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Abstract 
In this paper, we consider the capacitated single allocation p-hub median problem generalized with fixed costs of opening 

facilities. The quadratic mathematical formulation of this problem is first adapted and then linearized. The typical 

approaches of linearization result in a high size complexity, i.e., having a large number of variables. To downsize the 

complexity, variables of the formulation are analyzed and some preprocessing approaches are defined. An estimated 

formulation is then developed to approximately solve large instances of the problem by commercial optimization solvers. 

The basic idea of this formulation is mapping the linearized formulation of the problem to a new formulation with fewer 

variables and a modified objective function. The efficacy of this formulation is shown by a computational study, where 

the estimated formulation is compared to a modified genetic algorithm from the literature. Results of computational 

experiments indicate that the estimated formulation is capable of generating good solutions within reasonable amount of 

time. 
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1. Introduction

The hub location problem is first introduced by O'Kelly (1986). From that time until now, this problem is applied in 

several fields like transportation, geographical science, economics, operations research, network design, etc. In a hub 

location problem n locations (nodes) exist. If {1,2,.., }N n be the set of these points, for each i N and for each

j N there is a flow 0ijw which must be transferred from i  to j . When i j , ijw is not necessarily equal to jiw . 

Moreover,
iiw can be a positive value. These flows can be passengers, goods, information, etc. The collection and 

distribution of these flows can only be done in some special nodes called hub. We denote the set of all hub nodes by H. 

Sometimes the number of hubs is not predetermined, and it is found by the problem. However, the number of hubs,

p | H | , can be given a priori. 

The underlying assumption is that the transference between two nodes i and j is not allowed when \i N H and

\j N H . Generally, it is assumed that the incoming and outgoing traffic for a nun-hub node can be routed through at 

most r hubs (1 | |)r H  . When 1r  , the problem is referred to as the single allocation. In single allocation, each 

node can receive and send flow through exactly one hub. O'Kelly (1987) presented the single allocation p-hub median 

problem in which the number of hubs p | H | is given a priori. When r | H | , the problem is called multiple allocation 
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in which routing through all hub nodes is allowed for each non-hub node. The single and multiple allocation hub location 

problems are classical versions of the problem. The general version of the problem is the r-allocation p-hub median 

problem which is first introduced by Yaman (2011). 

The hub location problems can also be classified in terms of capacity for hubs. In the capacitated version of the problem, 

the amount of traffic passed through a hub is restricted. The capacity constraints can be considered for both input and 

output flow for the hub nodes. In typical hub location problems the objective is to minimize total cost of transportation. 

The total cost can be classified into three categories; collection cost (from nun-hub nodes to hub nodes), transfer cost 

(between hub node), and distribution cost (from hub nodes to nun-hub nodes). Let ijc denote the transportation cost of a 

unit of flow from i  to j . It is assumed that 0iic  for each i N . Moreover, the triangular inequality is not necessarily

hold among parameters ijc . The cost of transferring a unit of ijw from node i  to hub k , from hub k to hub l , and then 

from hub l to node j can be represented as follows: . . .iklj ik kl ljC c c c    

In the relation, ,  , and   are nonnegative coefficients. The parameter  which is referred to as discount factor cannot 

exceed 1, i.e. 0 1  . It is also assumed that   , and   . 

Sometimes in addition to total transferring cost, fixed costs are considered for establishing the hubs. O'Kelly (1992) 

introduced the hub location with fixed costs. He took into acount the single allocation hub location problem in which the 

number of hubs were a decision variable in the problem. In the p-hub median problem, yet the fixed costs of opening 

facilities are ignored (see Alumur and Kara (2008)). 

In this paper, we consider the capacitated single allocation p-hub median problem with fixed costs of opening facilities. 

This problem is a generalization of the capacitated single allocation p-hub median problem in which fixed costs of 

opening facilities are taken into account. In this problem, exactly p hub nodes must be selected from n nodes for opening 

facilities, and the objective is to minimize the sum of total transportation cost and total fixed costs. It is assumed that 

fixed costs of opening facilities may differ from node to node. 

