoon peak hour 729 

Day-time off-peak hour 2,187 

Night-time hour 2,430 

Pre-holiday Day-time hour 720 

Night-time hour 720 

Holiday Day-time hour 744 

Night-time hour 744 
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Figure 3. Zoning of Vilnius County 

Figure 4. Network model of Vilnius County 
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Figure 5. Representation of design variables (improvable road segments) 

 

In this context, an RRNDP was formulated as follows: 

  yFyy
y

*Zˆ  , min arg  (15) 

subject to: 

0/1  hy      h   (16) 

BicLy
h hhh   (17) 

      , yFyΛyF **   (18) 

where ŷ  is the optimal solution, y is the vector of decision variables yh; yh is the binary variable corresponding to the 

improvement (value 1) or not (value 0) of the h-th road segment; Z(.) is the objective function to be minimised; *
F  

represents the equilibrium flow vectors in different simulation periods; Lh is the length of road segment h; ich is the 

improvement cost of the road segment h; B is the available budget; (.) is the assignment function linking the descriptive 

variables, *
F , to the decision variables, y. In particular, equation (16) is the constraint on the binary nature of the decision 

variables, equation (17) is the budget constraint, and equation (18) is the assignment constraint. 
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Table 3. Road segments 

No. Road 

name 

Type Current condition Improved condition Improveme

nt 

costs per 

lane 

[€ / km / h] 

Number 

of lanes 

per 

direction 

Capacity 

[vehic/h] 

Free-flow 

speed 

[km/h] 

Number 

of lanes 

per 

direction 

Capacity 

[vehic/h] 

Free-flow 

speed 

[km/h] 

1 A1 1st 2 3600.00 100.00 3 5400.00 110.00 5.71 

2 A2 1st 2 3600.00 100.00 3 5400.00 110.00 5.71 

3 A3 1st 2 3600.00 90.00 3 5400.00 100.00 5.71 

4 A3 1st 1 1800.00 80.00 2 3600.00 90.00 5.71 

5 A4 1st 1 1800.00 100.00 2 3600.00 110.00 5.71 

6 A6 1st 1 1800.00 100.00 2 3600.00 110.00 5.71 

7 A14 1st 2 3600.00 90.00 3 5400.00 100.00 5.71 

8 A14 1st 1 1800.00 80.00 2 3600.00 90.00 5.71 

9 A15 1st 1 1800.00 90.00 2 3600.00 100.00 5.71 

10 A16 1st 1 1800.00 90.00 2 3600.00 100.00 5.71 

11 A19 1st 2 3600.00 80.00 3 5400.00 90.00 5.71 

12 A20 1st 1 1800.00 70.00 2 3600.00 80.00 5.71 

13 A3 

(urban 

segment) 

1st 2 3600.00 60.00 3 5400.00 70.00 5.71 

14 A2 

(urban 

segment) 

1st 2 3600.00 70.00 3 5400.00 80.00 5.71 

15 101 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

16 102 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

17 103 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

18 104 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

19 105 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

20 106 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

21 107 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

22 108 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

23 109 2nd 1 1800.00 60.00 2 3600.00 70.00 3.81 

24 110 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

25 111 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

26 114 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

27 115 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

28 116 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

29 120 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

30 126 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

31 127 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

32 143 2nd 1 1800.00 90.00 2 3600.00 100.00 3.81 

33 145 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

34 171 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

35 172 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

36 173 2nd 1 1800.00 70.00 2 3600.00 80.00 3.81 

37 174 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

38 176 2nd 1 1800.00 70.00 2 3600.00 80.00 3.81 

39 202 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

40 214 2nd 1 1800.00 60.00 2 3600.00 70.00 3.81 

41 220 2nd 1 1800.00 80.00 2 3600.00 90.00 3.81 

42 221 2nd 1 1800.00 70.00 2 3600.00 80.00 3.81 

43 231 2nd 1 1800.00 70.00 2 3600.00 80.00 3.81 

 

Specifically, the decision variables, y, identify some rural roads which could be improved with lane addition so as to 

increase their capacity and free-flow speed. Therefore, only the addition of a lane, with consequent effects on free-flow 

speed and capacity, is assumed as a possible road intervention. Hence, in order to identify decision variables in the 

examined context, the roads belonging to the analysed network were partitioned according to their main features (widths, 

lanes, free-flow speeds) so as to identify 43 segments. 

Table 3 reports for all segments their main features in the current configuration, in the improved configuration and the 

equivalent hourly costs for the improvement. Indeed, although the improvement costs are generally expressed in terms 

of €/km, in this application we divided them by the number of life-cycle hours of the infrastructures considered in order 

to perform a comparison between costs (construction costs) and benefits (reduction in user travel times) on an hourly 

basis. 
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The objective function is given by: 

           ΔτICUVCUTTZ ***  yyFyyFyyFy   ,   ,   ,    (19) 

with: 

    
l ll

* fttVOTUTT 
   , yFy  

    
l ll

* fvmcUVC 
   , yFy

 

   
h hhh icLyIC y

 

where UTT () is the User Travel Time in the period ; UVC () is the User Vehicular Cost in the period ; IC is the 

Improvement Cost; VOT is the value of time; 


ltt  is the travel time of link l in period ; 


lf  is the vehicular flow of link 

l in period ; 


lvmc  is the vehicular monetary cost (such as fuel consumption) on link l in period ;   is period  in 

hours. 

