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Abstract 

This paper introduces a comprehensive response mechanism designed to distribute temporary shelters after significant 

disasters effectively. The primary goal of this system is to overcome challenges posed by coordination, logistics, and 

resource allocation constraints to optimize relief operations following a catastrophe. The model utilizes a Linear 

Programming (LP) metric and a Non-dominated Sorting Genetic Algorithm (NSGA-II) as a well-known multi-objective 

evolutionary algorithm for advanced optimization. By leveraging these methodologies, the model validates its 

effectiveness while considering multiple objective functions and incorporating sustainability using a response 

perspective. The findings of the study verify the model’s success in enhancing post-disaster shelter distribution and an 

overall responsive approach in various dimensional scenarios. The proposed integrated system can substantially 

contribute to the recovery of the impacted regions by streamlining coordination and improving the efficiency of relief 

operations in a more organized way. It provides valuable insights for decision-makers, practitioners, and researchers 

involved in disaster management. Finally, a conclusion and further research are provided. 

Keywords: Post-Disaster; Integrated Model; Temporary Shelters; Sustainability; Meta-heuristics.   

1. Introduction  

A “disaster” is an unforeseen event causing harm, destruction, ecological disruption, human suffering, and deterioration 

of health and services, warranting an extraordinary response from outside the affected area (Najafi et al., 2013; Wang 

et al., 2016). Natural disasters such as earthquakes, hurricanes, tornadoes, volcanic eruptions, wildfires, floods, 

blizzards, and drought and man-made disturbances (e.g., terrorism, chemical spills, and nuclear mishaps) may fall under 

the disaster category (Ramezanian & Behboodi, 2017). In the 21st century, natural disasters pose significant challenges. 

For instance, a 5.9 magnitude earthquake hit Iran’s northwest city of Khoy, causing at least three fatalities and injuring 

over 816 people while damaging buildings and infrastructure in the area.1 Another example is that on 12 November 

2017, a powerful 7.3 magnitude earthquake struck the Iran-Iraq border near Halabja. It resulted in at least 630 deaths 

and 8100 injuries, and was the deadliest quake of 2017.2 Furthermore, poverty escalates as a result of displacement 

                                                                 
1 https://www.aljazeera.com/news/2023/1/29/deadly-earthquake-hits-khoy-iran 
2 https://en.wikipedia.org/wiki/2017_Iran%E2%80%93Iraq_earthquake#:~:text=Casualties%20and%20damage,-

The%20province%20of&text=More%20than%20half%20of%20the,than%207%2C000%20others%20were%20injured. 

http://www.ijsom.com/
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caused by disasters, particularly in developing and low-income nations. Considering the increasing frequency and 

severity of disasters, there is a growing demand for effective management strategies in the realm of disaster management 

(Modgil et al., 2022). 

Before disaster management strategies are activated, it is essential to employ a risk management approach to identify, 

assess, and mitigate potential risks that could disrupt humanitarian supply chain operations. This proactive approach 

enhances the resilience of the supply chain across all phases of disaster management: prevention, preparedness, 

response, and recovery (Cruz et al., 2004; Inan et al., 2023; Lindell & Perry, 2012). Fuzzy computations, Failure Modes 

and Effects Analysis (FMEA), and heatmap risk matrix are among the popular quantitative tools used in the risk 

management process (Bozorgi Amiri et al., 2020; Shakibaei, Seifi, et al., 2024). By employing these methods, 

organizations can better understand and manage the risks they face, ultimately enhancing their preparedness and 

response capabilities in disaster situations. After disasters, the initial response provides crucial services for affected 

people and communities to save lives and lay the foundation for long-term recovery. Humanitarian aid is primarily 

aimed at helping those in need to preserve lives, and it may involve logistical support (Paciarotti et al., 2021) or material 

allocation (Acar & Kaya, 2022). Emergency relief is often provided until institutions can step in to offer long-term 

assistance. Common forms of humanitarian aid involve responding to disasters through food and agriculture support, 

medical support, shelter distribution, and clean water provision.  

Each year, the number of stakeholders affected by natural disasters who need aid increases. Humanitarian groups are 

facing greater pressure to improve their performance due to the rising frequency and severity of these disasters. On the 

other side, unstable humanitarian aid supply chains are susceptible to political influence and often ineffective as a result 

of insufficient planning and coordination among organizations (Fathalikhani et al., 2018). They lack an adequate 

logistics infrastructure and are unsure about where their relief assistance is coming from, and have unclear objectives 

(Xu et al., 2024). Coordination between various can decrease casualties, enhance information quality, and facilitate the 

movement and distribution of supplies in the impacted areas (Liang et al., 2021; Liu & Xie, 2016; Roblek et al., 2022). 

The fundamental characteristics of the supply chain for aid organizations are uncertainty and the unpredictability of 

emergencies. The humanitarian supply chain is unique and distinct with urgency, unpredictability, and coordination 

issues (Sabouhi et al., 2021). For sustainability, organizations need generative data to optimize operations, cut costs, 

and boost transparency. However, getting accurate and timely data in complex, dynamic environments is a big 

challenge, impacting performance and accountability (Shakibaei, Farhadi-Ramin, et al., 2024). Goli et al. (2023) 

integrate Circular Economy (CE) principles into the supply chain to further promote sustainability.  

The primary goal is to create a cost-effective integrated system for multiple aspects following a major disaster, such as 

shelter distribution, improving post-disaster quality of life, and timely information delivery to professionals and affected 

individuals. This approach ensures seamless information flow among relevant parties, utilizing resources efficiently 

through specialized applications and devices, and establishing program connections. Limited research has been 

conducted in this field, leaving some unanswered questions as follows:  

 How does the proposed model address the environmental impacts of helicopter or truck shelter distribution? 

