
905

International Journal of Supply and Operations Management

IJSOM

November 2015, Volume 2, Issue 3, pp. 905-924

ISSN-Print: 2383-1359

ISSN-Online: 2383-2525

www.ijsom.com

An efficient genetic algorithm for solving the multi-mode resource-constrained

project scheduling problem based on random key representation

Mohammad Hassan Sebt

*a
, Mohammad Reza Afshar

a
and Yagub Alipouri

a

a
 Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode

resource-constrained project scheduling problem (MRCPSP) with minimization of project

makespan as the objective subject to resource and precedence constraints. A random key and the

related mode list (ML) representation scheme are used as encoding schemes and the multi-mode

serial schedule generation scheme (MSSGS) is considered as the decoding procedure. In this

paper, a simple, efficient fitness function is proposed which has a better performance compared to

the other fitness functions in the literature. Defining a new mutation operator for ML is the other

contribution of the current study. Comparing the results of the proposed GA with other approaches

using the well-known benchmark sets in PSPLIB validates the effectiveness of the proposed

algorithm to solve the MRCPSP.

Keywords: Combinatorial optimization; Multi-mode project scheduling; Resource constraints;

Genetic algorithm; Random key representation.

1. Introduction

Project scheduling, as one of the main branches of the project planning, has been considerably

employed by researchers in recent years (Chaleshtari and Shadokh 2014). Project scheduling is a

troublesome duty due to resource and precedence constraints (Qi et al. 2014). The

resource-constrained project scheduling problem (RCPSP) and its extended version, the

Multi-mode RCPSP (MRCPSP), are important problems in this context, and the latter problem is

more related to the real world (Hartmann and Briskorn 2009).

*
 Corresponding author email address: sebt@aut.ac.ir

Sebt, Afshar and Alipouri

906

The aims of MRCPSP are finding an execution mode and a feasible start time for each activity,

such that makespan of the project is minimized under the resource and precedence constraints.

There are three methods for solving the MRCPSP: exact procedures, heuristic, and meta-heuristic

approaches. In the exact methods, the first optimal procedure was a linear programming approach

proposed by Slowinski (1980). In 1982, Talbot suggested an enumeration scheme which was

improved by Patterson et al. (1989). Then, Sprecher (1994) reduced the computational effort of

Talbot’s enumeration scheme using some dominance criteria and a border bound. Speranza and

Vercellis (1993) suggested a depth-first branch-and-bound algorithm; however, Hartmann and

Sprecher (1996) demonstrated that if there are two or more renewable resources, their algorithm

may be unable to find the optimal solution. Afterwards, different methods of branch and bound are

proposed by Hartmann and Drexl (1998), Sprecher and Drexl (1998). And finally, Zhu et al.

(2006) presented a branch-and-cut algorithm. Exact methods solve the problems optimally;

however, they are unable to solve problems with more than 20 activities in an acceptable

computational time (Sprecher and Drexl 1998). Thus, researchers make use of heuristic and

meta-heuristic approaches to obtain reasonable project schedules with short computational time.

In the heuristic methods, Talbot (1982), and Sprecher and Drexl (1998) suggested applying a time

limit on their exact branch-and-bound algorithms for solving large-sized problems. A stochastic

scheduling procedure was proposed by Drexl and Gruenewald (1993). The single-pass and a

multi-pass approach were suggested by Slowinski et al. (1994). Lova et al. (2006) proposed

several multi-pass heuristics based on the priority rules.

Meta-heuristic approaches are the new generations of heuristic methods which have been used

successfully for solving the MRCPSP over the last fifteen years. In 2004, Kolisch and Hartmann

showed that the meta-heuristic approaches outperform the heuristic methods (Glover and

Greenberg, 1989). In these methods, authors such as Mori and Tseng (1997), Özdamar (1999),

Hartmann (2001), Alcaraz et al. (2003) and Lova et al. (2009) used Genetic Algorithms (GAs) to

solve the MRCPSP. Jo´zefowska et al. (2001) presented a Simulated Annealing (SA) algorithm

with and without the penalty function. Peteghem and Vanhoucke (2009) applied the Artificial

Immune System (AIS) to solve the MRCPSP. Using the extended serial schedule generation

scheme, Peteghem and Vanhoucke (2010) also applied a genetic algorithm to solve the preemptive

MRCPSP. Ant colony optimization was presented by Zhang (2012). Damak et al. (2009) utilized

the Differential Evolution (DE) algorithm for solving the MRCPSP and analyzed the effect of

population size on improvement of the solutions. A multi-agent learning approach was provided

by Wauters et al. (2009). Elloumi and Fortemps (2010) employed a hybrid rank-based

evolutionary algorithm, which transformed the MRCPSP to a bi-objective problem. Wang and

Fang (2011) proposed an effective Shuffled Frog-Leaping Algorithm (SFLA). They presented a

new representation scheme as the encoding scheme and used the Taguchi method of Design Of

Experiment (DOE) to determine a set of suitable parameters for the SFLA. Wang and Fang (2012)

also presented an effective Estimation of Distribution Algorithm (EDA). In their algorithm, the

activity-mode list (AML) was adopted as the encoding scheme, and parameters of their algorithm

were settled based on DOE tests. Peteghem and Vanhoucke (2014) evaluated different

meta-heuristic algorithms for solving the MRCPSP and proposed new benchmark instances for

Int J Supply Oper Manage (IJSOM)

907

this problem. Hao et al (2014) presented an effective Estimation Distribution Algorithm (EDA)

for solving the MRCPSP in an uncertain environment with considering uncertain durations for

activities. Cheng et al (2015) solved MRCPSP in three different conditions: with and without

activity splitting, as well as preemption using an exact method. However, initial solutions were

developed using the heuristic methods. Their results presented that when we permit the activities

to have splitting or preemptions, better results are obtained. Beşikci et al (2015) proposed a

genetic algorithm for solving the MRCPSP in multi-project environment.