In this case, such a model cannot be solved with an exhaustive approach since the number of feasible solutions is equal 

to 243 = 8.80  1012 and the evaluation of each solution requires the estimation of equilibrium traffic flows for each period 

. The problems are usually solved with heuristic or metaheuristic algorithms which, since the problem is usually not 

convex, lead to one or more local optima. In light of the above, this paper aimed to test the potential of the proposed 

approach to reduce computing times: any algorithm which explicitly requires equilibrium traffic flows to be computed 

at each iteration could be used. In the tests in question, the Neighbourhood Search Algorithm with a Steepest Descent 

Method (NSA-SDM) was used, whose details can be found in Gallo et al. (2010) and D’Acierno et al. (2013). The 

algorithm is often used inside multi-start procedures or scatter search algorithms for improving values of the objective 

function starting from more than one solution generated with various techniques. Conversely, here, the NSA-SDM was 

applied only once starting from the current solution, corresponding to all decision variables set equal to zero. The final 

solution obtained with the algorithm is therefore one of the possible local optima. 

Moreover, the MSA algorithm was adopted for estimating the equilibrium traffic flows. In particular, the approach 

proposed in this paper is compared with the traditional approach. Basically, the difference lies in the fact that in the 

presented methodology, the MSA algorithm adopts as initial flows the equilibrium traffic flows obtained in the previous 

iteration of the network design solution algorithm, while in the traditional approach initial traffic flows are always 

assumed equal to 0. 

Table 4 and Figures 6-8 summarise the main results of the test. The traditional approach required 345 iterations and a 

computational time of 7.83 h. However, although the proposed approach required 389 iterations (+12.75 %), because of 

the second stage, computational times are lower (6.31 h) corresponding to 19.34%. Both approaches led to the same 

solution (see Table 5) which is a local optimum. In this case, the second stage is actually useless since the final solution 

is the same. The differences in objective function values are only due to the termination criterion which was fixed at 

0.50%. Neglecting this aspect of the problem, the computing time of the proposed approach decreases to 5.32 h, 

amounting to a reduction of –31.99%. 

Table 4. Number of network loadings and computing times 

Solution algorithm Analysed solutions Network 

loadings 

Analysed 

neighbourhoods 

Computing 

times [h] 

Traditional approach 345 9,317 8 7.83 

Proposed approach 389 

(345+44)* 

6,719 

(5,531+1,188)* 

9 

(8+1)* 

6.31 

(5.32+0.99)* 

*Performances subdivided between the first and second stage of the proposed approach  

 

Table 5. Final solution 

Variable y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 

Value 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 

                       

Variable y23 y24 y25 y26 y27 y28 y29 y30 y31 y32 y33 y34 y35 y36 y37 y38 y39 y40 y41 y42 y43  

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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Table 6. Number of network loadings for any time period 

Day Time period Traditional 

approach 

Proposed 

approach 

Working day Morning peak hour 11 2 

Afternoon peak hour 4 2 

Day-time off-peak hour 2 2 

Night-time hour 2 2 

Pre-holiday Day-time hour 2 2 

Night-time hour 2 2 

Holiday Day-time hour 2 2 

Night-time hour 2 2 

TOTAL 27 16 

 

Figure 6. Objective function with the traditional approach 

Figure 7. Objective function with the proposed approach 
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Figure 8. Comparison of analysed approaches 

 

Figure 9. Roads to be improved 

The solution obtained identified six roads to be improved (see Figure 9): A2 (only the two urban segments), A3, A20, 

108 and 231. 

Finally, Table 6 provides a comparison of the two approaches in terms of network loadings that is the number of iterations 

required to reach the equilibrium condition. In particular, although a full-year simulation yields a 40.74% reduction in 

computational effort, higher reductions occur in the simulation of peak hours of working days. Hence, if the RNDP is 

implemented in more critical conditions, the related reduction in terms of network loading number is 73.33% in the case 

of a working-day analysis and 81.82% in the case of a morning peak-hour analysis. 
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5. Conclusions 

In this paper, a general method was proposed for reducing computing times in road network design problems (RNDPs). 

The method is applicable to all problems where the decision variables keep the topological configuration of the network 

unchanged, such as capacity expansion problems in rural contexts. A bi-level model has to be formulated since it is 

necessary to calculate equilibrium traffic flows for evaluating network performance. The proposed approach acts on the 

lower level of the problem, changing the initialisation phase of the assignment algorithm: it assumes initial traffic flows 

equal to the equilibrium values calculated at the previous iteration of the network design algorithm. 

In order to show the main advantages of using the proposed approach, some tests were carried out on a real-scale case: 

the rural road network of Vilnius County (Lithuania). The main result of the application was that the approach yields the 

same final solution as the traditional approach. In terms of calculation times, the proposed approach leads to a 40.74% 

reduction in the case of a full-year analysis that can increase up to 81.82% in the case of a morning peak-hour analysis. 

Hence, the proposed methodology allows the same results to be obtained but in lower computation times compared to 

the traditional approach. Final results may thus be achieved in lower computation times or a large number of alternative 

solutions may be analysed (for instance by adopting meta-heuristic algorithms) at the same time as traditional approach 

procedures. 

Future research may test the proposed methodology: 

 on other real-scale cases in order to verify whether the reduction in computing times may be affected by the 

network dimension, as well as demand variability; 

 with different traffic congestion levels since the main reductions in the case of peak-hour conditions seem to 

show that the higher the congestion level, the greater the time reduction upon adopting the proposed approach; 

 by adopting meta-heuristic algorithms, such as Multi-Start techniques or Scatter Search which are able to 

generate more local optima since such algorithms are based on the recursive use of bi-level optimisation 

procedures. Therefore, any time reduction techniques including the proposed approach may allow their overall 

computing times to be considerably reduced. 
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