 How does it compare with existing models on sustainability indicators (cost, resources, resilience, equity)? 

 How to improve post-disaster shelter distribution for better life quality and cost reduction? 

 How can the proposed model integrate sustainability practices like recycling and reducing shelter materials? 

A comprehensive approach for post-disaster temporary shelter distribution was developed and verified across different 

scenarios. Given the model’s inherent complexity of the NP-hard class, the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) was utilized. The model aimed to achieve four objectives: minimizing prevention and response phase costs, 

reducing maximum service time, and enhancing route reliability. Notably, the results demonstrated significant success 

in optimizing the route reliability objective. This implies that the model’s allocation strategy and optimization algorithm 

are particularly effective in ensuring the consistent and reliable delivery of shelters to disaster-affected areas. 

The combination of Linear Programming (LP) and the NSGA-II presents a novel methodology for optimizing disaster 

relief logistics. Unlike traditional models that tend to focus on a single objective, such as minimizing transportation 

costs or response time, our approach takes a more holistic view by addressing multiple, often conflicting objectives, 

including CO2 emissions and response time. The LP-based metric ensures that the optimization process is structured, 

efficient, and suitable for real-time application in disaster scenarios, where rapid decisions are crucial. Additionally, the 

integration of the NSGA-II allows the model to generate a diverse set of Pareto-optimal solutions, offering decision-
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makers a broader range of trade-offs between key objectives rather than forcing a single, potentially suboptimal choice. 

This innovative methodology enhances the overall effectiveness of shelter distribution in disaster management and 

contributes to the sustainability of relief operations by minimizing their environmental impact. 

The remainder of the text is structured as follows: Section 2 reviews existing literature on humanitarian supply chains 

from the early stages of risk emersion until post-disaster response solutions. Section 3 provides a clear description of 

the problem. In Section 4, the suggested approach is presented. Section 5 introduces the solution methods used to 

achieve the results. Section 6 illustrates the application of the proposed model to a simulated disastrous situation. Section 

7 evaluates the validity and verifiability of the model through different-sized instances. Section 8 analyzes the sensitivity 

of the proposed method. In Section 9, valuable managerial insights are offered to the decision-makers. The paper 

concludes with a comprehensive summary and recommendations for future studies in Section 9.  

2. Literature Review 

The literature review is divided into three subsections: Section 2.1 focuses on disaster preparedness and response, 

Section 2.2 covers coordination and integration models, and Section 2.3 examines solution methods.  

2.1 Disaster preparedness and response 

In the last two decades, disaster preparedness gained significant attention from academics and practitioners. This led to 

various frameworks and approaches for strategically organizing humanitarian operations before crises (Seraji et al., 

2022). Researchers have extensively studied the Humanitarian Logistics (HLs) region, focusing on the major logistical 

challenge for aid organizations: the extensive catastrophe scope and limited road network. Pyakurel et al. (2019) 

developed the contraflow problem, which optimizes the pathways during evacuation operations, to address these 

difficulties. Prioritization based on resource limitations is frequently necessary for emergency relief route optimization. 

To solve this problem, Zhu et al. (2019) proposed an emergency routing model for moving catastrophe victims with 

different levels of injury, considering capacity limits, to reduce operational costs and psychological suffering. Sharma 

et al. (2019) created a model for situating temporary blood banks in catastrophe situations so that hospitals can receive 

supplies with the shortest possible reaction times. In a recent study, De Vries and Van Wassenhove (2020) highlighted 

the underutilization of existing models in real humanitarian operations due to high operational uncertainty and 

expensive route optimization technologies. They recommend proposing practical models that can handle uncertainty 

effectively rather than relying on rigorous but costly and seldom used accurate models. 

Optimizing emergency shelter prepositioning is vital for disaster preparedness. Bayram et al. (2015) proposed a Mixed-

Integer Non-Linear Programming (MINLP) model to decide shelter locations, numbers, and capacities, thus minimizing 

evacuation time and post-disaster casualties. Paul and MacDonald (2016) proposed a stochastic model that considered 

several variables, including casualty estimates, transportation time, demographic characteristics, and demand clusters 

to develop the capacity given a probable disaster risk. Erbeyoğlu and Bilge (2020) recently suggested a strategy to 

create a pre-disaster relief network by positioning storage and distribution hubs to maximize service sufficiency and 

fairness at various demand points. 

2.2 Coordination and integration models 

The overall effectiveness of HLs is enhanced by coordinating the activities of many independent agencies. Zokaee et 

al. (2016) suggested a three-level relief distribution model that integrated suppliers, distribution centers, and demand 

locations to reduce the overall expenses of the entire relief chain. An integrated evacuation and distribution model that 

jointly optimizes vehicle scheduling and routing was proposed by Sabouhi et al. (2019). The objective was to distribute 

relief supplies and transport residents to shelters efficiently, considering limited vehicle capacity and split delivery 

options. Dubey et al. (2022) examined how information sharing, supply chain visibility, and blockchain technology can 

foster trust and collaboration among humanitarian actors amidst the growing use of technologies in decision-making. 

2.3 Sustainability in humanitarian supply chains 

Sustainability factors challenge humanitarian supply chains. Anjomshoae et al. (2023) explored the theoretical 

developments in measuring the sustainable performance of humanitarian supply chains. Cao et al. (2021) proposed a 

fuzzy tri-objective bi-level integer programming model that aims to minimize the unmet demand rate, potential 

environmental risks, and emergency costs at the upper level of the decision hierarchy while maximizing survivors’ 

perceived satisfaction at the lower level. Laguna-Salvadó et al. (2019) provided a multi-objective master planning 
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Decision Support System (DSS) to manage these sustainable HSCs effectively by incorporating sustainability 

dimensions into their management. Shakibaei et al. (2024) contributed to this field by developing a multi-objective 

model to minimize social dissatisfaction, economic costs, and environmental damage in the face of disasters. 