The literature includes several mathematical formulations for the single allocation hub location problems, but they cannot 

solve large instances of the problem. O'Kelly (1987) presented a binary quadratic mathematical formulation for the single 

allocation p-hub median problem. As is explained in Section 1.2, several linearizations for this quadratic formulation can 

be found in the literature. However, typical approaches of linearization result in a high size complexity, i.e., having a 

large number of variables. To downsize the complexity, we consider linearization of the quadratic formulation with a 

preprocessing approach. Then a mixed integer linear programming formulation is developed to approximately solve 

larger instances of the problem by commercially available solvers. The idea of this formulation is based on mapping the 

linearized formulation to a new formulation with fewer variables and a modified objective function. The introduction of 

estimated formulation is important for two main reasons: first, solving mathematical programming formulations with 

commercially available solvers is rather easier than using purpose-built algorithms. Second, due to continuous 

improvement in integer programming software systems, the ability of solving large scale instances are enhanced. As is 

pointed out by Bixby (2002), over the past decade, the problem-solving speed of mathematical programs has increased 

by a factor of more than 1,000,000, thanks to both the hardware and the software improvements. So, mathematical 

programming formulations will play a prominent role in optimally or approximately solving large scale instances. In this 

paper, we present an estimated formulation to approximately solve larger instances of the problem using commercial 

solvers. The estimated formulation presented in this paper has the following three desirable characteristics: 

 It is easily solved within reasonable amount of time even for larger instances of the problem with 200 nodes. Also

the solutions generated by this formulation are fairly good.

 By slight variations in this formulation, it can be used to solve a variety of the single allocation hub location problems,

specially, those with various constraints.

 It considers capacity constraints as well as other constraints of the formulation simultaneously. However, during

typical heuristic methods, this is usually done in complicated procedures. Specially, for instances with tight

constraints that finding feasible solutions for the heuristic procedures is a hard task, the estimated formulation can

find good solutions easily. Moreover, in the case that the problem is infeasible, it can easily detect infeasibility, but

the original formulation may seeks to find a feasible solution within a lot of time.

To the best of our knowledge no heuristic procedure is developed for directly solving this optimization problem. 

However, the contribution of our research is developing the concept of estimated formulation to solve larger instances 

of a variety of single allocation hub location problems. The rest of the paper is organized as follows. In Section 1.2, we 

review relevant literature including mathematical programming formulations and heuristic procedures.  Section 2 

describes the new approach, where we develop a mixed integer linear programming formulation based on a 
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preprocessing. In Section 3, we present results of a computational study to show the efficacy of the presented formulation. 

Finally, we conclude the paper in Section 4. 

1.2. Related literature 

In this section, we review some heuristic procedures as well as mathematical programming formulations developed to 

solve single allocation hub location problems. 

1.2.1. Heuristic procedures 

Several heuristic and meta-heuristic approaches have been developed by researchers to solve single allocation hub 

location problems. O'Kelly (1987) was the first researcher who used heuristic approaches to solve single allocation p-

hub median problem. Later Klincewicz (1991, 1992) presented several heuristic procedures to solve this problem. Skorin-

Kapov and Skorin-Kapov (1994) developed a tabu search heuristic for the problem and compared it with heuristics of 

O'Kelly (1987) and Klincewicz (1992). Ernst and Krishnamoorthy (1996) presented a simulated annealing heuristic to 

solve this problem. Later, Ernst and Krishnamoorthy (1999) presented two heuristic procedures for the capacitated single 

allocation hub location problem. Kratica et al. (2007) developed two genetic algorithms (GAHUB1 and GAHUB2) for 

the uncapacitated single allocation p-hub median problem. They concluded that GAHUB2 performs better than 

GAHUB1 since it reached or improved all best known solutions of the benchmark data set. Chen (2007) developed a 

hybrid heuristic based on simulated annealing and tabu search for the uncapacitated single allocation hub location 

problem. Silva and Cunha (2009) presented a number of heuristics for this problem and showed that their approach is 

six times faster than the hybrid heuristic of Chen (2007). Ilić et al. (2010) developed a general variable neighborhood 

search heuristic for the uncapacitated single allocation p-hub median problem. They showed that their method outperform 

the best-known heuristics in terms of solution quality and computational effort. The interested readers are referred to 

surveys by Alumur and Kara (2008), Campbell and O'Kelly (2012), and Farahani et al. (2013) for details. In the 

following, we review mathematical programming formulations of the problem. 