In the present study, a new GA is proposed for solving the MRCPSP. A random key (RK) and the

related mode assignment representation scheme are used as encoding scheme and multi-mode

serial schedule generation scheme (MSSGS) is considered as the decoding procedure.

A simple, efficient fitness function is also introduced, thereby, average deviation from the optimal

solution is reduced. Defining a new mutation operator for ML is the other contribution of the

current study.

The remainder of the current study is organized as follows: In section 2, the MRCPSP is described;

section 3 deals with the definition of the new proposed GA for solving the MRCPCP; in section 4,

the results of our GA in solving the MRCPSP are reported, and finally, in section 5, concluding

remarks are drawn out.

2. Problem description

In the MRCPSP, a project has J+2 activities with multiple execution modes with precedence

relations among some of the activities. In this paper, these precedence relations are finish-start

relations without time lags. The initial mode m, m∈{1,..,Mj}, of activity j (j=0,…,J+1) cannot be

changed and the preemption is not allowed for the activities (Damak et al., 2009). Each mode

requires one or several types of renewable or non-renewable resources. The availability of

renewable resources k (k=1,…,R) and of non-renewable resources l (l=1,…,N) are Rk and Nl,

respectively. If activity j is conducted with mode m, its duration, its required amount of renewable

resources k (k=1,…,R), and its required amount of non-renewable resources l (l=1,…,N) are

presented with djm, rjmk, and njml, respectively. The Start and end activities of the project are

considered to be dummy activities without any durations and resource requirements. Under the

above-mentioned conditions, the aims of the MRCPSP are to assign a feasible start time and a

mode to each activity such that makespan of the project is minimized.

3. Presentation of new genetic algorithm in order to solve the MRCPSP

GA was suggested by Holland (Lee and El-Sharkawi 2008) for solving optimization problems.

The initial population of this algorithm is developed randomly or by using heuristic methods, and

the population evolves based on the following three sequential and iterative operators.

a) Selection operator

b) Crossover operator

c) Mutation operator (Lee and El-Sharkawi 2008)

In this research, after the preprocessing procedure, the initial population of GA is developed

Sebt, Afshar and Alipouri

908

randomly to diverse the search space and to find the promising regions (Lee and El-Sharkawi

2008). In the remainder of this section, the proposed GA for solving the MRCPSP is described in

detail.

3.1 Preprocessing procedure

Before starting with GA, the preprocessing approach is employed for reducing the search space

and the computational effort. For the first time, Sprecher et al. (1997) used it in branch and bound

algorithm. Based on this preprocessing procedure, on the one hand, non-efficient and

non-excusable modes are eliminated and, on the other hand, redundant non-renewable resources

are omitted (for more information, see Sprecher et al. (1997).

3.2 Representation scheme

The issue of selecting an appropriate representation is crucial for the search (Lee and El-Sharkawi

2008). Based on RCPSP literature, the RK representation and activity list (AL) representation are

the most popular ones. By using RK representation, many of the precedence feasibility issues

are moved into the fitness function evaluation. In addition, in this representation scheme, the

generation and evolution of the population are independent of the schedule generation schemes.

After considering the above-mentioned advantages, we decided to use the RK representation and

the related mode list (ML) as encoding schemes. Therefore, each solution I is presented by two

vectors λ and μ (I= (λ, μ)), where λ and μ present the RK and the ML, respectively.

3.3 Fitness function

Evaluation of each chromosome is necessary for the evolution of the population, which is

obtained through a fitness function. Determination of an appropriate fitness function is important

for the correct operation of the GA. Crossover and mutation are general operators of GA which do

not consider the feasibility of solutions. Thus, infeasible offsprings are frequently developed,

which must be penalized. For this purpose, owing to the lack of information about an optimal

solution, fitness function methods consider the distance of the feasible area. These methods are

based on the number of violations. In the MRCPSP literature, several fitness functions have been

proposed, in which the fitness function of Lova et al. (2009) (Eq.1) is the most recent one. In this

last fitness function (Eq.1), infeasible solutions are penalized by ERR (μ), which presents the

non-renewable infeasible degree of ML (Eq. 2). Obviously, when ERR(μ) is 0, the individual I is a

feasible solution.

(1)

(2)

Where mak(I) is the makespan of the individual I and max_mak(P) gives the maximal makespan

of feasible solutions related to individuals of the current generation. min_CP gives the minimal

critical path of the project using the minimal duration of activities.

Lova et al. (2009) demonstrated that their fitness function gives better results than others and

Int J Supply Oper Manage (IJSOM)

909

removes their faults. However, in this paper, another fitness function is presented which is simple

and efficient (Eq. 3).

(3)

Where T is the upper bound on the project’s makespan given by the sum of the maximal durations

of activities and mak(I) gives the makespan of the individual I.

The benchmark sets of J10, J12, J14, J16, J18, and J20 are selected from the Project Scheduling

Problem Library (PSPLIB) as standard instances for testing the fitness functions. The halting

criterion considered here is the generation of 5000 schedules.