Incorporating sustainability improves the entire supply chain performance. 

2.4 Solution methods 

Dealing with HLs models is a major computational challenge due to their size and multiple variables. The efficiency of 

solving such models by exact solvers (e.g., CPLEX and LINGO) is significantly impacted by the problem size. Li et al. 

(2012) developed a bi-level model and used the lagrangian function to address a stochastic two-stage humanitarian 

planning problem. A heuristic linear search strategy was created because the Lagrangian dual problem was concave. 

Tofighi et al. (2016) developed a fuzzy multi-objective model for disaster assistance by using a differential evolution 

technique. Despite achieving an optimality gap of 1.89% relative to the ideal solution, the approach’s drawback is its 

dependence on trial-and-error parameter selection, making real-world application potentially time-consuming. 

Researchers have created many heuristics and meta-heuristics to address the complexity of complicated real-world 

problems (Faghih-Roohi et al., 2016; Paul et al., 2019; Rezaei Somarin et al., 2018). Saeidian et al. (2016) considered 

metropolitan areas’ resilience during an earthquake catastrophe. They proposed two algorithms, namely the Genetic 

Algorithm (GA) and Bee Algorithm (BA), to tackle the optimization challenge of selecting ideal relief center locations. 

Rath and Gutjahr (2014) proposed a mathematical heuristic for solving a three-objective warehouse location-routing 

problem in disaster relief. The method used an adaptive-constraint algorithm, generating constraints on demand by a 

Variable Neighborhood Search (VNS) algorithm and storing them in a constraint pool. Using queuing theory, Memari 

et al. (2018) suggested a fuzzy dynamic location-allocation model for disaster response. The model was solved and 

validated using the augmented-constraint approach and the NSGA-II. Talebi et al. (2022) improved ambulance routing 

as an Emergency Medical Service (EMS) in a dynamic natural disaster to assist and serve patients at least time and cost 

by employing the NSGA-II and a tailored Bees Algorithm (MOBA). In advancing pure NSGA-II, Long et al. (2016), 

Gholizadeh et al. (2020) and Delgoshaei et al. (2022) demonstrated that despite slower solving speed, hybridizing the 

NSGA-II with other methods in the LP class significantly boosted the quality of solutions. Stochastic multi-objective 

optimization has been employed for complex disaster relief network designs to balance logistics and resource allocation 

(Ghasemi et al., 2022). 

3. Problem Description 

Humanitarian organizations deploy trucks and helicopters to deliver temporary shelters to disaster-hit areas. The 

operation involves diverse truck warehouses and helicopter hangers. There are two clusters of affected areas: Cluster 1 

with both good and damaged road access, where shelters can be delivered by both ground and air modes, and Cluster 2 

with broken roads, where shelters are solely transported by air. Each cluster prioritizes points based on route reliability. 

However, breakdowns in ground vehicles lead to delays and system disruptions during shelter distribution. 

Several researchers studied post-disaster temporary shelter distribution using different methods and models (Khamseh 

& Saatchi, 2021). One approach proposed a bi-objective model using the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and the NSGA-II to consider the cost, service time, and demand uncertainty with heterogeneous vehicles. A 

two-stage stochastic programming model aimed to minimize total cost under demand uncertainty using Sample Average 

Approximation (SAA) and VNS. These studies offer valuable insights for decision-makers. 

This paper presents an integrated model for distributing temporary shelters after a disaster. The model uses a planning 

approach and includes various vehicles like trucks and helicopters strategically placed in designated locations. It 

considers damaged and undamaged paths in its design and incorporates four spatial objective functions. The objectives 

aim to minimize prevention and response phase costs, reduce maximum service time, and maximize route reliability. 

The multi-objective model has been solved using the LP metric method followed by a meta-heuristic algorithm to 

address different scenarios. To address complex real-world decision-making problems effectively, models rely on 

simplifying assumptions that preserve essential system properties while reducing complexity. The following 

assumptions lead to a highly effective mathematical model: 

1- Limit on vehicles; various types used to transport shelters to affected areas. 

2- Clear starting points for all vehicles; each vehicle belongs to a specific warehouse. 

3- All vehicles must be utilized during disasters. 
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4- Each damaged point is served by a single vehicle. 

5- Warehouse stock sufficient to meet affected areas’ needs. 

6- Known locations and distances of affected areas from warehouses. 

7- Demand at each affected point is known. 

8- Vehicles return to their starting locations after the operation. 

9- Damaged points are divided into two clusters, prioritized based on reliability factors. 

10- Unrepairable breakdown leads to vehicle replacement. 

11- Known breakdown times under different scenarios. 

12- Delivery completion ensures service and prevents shortages. Disabled vehicles follow their schedules without 

performing duties. 

In brief, this paper introduces an integrated model for distributing post-disaster temporary shelters, showcasing the 

following innovations and superiorities: 

 Proposing an integrated model for temporary shelter distribution considering the costs of the prevention phase 

and the response phase as two separate objective functions. 

 Incorporating sustainability in economic and environmental aspects, including the cost of facility, 

transportation, unmet demand, and carbon emissions. 

 Developing an LP-based NSGA-II hybridization. 

4. Proposed Model 

This model aims to achieve four main goals, each represented by a separate objective function. The first function focuses 

on minimizing prevention phase costs, while the second aims to minimize response phase costs, encompassing fixed 

facility costs, transportation expenses, unmet demand costs, and carbon dioxide emissions from vehicles. The third 

objective function seeks to minimize the maximum service time, and the fourth aims to maximize route reliability. The 

model also considers the possibility of vehicle breakdown during ground assistance. Moreover, the second objective 

function incorporates sustainability considerations by targeting the reduction of total system costs and environmental 

impacts. Table 1 presents the notations utilized in the proposed mathematical model. 