1.2.2. Mathematical programming formulations  

Over the past two decades, modeling different mathematical formulations for the hub location problem has attracted 

considerable attention. The first mathematical formulation for the hub location problem is presented by O'Kelly (1987). 

He formulated the single allocation p-hub median problem as a binary quadratic programming formulation. In this 

formulation, he used the following binary variables: 

1     If  is a hub node, and node  is assigned to it

0     Otherwise
ik

k i
z


 


In the case that 1kkz   for some k N , node k  is selected as a hub for establishing a facility. The formulation is

expressed as follows: 

(1)min { . . . . }ij ik ik kl ik jl lj jl

i N j N k N k N l N l N

w c z c z z c z  
     

    

(2) s.t. ( 1).  ,ik kk

i N

z n p z k N


    

(3)1   ,ik

k N

z i N


  

(4),kk

k N

z p




(5)          {0,1}   ,k .ikz i N  
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In this formulation, objective function (1)minimizes the total transportation cost. Constraints (2) ensure that a nun-hub 

node is only assigned to a hub node. According to constraints (3) , each nun-hub node is assigned to exactly one hub 

node. Constraint (4)ensures that exactly p hub nodes are selected. Constraints (5)  specify domains of decision variables. 

O'Kelly (1992) also presented a binary quadratic programming formulation for the single allocation hub location problem 

with fixed costs. Using
ikz variables, his formulation (with 1   ) can be expressed as follows: 

(6) min .( . . ). ( . . ). .ik i i ik ik ij kl jl k kk

i N k N i N k N l N j N k N

c O D z z w c z F z  
      

      

 s.t.  (3), (5), and:

(7)             , \{ }.ik kkz z i N k N i   

In this formulation, i ij

j N

O w


 represents the total amount of flow originating from node i , and
j ij

i N

D w




represents the total amount of flow destined to node i . In objective function (6) , part one considers the collection and 

distribution costs, part two considers the transferring cost between hubs, and part three considers fixed costs of 

establishing facilities in hub nodes. Constraints (7)  ensure that a nun-hub node is only assigned to a hub node. It can be 

seen from the formulation that the number of hubs is determined by the formulation itself. 

Campbell (1994) presented the first linear programming formulation for the single allocation p-hub median problem. A 

better formulation for this problem is developed by Ernst and Krishnamoorthy (1996). Later, Ebery (2001) presented a 

mixed integer linear programming formulation for the problem with fewer variables and constraints. However, this 

formulation gives poor performance in comparison to the formulation presented by Ernst and Krishnamoorthy (1996). 

Ernst and Krishnamoorthy (1999) presented an integer linear programming formulation for the capacitated single 

allocation hub location problem. In this formulation binary
ikz variables are used as well as a set of continuous variables. 

Let
i

klx  be the total amount of flow originated from node i , and routed between hubs k and l . The formulation is then 

expressed as follows. 

(8) min .( . . ). . . .i

ik i i ik kl kl k kk

i N k N i N k N l N k N

c O D z c x F z  
     

     

 s.t.  (3), (5), (7), and:

(9) . .    , ,i i

kl lk i ik ij jk

l N l N j N

x x O z w z i k N
  

      

(10). .    ,i ik k kk

i N

O z z k N


   

(11)         0   , , .i

klx i k l N  

In this formulation, objective function (8)  minimizes the sum of total transportation cost and total fixed costs. 

Constraints (9)  are flow balance equations at hub node k for the flow originating from node i . Constraints (10)  make 

sure that the total input of hub k does not exceed its capacity k . Constraints (11)  specify domains of the variables.

Correia et al. (2010) pointed out that in the absence of triangular inequality among parameters ijc , this formulation may 

result in infeasible solutions. They completed the formulation by the following
2n inequalities: 
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(12) 
.  , .i

kl i ik

l N
l k

x O z i k N



  

These inequalities ensure that variable
i

klx  take 0 if
ikz is 0. They also showed that adding these inequalities can reduce 

the average solution time of the formulation. 