Considering Table 1, the acquired results show that the CPU times resulted from using the

proposed fitness function are approximately equal to those of using Lova et al’s, but, the obtained

average deviations indicate that, for all of the benchmark sets except for J12, the fitness function

of this paper outperforms Lova et al’s one.

Table 1. Comparison of performance of the fitness functions

Fitness function

Set of instances

 J10 J12 J14 J16 J18 J20

Average deviation

(%)

Current study 0.03 0.08 0.15 0.30 0.30 0.45

Lova et al. [23] 0.04 0.07 0.16 0.30 0.32 0.46

Percentage of

solving optimally

Current study 98 94 90 80 81 75

Lova et al. [23] 96 94 90 81 79 73

CPU time

(seconds)

Current study 0.11 0.14 0.17 0.19 0.20 0.22

Lova et al. [23] 0.11 0.14 0.18 0. 19 0. 20 0.23

After the evaluation of an individual by the fitness function, the corresponding fitness value is

attributed to that individual.

3.4 Selection operator

In the current study, based on the fitness of individuals, some of the best individuals (TOP

individuals in Figure1) are copied from the current generation to the next generation. This strategy

is called elicit strategy. The drawback of the mentioned strategy is its convergence to a local

minimum, which is controlled in this paper by two operators. These operators are crossover and

new efficient mutation operators which are introduced in the following subsections. In parent

selection, the father and mother are randomly selected from the best individuals’ pool (TOP

individuals in Fig. 1) and total individuals of the current population, respectively (see Fig. 1). This

type of selection operator was applied in a GA on the RCPSP by Mendes et al. (2009) and the

promising results were obtained.

Sebt, Afshar and Alipouri

910

N

randomly

generated

Initial

population

N

TOP

CHILD

Best
Copy best solutions

Crossover

Select one parent

from

Entire population

Genetic

algoritm

Select one parent

from

TOP

TOP

Worst

Ranked

Population

Updated

Population

Figure 1. Selection operator in the proposed GA of the current study

3.5 Crossover operator

Spears and De Jong (1991) investigated different crossovers and indicated that uniform crossover

gives the best results. Based on their study, performance of the uniform crossover is independent

of the chromosomes length. Unlike the one and two point crossovers, the uniform crossover can

develop offspring in each point of space. Furthermore, it has been proven that the uniform

crossover has more exploratory power than the n-point crossover (Eschelman et al., 1989). The

uniform crossover was also used for solving the RCPSP by Mendes et al (2009) and the promising

results were acquired. Therefore, the selection of crossover is advisable and used in this paper.

In the uniform crossover, a number from interval [0,1] is considered as the Crossover Probability

(CProb). Then, a random vector containing numbers between [0,1] is generated. After comparing

the crossover probability and the numbers of random vector, the genes are determined to be

transferred from father and mother to offspring. When the random number is smaller than the

crossover probability, the related gene in the father is transferred to the son offspring and the

related gene in the mother is transferred to the daughter offspring; otherwise, the exchange of

genes is from mother to son and father to daughter (see Figure2). Production of the daughter

offspring is important to avoid the convergence to a local minimum. In the example of Figure 2,

0.7 is considered to be the crossover probability.

Int J Supply Oper Manage (IJSOM)

911

Chromosome 1 0.8 0.750.550.6

Chromosome 2 0.37 0.550.680.72

Random number 0.92 0.440.450.67

Relation to cross over
probabibility of 0.7 > <<<

Son offspring 0.37 0.750.550.6

Daughter offspring 0.8 0.550.680.72

Crossover

0.43

0.77

0.71

>

0.77

0.43

2 131 2

1 232 1

1 131 1

2 232 2

Figure 2. An example for Crossover operator in the proposed GA (crossover probability= 0.7)

3.6 Mutation operator

The mutation operator is an important tool to maintain diversity within the population in order to

prevent the premature convergence (Lee and El-Sharkawi 2008). In this study, in order to apply

mutation on activities priority, several activities in different or similar solutions are selected

randomly and their priorities are also changed randomly. In order to change the mode for the

chosen activity, a new mutation operator is defined. This new mutation operator acts differently on

feasible and infeasible solutions. For the feasible solution and a randomly selected activity, if the

new mode list stays feasible and η (μ) in Eq.4 increases, the previous mode of that activity is

replaced with the new one; otherwise, no change is made. Obviously, the value of η (μ) for the

feasible solution is negative or zero and with the help of Eq. 4, it exploits non-renewable

resources.

(4)

For the infeasible solution and a randomly selected activity, if ERR (μ) of the new mode list

reduces, the new mode of that activity is replaced with the previous one; otherwise no change is

made. The proposed mutation operator is repeated until the pre-specified mutation rate is reached.

3.7 Schedule generation scheme (decoding procedure)

Schedule generation scheme (SGS), as an efficient method, transforms a representation solution of

the RCPSP to a schedule (Lova et al. 2009). There are two types of SGS: serial SGS and parallel

SGS. Since the parallel SGS cannot always find the optimal solution (Lova et al. 2009), we make

use of the serial SGS. In the MRCPSP, the serial SGS must be modified in order to deal with

Sebt, Afshar and Alipouri

912

nonrenewable resources. In fact, two important issues must be considered: first, the

transformation of infeasible solutions to feasible ones as far as possible, and second, full

exploitation of non-renewable resources in the feasible solutions. For these two purposes, we use

both infeasible and feasible tackling procedures. These procedures are the extended versions of

the serial SGS, namely multi-mode serial schedule generation scheme (MSSGS).