Table 1. Notations of the proposed mathematical model 

Sets: 

𝜐′ Set of land vehicles 

𝜐″ Set of aerial vehicles 

ℓ Set of the impacted areas with a passable road 

ℓ′ Set of the impacted areas with a damaged road 

𝑑 Set of the ground vehicle depots 

𝑑′ Set of the helicopter hangars 

𝑉 Set of vehicles 

𝑆 Set of scenarios 

𝑁 Number of all nodes 

𝑛𝜐′  Number of trucks 

𝑛𝜐″ Number of helicopters 

𝑛ℓ Number of impacted areas with a passable road 

𝑛
ℓ
′  Number of impacted areas with a damaged road 

𝑛𝑑 Number of truck depots 

𝑛𝑑′ Number of helicopter hangars 

Parameters: 

𝜒𝜐 Capacity of vehicle 𝑣 

𝐷𝑒𝑚𝑖 Demand for shelters for node 𝑖 (impacted area) 

𝑡𝜐𝑖𝑗 Travel time from node 𝑖 to 𝑗 for vehicle 𝑣 

𝑟𝑖𝑗 Permanent value of node 𝑖 to 𝑗 based on the reliability index 

𝑢𝜐𝑖 
Auxiliary and sequential variable that shows the number of nodes being visited with vehicle 𝑣 in sub-

tour elimination constraints 

𝑇𝑖𝜐 Arrival time of vehicle 𝑣 to node 𝑖 
𝜃𝑖𝑗  Traffic time of a vehicle traveling from node 𝑖 to node 𝑗 
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Table 1. Notations of the proposed mathematical model (Continued) 

𝐹𝑥𝜐 Fixed cost of vehicle 𝑣 

𝐹𝑐 Unit cost of unmet demand 

𝐹𝑡𝜐𝑖𝑗 Unit transportation cost of travel vehicle 𝑣 from nodes 𝑖 to 𝑗 

𝐹𝑐𝑜𝜐 Penalty cost of the transfer of CO2 produced by each vehicle 𝑣 

𝑀𝑐𝑜 Maximum budget amount of CO2 emissions 

𝛼𝑖 Unit cost of retrofitting impacted areas 

𝜂𝑖 Severity of the vulnerability of area 𝑖 
𝜓 Standard index for vulnerability control 

Variables:                 

𝑘𝑖 1 if impacted areas are selected for retrofitting; 0, otherwise 

𝑥𝜐𝑖𝑗 1 if vehicle 𝑣 travels from node 𝑖 to node 𝑗; 0, otherwise 

𝑦𝑖
𝑠 1 if the shelter is not delivered to impacted area 𝑗 under scenario 𝑠; 0, otherwise 

The following mathematical model is presented, incorporating the aforementioned sets, variables, and parameters: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝛼𝑖𝑘𝑖

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

 (1) 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝐹𝑥𝜐

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

+ ∑ ∑ 𝐹𝑐. 𝐷𝑒𝑚𝑖. 𝑦𝑖
𝑠

𝑖∈𝑛ℓ∪𝑛
ℓ
′𝑠

+ ∑ ∑ ∑ 𝐹𝑡𝜐𝑖𝑗 . 𝑥𝜐𝑖𝑗

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

 

+ ∑ ∑ ∑ 𝐹𝑐𝑜𝜐 . 𝑥𝜐𝑖𝑗

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

 

(2) 

𝑀𝑖𝑛 (𝑀𝑎𝑥 ∑ ∑ ∑ 𝑡𝜐𝑖𝑗𝑥𝜐𝑖𝑗

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

) (3) 

𝑀𝑖𝑛 (∑ ∑ ∑ 𝑟𝑖𝑗𝑥𝜐𝑖𝑗

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

) (4) 

s.t.  

∑ ∑ ∑ 𝐹𝑐𝑜𝜐. 𝑥𝜐𝑖𝑗

𝜐∈𝑉𝑗∈𝐽𝑖∈𝐽

≤ 𝑀𝑐𝑜 (5) 

𝜂𝑖𝑘𝑖 ≥ 𝜓, ∀𝑖 (6) 

∑ 𝑥𝜐𝑖𝑗

𝑖∈𝑛ℓ∪𝑓(𝜐,𝑖)

− ∑ 𝑥𝜐𝑗𝑖

𝑖∈𝑛ℓ∪𝑓(𝜐,𝑖)

= 0 , ∀𝑗 ∈ 𝑛ℓ, 𝜐 ∈ 𝑛𝜐′ (7) 

∑ 𝑥𝜐𝑖𝑗

𝑖∈𝑛ℓ∪𝑛
ℓ
′∪𝑓(𝜐,𝑖)

− ∑ 𝑥𝜐𝑗𝑖

𝑖∈𝑛ℓ∪𝑛
ℓ
′∪𝑓(𝜐,𝑖)

= 0 , ∀𝑗 ∈ 𝑛ℓ ∪ 𝑛
ℓ
′ , 𝜐 ∈ 𝑛𝜐′ (8) 

∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑛ℓ𝑖∈𝑓(𝜐,𝑖)

= 1 , ∀𝑣 ∈ 𝑛𝜐′  , 𝑓(𝜐, 𝑖) (9) 

∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑛ℓ∪𝑛
ℓ
′𝑖∈𝑓(𝜐,𝑖)

= 1 , ∀𝑣 ∈ 𝑛𝑑′ 
(10) 

∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑓(𝜐,𝑖)𝑖∈𝑛ℓ

= 1 , ∀𝑣 ∈ 𝑛𝜐′ (11) 
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∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑓(𝜐,𝑖)𝑖∈𝑛ℓ∪𝑛
ℓ
′