More recently, Merakli and Yaman (2017) study a capacitated hub location problem under hose demand uncertainty. 

Puerto et al. (2016) consider the ordered median hub location problems with capacity constraints. Rostami et al. (2016) 

develop a lower bounding procedures for the single allocation hub location problem. Stanojević et al. (2015) propose a 

hybridization of an evolutionary algorithm and a parallel branch and bound for solving the capacitated single allocation 

hub location problem. Rabbani et al. (2017) propose a metaheuristic algorithms for solving a hub location problem: 

application in passive optical network planning. 

2. Estimated formulation

In Section 1, we describe the problem and review its related literature. In this Section, a linearization of the quadratic 

formulation of the problem is considered together with a preprocessing approach. Then the estimated formulation is 

developed based on this preprocessing. 

The capacitated single allocation p-hub median problem with fixed costs of opening facilities can be easily formulated 

by merging the presented formulations in Section 1. The quadratic formulation of this problem is expressed as 

minimization of objective function (6)  subject to constraints (3)-(5) and (10) . Also, to solve small instances of the 

problem to optimality, the linear formulation of the problem can be expressed as minimization of objective function (8)

subject to constraints (3)-(5) and (9)-(12) . Note that in the existence of capacity constraints (10) , inequalities (2) and

(7)can be dropped. Besides, for an asymmetric distance matrix, the first part of objective functions (6) and (8) which 

considers the collection and distribution costs must be wrote as ( . . . . ).i ik i ki ik

i N k N

O c D c z 
 

 . 

To linearize the quadratic version of the problem, we define binary variable ikljy  as follows: 

1     If  1

0     Otherwise

ik jl

iklj

z z
y

 
 


These variables are used to linearize the quadratic part of objective function (6) , i.e. iklj ik jly z .z . Due to this definition 

a couple of preprocessing can be performed to eliminate some of these variables. 

Proposition 1. There is no need for variables ikkjy to be considered in the linearized formulation of the problem. 

Proof. Note that due to the assumptions 0kkc  for each k N . So, variables ikkjy should not be considered. 

Proposition 2. In the linearized formulation of the problem, all variables
ikliy can be eliminated for k l . 

Proof. Due to constraints (3)each nun-hub node is exactly assigned to one hub node. So, all variables
ikliy will be equal 

to zero when k l . 

Proposition 3. In the linearized formulation of the problem, all variables
ikliy can be eliminated. 

Proof. According to Proposition 2, among
ikliy variables just variables of form

ikkiy can take one. So, due to Proposition 

1 variables
ikliy should not be generated. 

Proposition 4. In the linearized formulation of the problem, all variables ikijy and ijljy can be eliminated. 

Proof. It is obvious that a node either is a hub or a nun-hub node. So, among variables ikijy  just variables of form iiijy

can be positive. However, due to Proposition 1 these variables can be eliminated. A similar proof for variables ijljy

indicates that these variables can also be eliminated. 
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Now by using Propositions (1)-(4) a linearized formulation for the problem can be stated as follows. All indices of 

variables in this formulation are elements of N . 

(13)
min   ( . . . . ). . .y .i ik i ki ik ij kl iklj k kk

i k i i j i k j l k k
l i

O c D c z w c F z  
   



      

 s.t.  (3)-(5), (10), and:

(14)         1     , , , ,iklj ik jly z z i j k l i l j k       

(15)              , , , ,iklj jlkiy y i j k l i l j k     

(16)0 1     , , , .ikljy i j k l i l j k      

In the linearized formulation, constraints (14) assure that variable ikljy takes one if 1ik jlz z  . Valid inequlities (15)

are included so as to strengthen the formulation. Constraints (16) specify domains for ikljy variables. Note that in this 

formulation we considered these variables as continuous variables since in the optimal solution for the problem they will 

be binary. 

The number of variables and constraints in the presented formulation is bounded by
4O( )n . Obviously, this formulation 

cannot be used for solving larger instances of the problem to optimality. However, we apply it to develop the estimated 

formulation. 