 3.7.1 Infeasible tackling procedure

In case of infeasible solutions, the best technique is the application of repairing procedure for

some of them (Lee and El-Sharkawi 2008). Thus, in this research, after generating the initial

population and employing the preprocessing procedure, the infeasible tackling approach is

employed to transform some of the infeasible solutions into the feasible ones. In this procedure,

an activity is selected randomly and its mode is changed to a new mode. If the resulted ERR (μ) is

less than the previous ERR(μ), the previous mode is replaced with the new one. This procedure

continues until all the infeasible solutions are transformed into feasible ones or the pre-specified

maximum number of iterations for SGS (SGS_adj) is equal to the number of non-dummy

activities, J. After the mentioned procedure, only feasible solutions are allowed to enter the

multi-mode forward-backward iteration (MM-FBI) method, which is described in the following

subsection. The feasible tackling procedure is applied in the MM-FBI.

 3.7.2 Multi- mode forward-backward iteration (MM-FBI) method

In the RCPSP, Forward–Backward iteration (FBI) is an efficient technique to improve the

solutions’ quality (Lova et al. 2009). This idea was extended by Lova et al. (2009) for the

MRCPSP, namely multi- mode forward-backward iteration (MM-FBI) method. If this approach

applies to one activity, using only mode change of that activity, its finish time will reduce.

As a drawback for the MM-FBI, the activities scheduled earlier have a greater chance for more

occupation of non-renewable resources. For overcoming this weakness, the mode improvement

procedure is randomly applied on some of the activities and the SGS_Pper specifies the

percentage of total non-dummy activities selected for the mode improvement procedure.

Consequently, it is guaranteed that all of the activities have equal opportunity for the occupation

of non-renewable resources (Lova et al. 2009).

The MM-FBI is repeated until no further improvement in the makespan is achievable. Here, an

illustrative simple instance is provided to present the effectiveness of the Lova et al’s mode

improvement procedure as follows:

Consider a project with 9 non-dummy activities and 2 dummy activities, one renewable resource

type and one non-renewable resource type. In this project, each activity has two modes. Start and

end activities are dummy activities with only one mode, zero durations and no consumption of

resources. The availability of renewable and non-renewable resources are 2 and 28, respectively.

The complete information and precedence constraints of this project are presented in Table 2 and

Figure 3, respectively.

Int J Supply Oper Manage (IJSOM)

913

Table 2. Data for activities in the example project

Activity

No.

 Mode 1 Mode 2

 rj1k nj1l d1j rj2k nj2l d2j

0 0 0 0 0 0 0

1 2 4 2 1 2 3

2 1 5 2 1 2 4

3 1 3 2 1 1 3

4 1 2 1 1 1 2

5 2 5 2 2 3 4

6 1 4 2 1 3 3

7 2 2 1 2 1 2

8 2 3 1 1 2 3

9 1 3 4 1 1 6

10 0 0 0 0 0 0

0

1

5

4

3

2

6

8

9

10

7

Figure 3. Activity network of an example of the MRCPSP

In the above example, consider solution A which is given in Figure 4.

Solution A λ= 0.00 0.65 0.90 0.55 0.80 0.75 0.50 0.40 0.45 0.35 0.00

 μ= 1 1 1 2 2 1 1 2 2 1 1

Figure 4. An example of a particle representing a solution for the MRCPSP.

A resource graph of solution A is developed by SSGS procedure, which is presented in Figure5-a

(3.2 means activity 3 with mode 2).

The MM-FBI starts with backward scheduling on the existing schedule which is presented in Fig.

5-a. For this purpose, the finish times of activities in the existing schedule (Figure5-a) are

considered as the activities priority, and the mode improvement procedure is applied over the

generation of this schedule on some of the activities specified randomly. Suppose activities 5 and

7 are selected randomly for this purpose.

As it can be seen in Figure5-b, the mode improvement procedure has reduced the duration of

activity 5 by 2 periods and the duration of activity 7 by 1 periods. From these changes, the

required non-renewable resource has changed from 25 to 28 (i.e., the availability of

non-renewable resource). A single iteration of the MM-FBI is completed with the forward

Sebt, Afshar and Alipouri

914

scheduling. For the forward scheduling, start times of activities in the existing backward schedule

are used for the activities priority. If the availability of non-renewable resources is not used

completely, the mode improvement procedure is also applied in this direction.

In solution A, as the availability of non-renewable resources is used completely for the above

backward schedule, the mode improvement procedure is not applied in the forward scheduling.

After finishing this single iteration of MM-FBI, makespan of the project is reduced from 18 to 12

(see Figure5-c).

Non-renewable Resources consumption (NRC)=25

5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 40
0

2.1

4.
1

5.2

1.2

3.1

8.2

6.1

7.2

9.1

1

2

(a)

NRC=28

5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 40
0

1

2

2.1

4.
1

5.1

1.2

3.1

8.2

6.1

7.
1

9.1

(b)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 40
0

1

2

2.1
4.
1

5.1

1.23.1 8.2

6.1

7.
1

9.1

 (c)

Figure 5. A single iteration step of the MM-FBI and non-renewable resource consumed (NRC); a) existing

schedule b) backward scheduling c) forward scheduling.