= 1 , ∀𝑣 ∈ 𝑛𝑑′ (12) 

∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑛ℓ𝜐∈𝑛
𝜐′

+ ∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑛ℓ∪𝑛
ℓ
′∪𝑓(𝜐,𝑖)𝜐∈𝑛𝜐′′

= 1 , ∀𝑖 ∈ 𝑛ℓ (13) 

∑ ∑ 𝑥𝜐𝑖𝑗

𝑗∈𝑛ℓ∪𝑛
ℓ
′∪𝑓(𝜐,𝑖)𝜐∈𝑛𝜐′′

= 1 , ∀𝑖 ∈ 𝑛ℓ′ (14) 

∑ ∑ 𝑥𝜐𝑖𝑗 . 𝐷𝑒𝑚𝑖

𝑖∈𝑛ℓ𝑗∈𝑛ℓ∪𝑓(𝜐,𝑖)

≤ 𝜒𝜐  , ∀𝜐 ∈ 𝑛𝑑 ∪ 𝑛𝑑′ (15) 

∑ ∑ 𝑥𝜐𝑖𝑗 . 𝐷𝑒𝑚𝑖

𝑖∈𝑛ℓ∪𝑛ℓ′𝑗∈𝑛ℓ∪𝑛ℓ′

≤ 𝜒𝜐′ , ∀𝜐 ∈ 𝑛𝜐′′ (16) 

𝑢𝜐𝑖 − 𝑢𝜐𝑗 + 𝑛ℓ𝑥𝜐𝑖𝑗 ≤ 𝑛ℓ − 1 , ∀𝜐 ∈ 𝑛𝜐′  , 𝑖 ∈ 𝑛, 𝑖 ∈ 𝑛ℓ (17) 

𝑢𝜐𝑖 − 𝑢𝜐𝑗 + 𝑛ℓ′𝑥𝜐𝑖𝑗 ≤ 𝑛ℓ′ − 1 , ∀𝜐 ∈ 𝑛𝜐′′ , 𝑖 ∈ 𝑛ℓ ∪ 𝑛ℓ′ (18) 

𝑢𝜐𝑖 ≤ 𝑛ℓ , ∀𝜐 ∈ 𝑛𝜐′ , 𝑖 ∈ 𝑛ℓ (19) 

𝑢𝜐.𝑓(𝜐,𝑖) = 0 , ∀𝜐 ∈ 𝑛𝜐′ , 𝑖 ∈ 𝑛ℓ (20) 

𝑢𝜐𝑖 ≤ 𝑛ℓ ∪ 𝑛
ℓ
′  , ∀𝜐 ∈ 𝑛𝜐′′ , 𝑖 ∈ 𝑛ℓ ∪ 𝑛ℓ′ (21) 

𝑢𝜐.𝑓(𝜐,𝑖) = 0 , ∀𝜐 ∈ 𝑛𝜐′′ , 𝑖 ∈ 𝑛ℓ ∪ 𝑛ℓ′ (22) 

∑ 𝑇𝑖𝜐

𝜐

= 0 , ∀𝑓(𝜐, 𝑖) (23) 

𝑇𝑖𝜐 − ∑ 𝑥𝜐𝑖𝑗 . (𝑇𝑖𝜐 + 𝜃𝑖𝑗)

𝑗∈𝑛ℓ∪𝑛ℓ′′

= 0 , ∀𝑖 ∈ 𝑛ℓ ∪ 𝑛ℓ′ (24) 

𝑏𝑖𝑔𝑀(1 − 𝑦𝑖
𝑠) ≥ (𝑇𝑖𝜐 + 𝜙𝜐

𝑠) , ∀𝑖 ∈ 𝑛ℓ ∪ 𝑛ℓ′ , 𝑠 ∈ 𝑆 , 𝜐 ∈ 𝑛ℓ (25) 

The proposed model encompasses a set of objective functions that aim to minimize various costs. The first objective 

function (Eq. 1) seeks to minimize the retrofitting costs of impacted areas, essentially reducing the expenses associated 

with improving these zones for better resilience against future disasters. The second objective function (Eq. 2) aims to 

minimize the total costs, which include the fixed costs of vehicles, the cost of unmet demand, transportation costs, and 

CO2 penalty costs, thereby ensuring an economically sustainable operation. The third objective objective (Eq. 3) is to 

minimize the maximum travel time for all vehicles across the network, which is vital for time-sensitive service. 

Additionally, the model strives to minimize the reliability index across chosen routes, prioritizing more critical delivery 

paths through Eq. 4. Within the constraints, Eq. 5 limits CO2 emissions to adhere to environmental sustainability 

standards and Eq. 6 controls the vulnerability measure in each area. Vehicle capacity constraints (Eqs. 15 and 16) 

guarantee that the demand for shelters delivered does not exceed the vehicle’s capacity, ensuring that the logistics are 

feasible and practical. The rest of the constraints are flow conservation constraints that ensure a balanced flow is 

maintained within the network. Lastly, This comprehensive model uses binary variables to represent decisions and 

continuous variables for quantities in a form of Mixed-Integer programming (MIP). 