As is shown by Propositions (1)-(4) , some form of variables ikljy can be eliminated. Now, we define some parameters 

based on Propositions (1)-(4) and circumstances of the nodes as follows: 

i  hub & j  nun-hub (y )iilj : 
{ , }

( )  ij il
l i j

s f c i j


  

i  nun-hub & j  hub (y )ikjj : 
{ , }

( )  ij kj
k i j

t f c i j


  

i  nun-hub & j  nun-hub (y )iklj : 
  

{ , }
{ , }

( )  ij kl
l k

l i j
k i j

u f c i j





  

In these definitions f is a function, which its inputs are some elements of the distance matrix. Although, various functions 

can be applied, for the sake of simplicity we consider f as the mean or average of the inputs. Now in the objective function

(13) we estimate transferring costs between hubs as follows: 

. .yij kl iklj

i j i k j l k
l i

B w c
  



     

ˆ . .{ . . . .(1 ) .(1 ). .(1 ).(1 )}ij ij ii jj ij ii jj ij ii jj ij ii jj

i j i

B w c z z s z z t z z u z z


         

The expression can be simply linearized by considering ij ii jjh z .z . After linearization, the following mixed integer 

linear programming formulation is achieved. We refer to this formulation as estimated formulation. 

min  ( . . . . ). . .{ .i ik i ki ik ij ij ij

i k i i j i

O c D c z w c h  
 

   

(17)          .( ) .( ) .( z 1)} .ij ii ij ij jj ij ij ij ii jj k kk

k

s z h t z h u h z F z       

 s.t.  (3)-(5), (10), and:

(18)               ,ij iih z i j  

(19)              ,ij jjh z i j  

(20)         1     ,ij ii jjh z z i j    
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(21)              ,ij jih h i j  

(22)              ,ik ik kkz h z i k   

(23)         0     ,ijh i j  

Objective function (17) minimizes the estimated value of total cost. Constraints (18)-(21) are added for linearization. 

Constraints (22) are a set of valid inequalities for the formulation. According to these constraints at most one of the 

variables
ikz and

ikh can take one when i k . Without these constrains the formulation remains valid, but they are added 

so as to strengthen the formulation. Constraints (23) specify domains of constraints. Evidently, according to the 

formulation, variables ijh take binary values in the optimal solution. 

The number of variables and constraints in the estimated formulation is bounded by
2O( )n . Note that just the solution 

provided by the estimated formulation is used and the objective value of estimated formulation cannot be considered as 

a valid index of quality of the solution. The performance of this formulation is examined in Section 3. 

3. Computational results

In this section, we evaluate performance of the estimated formulation. All the experiments were run on a computer with 

a two-core 2.66 GHz Intel processor and 4.0 GB RAM. We used MATLAB (R2009a) to code algorithms and calculate 

input parameters of the estimated formulation. To solve the formulation, we used solver CPLEX of GAMS-22. 

Our computational experiments have carried out using the AP data set. This well-known data set consists of 200 nodes 

and includes fixed costs and capacities for the nodes. Two types of fixed costs, loose and tight are considered. In the data 

set with tight fixed costs, nodes with larger flows have higher fixed costs. So in general it is harder to decide which nodes 

should be hubs in such cases. Similarly two types of capacities, loose and tight are considered. In the AP data set it is 

assumed that 3  , 0 75.  , and 2  . 

We considered GAHUB2 and modified it to solve the problem. GAHUB2 has been developed by Kratica et al. (2007) 

to solve the uncapacitated single allocation p-hub median problem. However, it can be easily used to solve this problem 

by including fixed costs and penalty of violating constraints in the objective function (so called constraint relaxation). 

We consider following approach to make GAHUB2 suitable for solving this problem. Let
kJ be the set of nun-hub nodes 

assigned to hub k in a solution of GAHUB2. Then total input flow for hub k is

k

k l k

l J

I O O


  . Now for each hub k

calculate
k k kd I  , and constitute set { |  0}kD k d   . Then the necessary condition for a feasible solution is 

that 0| D |  . If the solution is feasible update the objective value as follows. In this relation obj represents the total 

transportation cost (the objective value for the original GAHUB2). 