4. Computational experiments

In this section, the performance of the proposed GA to solve the MRCPSP is investigated. The

proposed GA was programmed with Matlab R2012a, and the tests were accomplished on a laptop

with an Intel® core 2 T9300 2.5 GHz processor.

In the literature, the CPU time and the number of generated schedules are used as the stopping

criteria for the comparison of different proposed algorithms. Since “5000 generated schedules”

halting criterion has been used more than the other halting criteria by the researchers for the

comparison, it is also used in the current study.

To illustrate the effectiveness of the proposed GA, the well-known benchmark sets of J10, J12,

J14, J16, J18, J20, and J30 generated by the project generator ProGen for the MRCPSP and

Int J Supply Oper Manage (IJSOM)

915

available at http://129.187.106.231/psplib/ have been used . These sets contain instances with 10,

12, 14, 16, 18, 20, and 30 non-dummy activities, respectively. Each of these sets has 640 instances,

some of which are infeasible instances.

Therefore, we exclude these infeasible instances from the experiments. In each instance, an

activity can be performed in one out of three modes with specific duration between 1 and 10

periods of time. Each instance contains two renewable resource types and two non-renewable

resource types.

For all of the mentioned benchmark sets, with the exception of J30, the optimal makespans of all

feasible instances are known. In fact, the optimal values for J30 have not been found so far.

4.1. Parameter setting

Taguchi method of design of experiment (DOE) (Montgomery, 2005) has been used for parameter

setting of the proposed GA. For this purpose, data set of J20 is selected as the most difficult

standard MRCPSP data set. The aim of this subsection is to determine the appropriate values for

four key parameters of the proposed GA: Population Size (Pop_Size), the best individuals (TOP),

Crossover Probability (CProb), and Mutation rate. Different test values of these parameters are

presented in Table 3. In this table, Pop_size is the initial population size and other parameters

have been described in different sections of the current study. Based on the number of parameters

and the number of factor levels, the orthogonal array L16(4
4
) is developed in Table 4.

Table 3.Combinations of parameter values

Parameters
Factor level

1 2 3 4

Pop_size 2`J 3J 4J 5J

Top 0.05 0.10 0.15 0.20

CProb 0.65 0.70 0.75 0.80

Mutation rate 0.05 0.10 0.15 0.20

In order to find the best combination, different combinations of parameter values in Table 4 were

tested using the set J20 and then the average response variable (ARV) value (Eq. 7) of each

combination was calculated and presented in the sixth column of Table 4. In this section, 5000

generated schedules have been also considered as the halting criterion.

(7)

where Makespani is the makespan of each instance of J20 which was obtained by the proposed

GA, OPTi is the optimum makespan of each instance of J20 which exists in the PSBLIB, and N is

the number of feasible instances of set J20 which contains 554 instances.

According to the obtained ARV values from different combination of parameter values in Table 4,

the trend of each factor level is demonstrated in Fig. 6. The relevant results are listed in Table 5.

Sebt, Afshar and Alipouri

916

As it can be observed in Fig. 6, the population size has the most significant impact on the

performance of the proposed GA such that with increasing the population size, solution quality

improves. Based on these trends, the best combination of values is listed in Table 6.

Table 4. Orthogonal table for the proposed GA.

Test number
factors ARV

Pop_size Top CProb Mutation rate 5000 scheduling

1 1 1 1 1 0.036557

2 1 2 2 2 0.014197

3 1 3 3 3 0.050063

4 1 4 4 4 0.014557

5 2 1 2 3 0.021634

6 2 2 3 4 0.028676

7 2 3 4 1 0.033184

8 2 4 1 2 0.014206

9 3 1 3 1 0.027619

10 3 2 4 2 0.015499

11 3 3 1 3 0.031665

12 3 4 2 4 0.014135

13 4 1 4 3 0.014266

14 4 2 1 4 0.014127

15 4 3 2 1 0.017260

16 4 4 3 2 0.013747

Int J Supply Oper Manage (IJSOM)

917

A
R

V

A
R

V

Figure 6. Factors’ level trend with 5000 schedules.

Table 5. Response table for ARV with 5000 schedules.

Level POP_size TOP CProb Mutation rate

1 0.028844 0.025019 0.024139 0.028655

2 0.024425 0.018125 0.016807 0.014412

3 0.02223 0.0333043 0.030026 0.029407

4 0.01485 0.014161 0.019377 0.017874

Table 6. The best combination of parameters for the proposed GA.

Level POP_size TOP CProb Mutation rate

5000 schedules 5J 0.20 0.70 0.10

4.2. Comparison with existing algorithms

Our statistical results are presented in Table 7. Average deviation from the optimal makespans (in

the case of set J30, from the lower bounds), percentage of optimally solved instances, and the

average CPU time in seconds are used for the comparison. Optimal values for sets of J10-20 and

the best-known solutions (BKS) till now (Results on the PSPLIB-server on 18 September 2015)

for set J30 are considered as the base for calculating the average deviations. Accordingly, our

Sebt, Afshar and Alipouri

918

results are compared with the existing state-of-the-art methods for solving the MRCPSP such as

the GA and the AIS presented by Peteghem and Vanhoucke (2010, 2009) denoted respectively as

VPVGA and VPVAIS, EDA and SFLA presented by Wang and Fang (2012, 2011) denoted

respectively as LCEDA and LCSFLA, the hybrid genetic algorithm developed by Lova et al.