5. Solution Methodology 

The current research is primarily descriptive regarding applied purpose, quantitative, and tools. It utilizes library studies 

and mathematical modeling to develop a precise mathematical model for assessing the distribution of temporary shelters 

after a disaster. The model is solved using GAMS software. This research uses the LP metric method to solve the 

proposed model, and the approaches to validate the results under the NSGA-II were investigated. 
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In mentioned approach, the LP-metric plays a critical role in addressing specific aspects of the optimization process, 

particularly where linear constraints and objective functions are involved. It is well-suited for optimizing a set of linear 

relationships, making it ideal for problems such as transportation logistics and resource allocation, where the 

relationships between variables (e.g., transport capacity, shelter locations, and resource availability) can be expressed 

in linear terms. Using LP, we can efficiently determine optimal routes and resource distributions that minimize costs or 

maximize efficiency while adhering to operational constraints. However, disaster response scenarios often involve 

competing, non-linear objectives, such as balancing the reduction in response time with environmental concerns like 

CO2 emissions. This is where the NSGA-II comes into play. The NSGA-II is a multi-objective optimization technique 

capable of managing these conflicting objectives by generating a set of Pareto-optimal solutions (Wang et al., 2021). 

While LP ensures that individual aspects of the logistics, such as routing and resource allocation, are optimized under 

a set of constraints, the NSGA-II evaluates and resolves trade-offs between multiple objectives, offering a diverse set 

of solutions that reflect the best compromises among the competing goals. The synergy between the NSGA-II and LP 

allows the model to optimize both the logistics of disaster response and sustainability metrics simultaneously, providing 

decision-makers with actionable solutions that consider both operational and environmental factors. 

5.1. LP metric method 

The LP metric method is a popular and robust method for solving multi-objective models. It starts by solving bi-

objective sub-problems models and seeks to find solutions with higher quality (Delgoshaei et al., 2022). In our case, 

specifically designed for minimizing objective functions, it can be summarized as follows: 

𝑍𝑡𝑜𝑡𝑎𝑙 =
𝑤1. (𝑍1 − Z1

𝑚𝑖𝑛)

Z1
𝑚𝑎𝑥 − Z1

𝑚𝑖𝑛
+

𝑤2. (𝑍2 − Z2
𝑚𝑖𝑛)

Z2
𝑚𝑎𝑥 − Z2

𝑚𝑖𝑛
        (26) 

where 𝑤𝑖  is the weight of the 𝑖-th objective function, and Z𝑖
𝑚𝑖𝑛 and Z𝑖

𝑚𝑎𝑥 represent the ideal and anti-ideal solutions of 

the 𝑖-th objective function, respectively. 

5.2. NSGA-II  

Multi-objective Optimization Problems (MOPs) are based on the concept of Pareto dominance, which emphasizes 

research satisfying all objectives, which means there are two or more objectives that need to be improved at the same 

time. The Pareto-dominance concept evaluates how good a solution is by comparing it with all the other solutions based 

on all the objectives. We say that a solution 𝑥 is better than another solution 𝑦 (written as 𝑥 ≺ 𝑦) if and only if 𝑥 has a 

lower or equal value than 𝑦 for every objective (𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦)) for 𝑖 = 1, 2, . . . , 𝑛), and 𝑥 has a strictly lower value than 

𝑦 for at least one objective (there is an 𝑖 in {1, . . . , 𝑛} such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦)) (Ojha et al., 2019). This way of defining 

Pareto-dominance implies the possibility of several non-dominated solutions, and a MOP aims to find all these 

solutions, which are called the Pareto set. 

GAs are evolutionary optimization algorithms based on mechanisms of genetics. Multi-objective GAs attempt to solve 

MOPs based on the concept of Pareto dominance with powerful optimization capabilities (Yuan et al., 2021). One of 

the popular methods for solving the MOPs is the NSGA-II metaheuristic algorithm, which is a non-dominated sorting 

genetic algorithm that can handle non-convex and non-smooth multi-objective optimization problems. The NSGA-II is 

a population-based algorithm that uses evolutionary operators, such as selection, crossover, and mutation, to generate 

and improve solutions. It also uses a ranking method to evaluate the solutions according to their dominance and diversity 

and a crowding distance measure to maintain a diverse and well-distributed set of solutions. The NSGA-II has 

successfully been applied to various contexts of MOPs (Mengyue & Keping, 2020). Also, it has successfully been 

combined with other methods (e.g., fuzzy inference systems) for optimizing post-disaster volunteer assignments (Rabiei 

et al., 2023). 

5.3. Comparison with Non-preemptive Goal Programming 

Non-preemptive Goal Programming (NGP) is a traditional approach for solving multi-objective optimization problems, 

particularly when the decision-maker aims to achieve a set of predefined goals without prioritizing one over another. In 

NGP, conflicting objectives are treated as soft constraints, and the goal is to minimize the deviation from these targets 

while satisfying the problem’s constraints. While NGP can be effective in handling simple multi-objective problems, it 

presents certain limitations when applied to complex disaster relief logistics, where multiple objectives (e.g., 

minimizing response time, transportation cost, and CO2 emissions) are involved. 
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One of the main challenges of using NGP in disaster relief logistics is its assumption of linearity and the necessity to 

define precise goal values for each objective. However, these goals may only sometimes be clear or fixed in real-world 

scenarios, especially in dynamic environments like disaster response, where objectives may shift based on changing 

conditions (e.g., available resources, urgency, or environmental considerations). In contrast, the LP-metric-based 

NSGA-II methodology offers a more flexible and robust approach by combining LP with a genetic algorithm. LP 

efficiently optimizes specific operational aspects (e.g., routing and resource allocation. At the same time, the NSGA-II 

generates a set of Pareto-optimal solutions to handle the trade-offs between conflicting objectives. Unlike NGP, where 

a predefined goal must be met for each objective, the LP-NSGA-II framework does not require rigid goal-setting and 

allows for the exploration of a range of possible solutions, offering a more comprehensive understanding of the trade-

offs (Ransikarbum & Mason, 2022). 