_ ( + )k

k H

new obj obj F


   

Otherwise, calculate k

k D k

d







 and update the objective value as follows. 

_ (1 . ) ( + )k

k H

new obj obj F


     

In this relation  is the weight for scaling the penalty of infeasibility. This parameter can be either a constant value or a 

variable. According to our computational tests, adjusting this weight dynamically, i.e., using
| |D

p




 , make 

GAHUB2 perform well. So, we used this parameter in our computational experiments. 

To compare our approach with the modified GAHUB2 (MGAHUB2), five classes of instances for smaller instances of 

the problem and nine classes for larger instances are considered. Each Class is denoted by Cn in which n represents the 

number of nodes for the instances of the class. Smaller instances of the problem include classes 10C , 20C , 25C , 
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40C , and 50C . These classes are solved to optimality by mathematical programming formulations of the problem. 

Larger instances of the problem include classes 60C , 70C , 75C , 90C , 100C , 125C , 150C , 175C ,  and 200C . 

We consider for each class, three different levels of number of hubs, 1L , 2L , and 3L  that are shown in Table 1. 

Table 1. Different levels of number of hubs for each class 

Class C10 C20 C25 C40 C50 C60 C70 C75 C90 C100 C125 C150 C175 C200 

L1 2 3 4 5 7 8 9 10 12 13 17 19 22 25 

L2 3 5 7 10 13 15 18 19 23 25 32 39 44 50 

L3 5 10 13 20 25 30 35 38 45 50 63 75 88 100 

Also, for each level of number of hubs, four problem instances exist in terms of levels of capacity and fixed costs (tight 

or loose). We consider following approach for comparing two methods: we first computed input parameters of the 

estimated formulation and then solved it by GAMS. Then we recorded the actual objective value of its solution as well 

as the total computational time for computing input parameters and solving the formulation by GAMS. Finally, we solved 

the MGAHUB2 in the same time limit as our method takes. Note that in the cases that MGAHUB2 could not find a 

feasible solution in the specified time limit, we give it more time to find a feasible solution. We solved MGAHUB2 ten 

times, and for each instance, the average gap of ten objective values is calculated. We also solved smaller instances of 

the problem to optimality, and used optimal values to calculate gap for the heuristics.  So, for smaller instances, the gap 

is calculated as follows: 

Objective value Optimal value
gap 100

Optimal value
%


 

Since for the larger instances of the problem the optimal solution cannot be achieved by solving mathematical 

formulations, we computed relative gaps for heuristics as follows: 

Objective value  (Objective values)
gap 100

(Objective values)

min
%

min


   

Table 2 summarizes results of different classes of instances. The average amount of gap and average amount of 

computational times for 12 instances in each class are reported in the table for the estimated formulation (MIP) and 

MGAHUB2 (GA). 

Table 2. Comparing the new approach with the GAHUB2 

Small instances Large instances 

Class C10 C20 C25 C40 C50 C60 C70 C75 C90 C100 C125 C150 C175 C200 

GA (%) 2.64 6.50 3.35 6.74 6.32 3.75 4.20 4.27 3.58 8.18 7.37 2.44 10.81 4.92 

MIP (%) 1.11 0.22 0.66 1.51 2.08 0.57 0.73 0.05 0.48 0.00 0.16 0.31 0.05 0.78 

CPU (s) 2.85 2.92 3.32 3.58 4.04 4.51 5.65 6.23 8.21 9.45 14.78 27.28 45.72 75.60 

From Table 2 we can make the following two observations: 

(1) In all 14 classes of instances, the average gap of MGAHUB2 is significantly larger than that of the new approach. 

The difference between two methods is more apparent in larger classes, where we computed relative gaps for them. 

Evidently, results indicate that solutions to the estimated formulation are fairly good. 

(2) The computational times in the table say that the estimated formulation is capable of solving all instances within 

reasonable amount of time. Moreover, the solution time of estimated formulation for different classes of instances 

has not much difference. It is noteworthy to say that such computational time for larger classes is very good as a 

mixed integer linear programming formulation with the number of variables and constraints bounded by
2O( )n . 