(2009) denoted as LHGA, the hybrid rank-based evolutionary algorithm proposed by Elloumi and

Fortemps (2010) denoted as EFEA, the hybrid scatter search developed by Ranjbar et al. (2009)

denoted as RSS, the genetic algorithm developed by Alcaraz et al. (2003) denoted as AGA, the

two-phase genetic local search algorithm applied by Tseng and Chen (2009) denoted as TCGLS

and the simulated annealing proposed by Jo´zefowska et al. (2001) denoted as JSA.

Table 7. Performance of the proposed GA on solving benchmark sets.

Benchmark

set

Feasible

solutions

Number of

schedules
Average deviation (%)

Optimal

rate (%)

CPU-time(s)

J10 536 1000 0.13 94.44 0.03

 3000 0.04 96.97 0.06

 5000 0.03 98 0.10

J12 547 1000 0.37 85 0.03

 3000 0.15 92 0.07

 5000 0.07 95 0.13

J14 551 1000 0.52 74 0.04

 3000 0.23 86 0.10

 5000 0.21 85 0.15

J16 550 1000 0.96 55 0.04

 3000 0.49 72 0.12

 5000 0.32 74 0.17

J18 552 1000 0.89 59 0.05

 3000 0.54 73 0.12

 5000 0.40 76 0.17

J20 554 1000 1.50 47 0.06

 3000 0.72 64 0.13

 5000 0.56 67 0.19

A comparison of average deviations can be made using Table 8. As it can be seen, in the set of J10,

only VPVGA and VAVAIS perform better than our GA. While, increasing the number of activities,

in the sets of J14, J16, J18, and J20, our proposed GA performs better than the other proposed

algorithms and the trend of solution quality is improved. This implies that the proposed GA can

outperform other algorithms by increasing the complexity. A comparison of our GA with VPVGA

in Table 9, with regard to set J30, may also confirm this statement. The third and fourth columns

of Table 9, present the percentage of instances that their results are equal or inferior to that of the

best-known solutions.

It is worth mentioning that no improvement is made in the best-known solutions for set J30, which is

analogous to VPVGA.

Int J Supply Oper Manage (IJSOM)

919

Table 8. Average deviations (%) from optimal makespans (5000 generated schedules

as the stopping condition).

Algorithm J10 J12 J14 J16 J18 J20

Proposed GA 0.03 0.07 0.21 0.32 0.40 0.56

VPVGA 0.01 0.09 0.22 0.32 0.42 0.57

VPVAIS 0.02 0.07 0.20 0.39 0.52 0.70

LCEDA 0.12 0.14 0.43 0.59 0.90 1.28

LHGA 0.06 0.17 0.32 0.44 0.63 0.87

LCSFLA 0.10 0.21 0.46 0.58 0.94 1.40

EFEA 0.14 0.24 0.77 0.91 1.30 1.62

RSS 0.18 0.65 0.89 0.95 1.21 1.64

AGA 0.24 0.73 1.00 1.12 1.43 1.91

TCGLS 0.33 0.52 0.93 1.081 1.32 1.69

JSA 1.16 1.73 2.60 4.07 5.52 6.74

Table 9. Average deviation (%) from the lower bounds of instances in set J30 (5000

generated schedules as the stopping condition).

Algorithm Dev. BKS (%) CPU time (s) equal Worth

Proposed GA 1.05 0.27
a
 55.6 44.4

VPVGA 1.08 0.24
b
 71.0 29

a
 T9300 2.5 GHz.

b
Pentium 2.80 GHz

A comparison of CPU time must be drawn based on computing power. In fact, computers with

powerful processors process a program in a short time. Comparing CPU time in Table 10 and

considering the lower computational power of this study compared to that of others, the CPU time

of proposed algorithm can be considered satisfactory.

Table 10. Comparison with other proposed algorithms considering the average

CPU time (5000 generated schedules as the stopping condition).

Algorithm J10 J12 J14 J16 J18 J20

Proposed GA
a
 0.10 0.13 0.15 0.17 0.17 0.19

VPVGA
b
 0.12 0.13 0.14 0.15 0.16 0.17

LHGA
c
 0.08 0.10 0.11 0.12 0.13 0.15

LCSFLA
d
 0.07 0.09 0.13 0.15 0.19 0.27

a
 T9300 2.5 GHz.

b
Pentium 2.80 GHz.

c
Pentium 3GHz.

d
T7500 2.2 GHz.

Sebt, Afshar and Alipouri

920

Table 11 presents the comparison of the optimal rates. As it can be seen, the optimal rates of the

proposed algorithm are better than JSA, but not as good as the other proposed algorithms.

However, the results of the proposed GA present that most of the solutions found are close to the

optimum ones. For example, in set J10, our algorithm solved 525 out of 536 problems to

optimality, and in all other instances, the solutions are close to the optimum. Therefore, this

algorithm worked well on all of the problems of set J10. Similarly, it worked well on 99% of the

problems of J12, 97% of the problems of J14, 95% of the problems of J16 and J18, and 93% of

the problems of J20. It is worth mentioning that in this paper, the performance of a solution with

the maximum deviation of 2 periods from optimality is considered to be well. All comparisons

indicate the effectiveness of the proposed GA.

