Akturk, M.S. and T. Ilhan, (2011) Single CNC machine scheduling with controllable processing times to minimize total weighted tardiness. Computers & Operations Research, Vol. 38(4), pp. 771-781.
Bagheri, A. and M. Zandieh, (2011) Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach". Journal of Manufacturing Systems, 2011. Vol. 30(1), pp. 8-15.
Barzegar, B. and H. Motameni, (2011) Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm". JOURNAL OF ADVANCES IN COMPUTER RESEARCH .
Blum, C. and A. Roli, (2003) Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), Vol. 35(3), pp. 268-308.
Brucker, P. and R. Schlie, (1990) Job-shop scheduling with multi-purpose machines". Computing, Vol. 45(4), pp. 369-375.
Chinneck, J.W., (2004) Practical optimization: a gentle introduction". Electronic document.
Dauzère-Pérès, S. and J. Paulli, (1997) An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search". Annals of Operations Research, Vol. 70, pp. 281-306.
Feng, M., et al., (2008) A Grouping Particle Swarm Optimization Algorithm for Flexible Job Shop Scheduling Problem, pp. 332-336.
Garey, M.R., D.S. Johnson, and R. Sethi, (1976) The complexity of flowshop and job-shop scheduling". Mathematics of Operations Research, Vol. 1, pp. 117-129.
Glover, F., M. Laguna, and R. Martí, (2000) Fundamentals of scatter search and path relinking". Control and cybernetics, Vol. 39(3), pp. 653-684.
Glover, F. (1998) A template for scatter search and path relinking. in Artificial evolution. Springer.
Giglio, D. (2015) Optimal control strategies for single-machine family scheduling with sequence-dependent batch setup and controllable processing times, Journal of Scheduling, Vol.18(5), pp. 525-543.
Haq, A.N., et al., (2007) A scatter search approach for general flowshop scheduling problem . The International Journal of Advanced Manufacturing Technology, Vol. 31(7-8), pp. 731-736.
Herroelen, W., B. De Reyck, and E. Demeulemeester, (1998) Resource-constrained project scheduling: a survey of recent developments. Computers & Operations Research, Vol. 25(4), pp. 279-302.
Janiak, A., (1989) Minimization of resource consumption under a given deadline in the two-processor flow-shop scheduling problem. Information Processing Letters, Vol. 32(3), pp. 101-112.
Jiang, S., Liu, M., Hao, J., Qian, W. (2015) A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry, Computers and Industrial Engineering, Vol.87, pp. 518-531.
Karabati, S., P. Kouvelis, and G. Yu, (1995) The discrete resource allocation problem in flow lines. Management Science, Vol. 41(9), pp. 1417-1430.
Kayvanfar, V., I. Mahdavi, and G.M. Komaki, (2011) Single machine scheduling with controllable processing times to minimize total tardiness and earliness. Computers & Industrial Engineering.
Koca, E., Yaman, H., Aktürk, M.S. (2015) Stochastic lot sizing problem with controllable processing times, Omega, Vol. 53, pp. 1-10.
Luo, C. (2015) Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times, Numerical Algebra, Control and Optimization, Vol. 5(1), pp. 71-77.
Laguna, M., R. Martín, and R.C. Martí, (2003) Scatter search: methodology and implementations in C. Vol. 24.: Springer.
Li, J.-Q., et al., (2010) A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem". The International Journal of Advanced Manufacturing Technology, Vol. 52(5-8), pp. 683-697.
Mokhtari, H., I.N.K. Abadi and A. Cheraghalikhani, (2011a) A multi-objective flow shop scheduling with resource-dependent processing times: Tradeoff between makes pan and cost of resources. Int.J. Prod. Res., Vol. 49, pp. 5851-5875.
Mokhtari, H., Nakhai Kamal Abadi, I., Zegordi, S.H., (2011b) Production Capacity Planning and Scheduling in a No-Wait Environment with Controllable Processing Times: An integrated modeling approach", Expert Systems with Applications, Vol. 38, pp. 12630-12642.
Mokhtari, H. (2015) Designing an efficient bi-criteria iterated greedy heuristic for simultaneous order scheduling and resource allocation: a balance between cost and lateness measures", Neural Computing and Applications, Vol. 26, pp. 1085-1101.
Shioura, A., Shakhlevich, N.V., Strusevich, V.A. (2015) Optimal control strategies for single-machine family scheduling with sequence-dependent batch setup and controllable processing times, Mathematical Programming, Vol. 153(2), pp. 495-534.
Shirinivas, S.G., S. Vetrivel, and D. N.M.Elango, (2010) Applications of graph theory in computer science an overview". International Journal of Engineering Science and Technology, Vol. 2(9), pp. 4610-4621.
Tay, J.C. and N.B. Ho (2008) Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems". Computers & Industrial Engineering, Vol. 54(3), pp. 453-473.
Vokurka, R.J. and S.W.O. Leary-Kelly, (2000) A review of empirical research on manufacturing flexibility. Journal of Operations Management 2000.
Wang, L., et al . , (2011) An effective artificial bee colony algorithm for the flexible job-shop scheduling problem". The International Journal of Advanced Manufacturing Technology, Vol. 60(1-4), pp. 303-315.
Wang, J.-B., (2006) Single machine scheduling with common due date and controllable processing times". Applied Mathematics and Computation, Vol. 174(2), pp. 1245-1254.
Xia, W. and Z. Wu, (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, Vol. 48(2), pp. 409-425.
Yin, P.-Y., et al., (2010) Cyber swarm algorithms–improving particle swarm optimization using adaptive memory strategies. European Journal of Operational Research, Vol. 201, pp. 377-389.
Zhang, G., L. Gao, and Y. Shi, (2011) An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, Vol. 38(4), pp. 3563-3573.
Zribi, N., et al., (2006) Minimizing the total tardiness in a flexible job-shop. World Automation Congress.