Now we examine methods in terms of levels of number of hubs. Numerical results for this comparison are provided in 

Table 3. For each level of number of hubs, the average values associated with each level are reported. From the table we 

can make following two observations: 

(1) For larger instances, it can be seen that there is a trend in gaps when the number of hubs is changed. In MGAHUB2, 

the average amount of gaps becomes larger when the number of hubs is decreased but for the new approach, it is the 

other way around. So, for fewer hubs, the estimated formulation gives better solutions than the MGAHUB2. For 

small instances of the problem, there is no trend, but the new approach shows better performance anyway. 
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(2) For larger instances, the computational times are decreased for a greater number of hubs. Nevertheless, the changes 

are small enough to say that the solution time for the estimated formulation is roughly independent of number of 

hubs. Results of small instances also indicate the assertion. 

Table 3. Results in terms of levels of number of hubs. 

Level of p 
Small instances Large instances 

GA (%) MIP (%) CPU (s) GA (%) MIP (%) CPU (s) 

L1 2.79 0.90 3.34 9.84 0.01 23.19 

L2 6.70 1.16 3.36 4.00 0.08 21.50 

L3 5.84 0.92 3.32 2.66 0.95 21.11 

We now examine results in terms of condition of fixed costs and capacities. Consider Table 4 in which digits 0 and 1 

represent the condition of fixed costs and capacities respectively. A digit 0 represents that the capacity or fixed cost is 

tight and a digit 1 represents that it is loose. Each combination zero-one includes 15 and 27 instances for small and large 

instances respectively. From this table we can make the following observations and insights: 

(1) Consider combination 1,0 in which fixed costs are loose but capacities are tight. In this condition, for small instances, 

both methods show worst performance in comparison to other conditions. However, for large instances, it can be 

seen that the average gap for the estimated formulation in this condition is significantly smaller than that of other 

conditions. It means that in this condition (fixed costs loose but capacities tight) the performance of estimated 

formulation is far better than that of MGAHUB2. Note that gaps in smaller instances represent the difference 

between the solution and the optimal solution, but for larger instances they represent the difference between two 

methods. 

(2) Although, in all four conditions, the estimated formulation gives better solutions than MGAHUB2, the difference is 

more apparent when capacities are tight. This is true for both small and large instances of the problem. Specially, 

for large instances, results indicate that when capacity constraints are tight, solving the estimated formulation can 

be very effective. In the cases that the capacity is tight, the estimated formulation results in better solutions than 

GAHUB2. 

(3) As is expected, when fixed costs and capacities are loose (combination 1,1), both MGAHUB2 and the estimated 

formulation shows better performance in comparison to other conditions. This can be understood from small 

instances where objective values are compared with the optimal solutions. For both small and large instances, when 

fixed costs become tight, the gaps for both methods are increased. 

(4) The solution time of the estimated formulation for tight fixed costs (constraints) is more than loose fixed costs 

(constraints). The difference is yet significantly small, so it can be ignored. 

Table 4. Results in terms of condition of fixed costs and capacities. 

Condition 
Small instances Large instances 

GA (%) MIP (%) CPU (s) GA (%) MIP (%) CPU (s) 

0,0 5.51 1.07 3.27 8.72 0.13 23.43 

0,1 4.54 0.97 3.35 3.42 0.68 21.51 

1,0 6.78 1.09 3.35 7.12 0.02 21.96 

1,1 3.61 0.84 3.40 2.75 0.56 20.85 

4. Conclusion

In this study, we generalized the capacitated single allocation p-hub median problem by considering fixed costs of 

opening facilities. We first considered a linearization of the quadratic formulation of this problem with a preprocessing 

approach. Then a mixed integer linear programming formulation, the estimated formulation, is presented to 

approximately solve larger instances of this problem by commercially available solvers. It was shown that the solution 

time to the estimated formulation is fairly small even for larger instances of the problem with 200 nodes. Moreover, for 

tight constraints, it was shown that the use of the estimated formulation can be very effective in solving large scale 

instances. This formulation can also be used (by slight variations) to solve a variety of the single allocation hub location 

problems, specially, those with various constraints. 
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