Table 11. Comparison with other proposed algorithms considering optimal rates

Algorithm J10 J12 J14 J16 J18 J20

Proposed GA 98 95 85 74 76 67

VPVGA 99.63 98.17 94.56 92.00 88.95 85.74

LHGA 98.51 96.53 92.92 90.00 84.96 80.32

LCSFLA 97.93 95.98 90.86 86.49 79.44 72.84

JSA 85.60 80.30 66.40 54.7 43.50 35.70

5. Conclusion

In the current study, a new GA was proposed to solve the MRCPSP. A random key and the related

mode list representation are used as encoding and MSSGS was considered as the decoding

procedure. In the feasible tackling procedure, we employed Lova et al’s mode improvement

procedure. One of the contributions of this paper was to define a new mutation operator for

feasible and infeasible solutions. We also presented a new fitness function, which was simple and

effective. The well-known benchmark sets J10, J12, J14, J16, J18, J20, and J30 in PSPLIB were

used for testing the proposed GA. The performance comparisons indicated that the proposed GA

is among the most competitive algorithms, particularly when the complexity increases.

References

Alcaraz J. Maroto C. and Ruiz, R. (2003). Solving the multi-mode resource-constrained project

scheduling problem with genetic algorithms. Journal of the Operational Research Societ, Vol. 54,

pp. 614–626.

Anderson E. and Ferris M. (1994). Genetic algorithm for combinatorial optimization: assembly

line balancing problem. Operations Research Society of America journal on computing, Vol. 6, pp.

161–173.

Beşikci U. Bilge Ü. and Ulusoy, G. (2015). Multi-mode resource constrained multi-project

scheduling and resource portfolio problem. European Journal of Operational Research, Vol. 240

(1), pp. 22-31.

Int J Supply Oper Manage (IJSOM)

921

Chaleshtari A.S. and Shadokh S. (2014). A branch and cut algorithm for resource-constrained

project scheduling problem subject to nonrenewable resource with pre-scheduled procurement

Arabian Journal of Science Engineering, Vol. 39, pp. 8359- 8369.Cheng, J. Fowler, J. Kempf, K.

and Mason, S. (2015). Multi-mode resource-constrained project scheduling problems with

non-preemptive activity splitting. Computers & Operations Research, Vol. 53, pp. 275-287.

Damak N. Jarboui, B. Siarry, P. and Loukil, T. (2009). Differential evolution for solving

multi-mode resource constrained project scheduling problems. Computers and Operations

Research, Vol. 36, pp. 2653-2659.

Drexl A. and Grünewald J. (1993). Nonpreemptive multi-mode resource-constrained project

scheduling. IIE Transactions, Vol. 25, pp. 74–81.

Elloumi S. and Fortemps P. (2010). A hybrid rank-based evolutionary algorithm applied to

multi-mode resource-constrained project scheduling problem. European Journal of Operational

Research, Vol. 205, pp. 31–41.

Eschelman L., Caruana R. and Schaffer D. (1989). Biases in the Crossover Landscape. Proc. third

international conference on genetic algorithms, Morgan Kaufman Publishing, February, pp.

21-29.

Glover F. and Greenberg H.J. (1989). New Approaches for Heuristic Search: A Bilateral Linkage

with Artificial Intelligence. European Journal of Operational Research, Vol. 39, pp. 119-130.

Guangqiang Li, G. Zhao F. Guo C. and Teng H. (2006). Parallel Hybrid PSO-GA Algorithm and

Its Application to Layout Design. ICNC 2006, Part I, LNCS 4221, pp. 749 – 758.

Haoa X. Linb L. Gen M. (2014). An Effective Multi-objective EDA for Robust Resource

Constrained Project Scheduling with Uncertain Durations. Procedia Computer Science, Vol. 36,

pp. 571-578.

Hartmann S. (2001). Project scheduling with multiple modes: A genetic algorithm. Annals of

Operations Research, Vol. 102, pp. 111–135.

Hartmann S. and Briskorn D. (2009). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of Operational Research,

Vol. 207, pp. 1-14.

Hartmann S. and Drexl A. (1998). Project scheduling with multiple modes: A comparison of exact

algorithms. Networks, Vol. 32, pp. 283–297.

Hartmann S. and Sprecher A. (1996). A note on `Hierarchical models for multi-project planning

and scheduling. European Journal of Operational Research, Vol. 94, pp. 377-383.

Jo´zefowska J. Mika M. Rozycki, R. Waligora G. and Weglarz J. (2001). Simulated annealing for

multi-mode resource-constrained project scheduling. Annals of Operations Research, Vol. 102, pp.

137–155.

http://www.sciencedirect.com/science/article/pii/S0305054814001099
http://www.sciencedirect.com/science/article/pii/S0305054814001099
http://www.sciencedirect.com/science/article/pii/S0305054814001099
http://www.sciencedirect.com/science/article/pii/S0305054814001099
http://www.sciencedirect.com/science/journal/03050548

Sebt, Afshar and Alipouri

922

Juang C.F. (2004). A Hybrid of Genetic Algorithm and Particle Swarm Optimization for

Recurrent Network Design. IEEE TRANSACTIONS ON SYSTEMS, Vol. 34 (2), pp. 997-1006.

Kao Y.T. and Zahara E. 2008. “A hybrid genetic algorithm and particle swarm optimization for

multimodal functions. Applied Soft Computing, Vol. 8, pp. 849–857.

Kolisch R. and Drexl A. (1997). Local search for non-preemptive multi-mode resource

constrained project scheduling. IIE Transactions, Vol. 29, pp. 987–999.

Lee K. and El-Sharkawi M. (2008). Modern heuristic optimization techniques.

Lova, A., Tormos P. and Barber F. (2006). Multi-mode resource constrained project scheduling:

Scheduling schemes, priority rules and mode selection rules. Inteligencia Artificial, Vol. 30, pp.