Furthermore, the LP-metric approach is better suited for problems where objectives are not simply linear deviations 

from a target but rather represent complex, multi-dimensional conflicts (e.g., the simultaneous need to minimize 

environmental impact and maximize response efficiency). The NSGA-II, being a population-based evolutionary 

algorithm, can explore this space more thoroughly, providing decision-makers with a variety of solutions that balance 

competing objectives in ways that NGP struggles to capture effectively. The LP-metric-based NSGA-II approach is 

also more adaptable to real-time changes in the disaster environment, as it continuously evaluates new solutions. In 

contrast, NGP typically requires recalibration of goal values after each decision cycle. While NGP can provide useful 

insights in static, well-defined optimization problems, the LP-metric-based NSGA-II methodology offers greater 

flexibility, adaptability, and scalability for disaster relief logistics, particularly when handling complex, conflicting 

objectives and dynamic, uncertain environments. 

5.4. LP-metric-based NSGA-II method 

In this study, we use the Pareto analysis to develop the NSGA-II for multi-objective optimization problems. This 

algorithm is a widely used meta-heuristic algorithm that generates non-dominated solutions, achieving a balance across 

different objectives. The method involves sorting the initial population based on overcoming conditions, calculating 

crowding distance, and then performing selection with binary selection for generating new children. The process is 

repeated until the desired generation or optimal condition is reached. This multi-objective genetic algorithm avoids 

issues caused by weighting in other approaches, providing a set of effective solutions instead of a single solution. It 

prioritizes moving toward the optimal solution following the LP metric method through a pairwise Pareto analysis. It 

allows for the definition of optimal conditions using a cost function without relying on Kahn and Tucker’s conditions, 

such as pre-solution weighting methods. This is because the LP metric method can solve the proposed bi-objective 

problem as a single-objective MIP model (Pasandideh et al., 2015). 

The summary of this algorithm’s procedure is shown in Figure 1. 

 

Figure 1. Schematic summary of the LP-based NSGA-II procedure. 
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The first step is to create a combined population 𝑅𝑡 with a size of 2𝑁, which consists of the current dominating set 𝑃𝑡 

and the new generation 𝑄𝑡. After reducing the four-objective problem down to a bi-objective problem using an iterative 

LP metric method for pairing purposes, the population 𝑅𝑡 is ranked based on the non-domination and forms a non-

dominant set 𝐹 that is the union of 𝐹1, 𝐹2, ..., and 𝐹𝑘. In other words, the LP metric is implemented within the non-

dominated solution construction, which results in a larger pool of solutions. The elitism approach is preserved since 𝑅𝑡 

contains all the solutions from the previous and current populations. To select the exact number of population members, 

the non-dominant set is ordered by the crowding distance from high to low, and then the best solutions are picked as 

the parent population for the next generation. 

6. Case Study 

The model is applied to a simulated case study inspired by typical real-world conditions faced in humanitarian 

operations. The case study builds upon the context and scope introduced by Gharib et al. (2022) by quantifying notations 

in a way that represents a disastrous situation that is worth solving. The values are as detailed as follows: 

 

Table 2. Values of the sets. 

Notation Values 

𝜐′ {Truck1, Truck2, Truck3} 

𝜐″ {Helicopter1, Helicopter2} 

ℓ {Area1, Area2, Area3} 

ℓ′ {Area4, Area5} 

𝑑 {Depot1} 

𝑑′ {Hangar1} 

𝑉 {Truck1, Truck2, Truck3, Helicopter1, Helicopter2} 

𝑆 {Scenario1, Scenario2} 

𝑁 8 

𝑛𝜐′  3 

𝑛𝜐″ 2 

𝑛ℓ 3 

𝑛
ℓ
′  2 

𝑛𝑑 1 

𝑛𝑑′ 1 

 

Table 3. Values of the parameters. 

Notation Values 

𝜒𝜐 Truck1: 100, Truck2: 150, Helicopter1: 50, Helicopter2: 60 

𝐷𝑒𝑚𝑖  Area1: 80, Area2: 90, Area3: 100, Area4: 70, Area5: 60 

𝑡𝜐𝑖𝑗 Random values with an average of 1.5 hour 

𝑟𝑖𝑗 0.8 

𝑇𝑖𝜐 An integer ranging from 0 up to 48 referring to the 48-hour Service Level Agreement (SLA) 

𝜃𝑖𝑗  Random values with an average of 0.5 hours 

𝐹𝑥𝜐 Truck1: 1000, Truck2: 1500, Helicopter1: 2000, Helicopter2: 2500 

𝐹𝑐 500 

𝐹𝑡𝜐𝑖𝑗 Random values with an average of 100 Cost Units (CU) 

𝐹𝑐𝑜𝜐 Truck1: 50, Truck2: 75, Helicopter1: 100, Helicopter2: 125 

𝑀𝑐𝑜 10000 

𝛼𝑖 Area1: 200, Area2: 250, Area3: 300, Area4: 350, Area5: 400 

𝜂𝑖 Area1: 0.8, Area2: 0.9, Area3: 1.0, Area4: 0.7, Area5: 0.6 

𝜓 0.5 
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Capacities are set to reflect typical load limits for trucks and helicopters used in disaster logistics. For example, trucks 

commonly used in relief efforts have capacities ranging from 100 to 150 units, while more limited helicopters range 

from 50 to 60 (Chowdhury et al., 2017). Demand values for each impacted area are based on average requirements for 

emergency shelters, considering factors like population density and severity of impact (Apte, 2010). Travel times are 

estimated based on average speeds and distances between nodes, considering potential delays due to road conditions or 

air traffic (Yi & Kumar, 2007). These costs are derived from operational expenses reported in disaster logistics case 

studies, such as vehicle maintenance, fuel, and driver wages (Balcik & Beamon, 2008). Penalty costs for CO2 emissions 

are included to reflect the increasing emphasis on environmental sustainability in logistics planning. The values are 

based on carbon pricing models used in the logistics industry (Dekker et al., 2012). The severity values assigned to each 

area are based on vulnerability indices used in risk assessments, considering factors like exposure, sensitivity, and 

adaptive capacity (Birkmann, 2007). The chosen value ensures that retrofitting efforts are prioritized for areas with the 

highest vulnerability, supporting targeted interventions (Cutter et al., 2012). The values can be tailored to specific 

conditions, ultimately enhancing the practicality of the model. 