69–86.

Lova A., Tormos P. Cervantes M. and Barber F. (2009). An efficient hybrid genetic algorithm for

scheduling projects with resource constraints and multiple execution modes. International Journal

of Production Economics, Vol. 117 (2), pp. 302– 316.

Marco A. and Stützle T. (2008). Convergence behavior of the fully informed particle swarm

optimization algorithm. Proceedings of the 10th annual conference on Genetic and evolutionary

computation, January, pp.71-78.

Mendes J., Gonçalves J. and Resende M. (2009). A random key based genetic algorithm for the

resource constrained project scheduling problem. Computers and Operations Research, Vol. 36,

pp. 92 – 109.

Mendes R., Kennedy J. and Neves J. (2004). The Fully Informed Particle Swarm: Simpler, Maybe

Better. IEEE Transactions on Evolutionary Computation:, pp. 204-210.

Montgomery D.C. (2005). Design and analysis of experiments. Arizona, John Wiley & Sons

Press.

Mori M. and Tseng C. (1997). A genetic algorithm for multi-mode resource constrained project

scheduling problem. European Journal of Operational Research, Vol. 100, pp. 134–141.

Özdamar L. 1999. A genetic algorithm approach to a general category project scheduling problem.

IEEE Transactions on Systems, Vol. 29, pp. 44–59.

Patterson J.H., Słowinski R. Talbot F. and Weglarz J. (1989). An algorithm for a general class of

precedence and resource constrained scheduling problems. Advances in Project Scheduling, pp.

3–28.

Peteghem V.V. and Vanhoucke M. (2009). An artificial immune system for the multi-mode

resource-constrained project scheduling problem. In: EvoCOP, Springer.

Peteghem V.V. and Vanhoucke M. (2010). A genetic algorithm for the preemptive and

Int J Supply Oper Manage (IJSOM)

923

non-preemptive multi-mode resource-constrained project scheduling problem. European

Journal of Operational Research, Vol. 201, pp. 409–418.

Peteghem V.V. and Vanhoucke M. (2014). An experimental investigation of metaheuristics for the

multi-mode resource-constrained project scheduling problem on new dataset instances. European

Journal of Operational Research, Vol. 235 (1), pp. 62–72.

Qi J.J. Liu, Y.J. Lei H.T. and Guo B. (2014). Solving the multi-mode resource availability cost

problem in project scheduling based on modified particle swarm optimization. Arabian Journal of

Science Engineering, Vol. 39, pp. 5279- 5288.

Ranjbar M. Reyck B. and Kianfar F. (2009). “A hybrid scatter search for the discrete

time/resource trade-off problem in project scheduling. European Journal of Operational Research,

Vol. 193 (1), pp. 35–48.

Slowinski R. (1980). Two approaches to problems of resource allocation among project activities

– A comparative study. Journal of Operational Research Society, Vol. 8, pp. 711–723.

Slowinski R. Soniewicki B. and Weglarz J. (1994). DSS for multi-objective project scheduling.

European Journal of Operational Research, Vol. 79, pp. 220–229.

Spears W. and De Jong K. (1991). On the virtues of parameterized uniform crossover. In:

Proceedings of the fourth international conference on genetic algorithms, February, pp. 230–236.

Speranza M.G. and Vercellis C. (1993). Hierarchical models for multi-project planning and

scheduling. European Journal of Operational Research, Vol. 64, pp. 312-325.

Sprecher A. (1994). Resource-constrained project scheduling: exact methods for the multi-mode

case. Lecture Notes in Economics and Mathematical Systems.

Sprecher A. and Drexl A. (1998). Solving multi-mode resource-constrained project scheduling

problems by a simple, general and powerful sequencing algorithm. European Journal of

Operational Research, Vol. 107, pp. 431–450.

Sprecher A. Hartmann S. and Drexl A. (1997). An exact algorithm for project scheduling with

multiple modes. OR Spektrum. Organ der Deutschen Gesellschaft fur Operations Research, Vol.

19 (3), pp. 195-203.

Talbot F.B . 198 Management Science, Vol. 28, pp. 1197–1210.

Tseng L.Y. and Chen S.C. (2009). Two-phase genetic local search algorithm for the multi-mode

resource-constrained project scheduling problem. IEEE Transactions on Evolutionary

Computation, Vol. 13 (4), pp. 848–57.

Wang L. and Fang C. (2011). An effective shuffled frog-leaping algorithm for multi-mode

resource-constrained project scheduling problem. Information Sciences, Vol. 181, pp.

4804–4822.

Sebt, Afshar and Alipouri

924

Wang L. and Fang C. (2012). An effective estimation of distribution algorithm for the multi-mode

resource-constrained project scheduling problem. Computers and Operations Research, Vol. 39:

449–460.

Wauters T. Verbeeck K. Berghe G. and De Causmaecker P.(2009). A multi-agent learning approach

for the multi-mode resource-constrained project scheduling problem. In: Proceedings of the 8th

International Conference on Autonomous Agents and Multi agent Systems, June, pp. 1-8.

Zhang H. (2012). Ant Colony Optimization for Multimode Resource-Constrained Project

Scheduling.” American Society of Civil Engineers, Vol. 28, pp. 150-159.

Zhu G., Bard J. and Tu G. (2006). A branch-and-cut procedure for the multimode

resource-constrained project-scheduling problem. Journal on Computing, Vol. 18 (3), pp.

377–39.