7. Model Validation & Verification 

Validation and verification are crucial steps in developing optimization models to ensure their accuracy and reliability 

(Hartley & Starr, 2010). Validation is the process of confirming that the model correctly represents the real-world 

scenario it is intended to model. It involves checking that the model addresses the right problem and provides accurate 

information about the system being modeled (Fonseca i Casas, 2023). Comparing the model’s solutions with known 

solutions in the existing literature is the most promising way to validate the model (Roy & Oberkampf, 2011). The 

closeness of results further validates this LP-based metaheuristic in comparison with the pure metaheuristic utilized in 

the paperwork by Gharib et al. (2022). By this means, the validity of the model can be supported. Verification, on the 

other hand, focuses on ensuring that the model has been correctly implemented. This means checking that the 

mathematical formulations and algorithms are correctly coded and that there are no errors in the logic or execution of 

the model. Verification is about ensuring the model performs as intended (Sargent, 2015). One way to verify the model 

is to develop a set of test cases that cover a wide range of scenarios, including edge cases, and run these tests to ensure 

the model behaves as expected under different conditions (Baier & Katoen, 2008). Thus, verification is performed using 

what-if analysis on several size-based instances. 

In single-objective problems, an optimal solution is chosen for the purpose of the problem, while in MOPs, we encounter 

a set of Pareto solutions, and the performance of the algorithms cannot be easily evaluated. Evaluation criteria are 

important since they can be used to examine the performance of algorithms (Attar et al., 2014; Piroozfard et al., 2018; 

Zarei & Rasti-Barzoki, 2018). The comparing criteria include Quality Metric criterion (QM), Spacing Metric criterion 

(SM), Diversification Metric (DM), CPU Time (CPUT), and Mean Ideal Distance (MID). A lower value of SM, MID, 

and CPUT criteria, and a higher percentage of QM and DM criteria indicate better the algorithm efficiency. In this 

study, we apply the CPUT criterion to assess the performance of the model. 

7.1 Number of nodes sizing instances 

Regarding the population initialization, the initial population was randomly generated. Three small, medium, and large-

sized instances for 10, 20, and 30 nodes, respectively, are designed in a simulation environment. The total computing 

time taken in solving these three instances is recorded in Table 4. The time duration is calculated by placing a piece of 

code at the beginning and end of the main algorithm. 

The verification results confirm the model’s correct implementation and scalability. The objective functions and run 

times for small, medium, and large instances increase consistently and logically with the number of nodes, 

demonstrating the model’s capability to manage varying problem sizes effectively. 

Table 4. Performance of the proposed model based on the differently sized instances. 

Problem 

No. 

Problem 

description 

Number of 

nodes (𝑵) 
Obj 1 Obj 2 

Obj 3 

(Hour) 
Obj 4 

Run 

Time (s) 

1 Small size 10 20.123 200.456 1.234 0.68 1254 

2 Medium size 20 30.789 300.123 2.567 0.72 1545 

3 Large size 30 40.456 400.789 3.890 0.75 1679 
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7.2 Number of vehicle sizing instances 

Five scenarios involving different numbers of trucks and helicopters were executed to validate further and solve the 

proposed model. The model included four objective functions: minimizing prevention phase costs, minimizing response 

phase costs, minimizing maximum service time, and maximizing route reliability. Table 5 presents the performance 

results of the proposed model for the various scenarios. According to this table, the prevention costs in the first objective 

function increased with the rise in the number of helicopters and trucks, indicating a logical outcome. Similarly, the 

second objective function’s cost increased with a steeper slope from state 4 to state 5. However, the third objective 

function decreased in the time taken to assist in affected areas as the problem dimensions increased. In contrast, the 

fourth objective function demonstrated an improvement in route reliability. Figure 2 reflects the trends discussed, 

visually illustrating the relationships between the problem dimensions and the corresponding outcomes in each 

objective function. Increasing the number of helicopters and trucks in the system leads to higher costs; however, it also 

improves overall reliability and reduces response time to affected areas. As depicted in Figure 3, the execution time 

rises proportionally with the increased number of helicopters and trucks. 

Table 5. Performance of the proposed model based on the different scenarios. 

Problem 

No. 

Number of 

Trucks (𝒏𝝊′) 

Number of 

Helicopters (𝒏𝝊′′) 
Obj 1 Obj 2 

Obj 3 

(Hour) 
Obj 4 

Run  

Time (s) 

1 5 3 25.331 253.628 4.328 0.67 1053 

2 8 5 31.628 324.128 3.964 0.74 1127 

3 12 10 37.526 382.204 3.125 0.79 1248 

4 16 13 52.628 516.328 2.127 0.86 1365 

5 21 17 75.288 754.263 1.395 0.93 1440 

 

 

Figure 2. Performance of the four objective functions based on the different scenarios: a) First objective function, b) Second 

objective function, c) Third objective function, and d) Fourth objective function. 



Incorporating Sustainability in Temporary Shelter Distribution for Disaster Response by the LP-based NSGA-II 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.XX, NO.X  

 

 

 

The results hint that increasing the number of helicopters and trucks leads to higher costs in the prevention and response 

phases. However, larger scenarios are associated with reduced service time and improved route reliability. Execution 

time increases with the scale of the problem, suggesting that larger scenarios require more computational resources and 

time to process. 

 

Figure 3. Execution time based on the different scenarios. 

8. Sensitivity Analysis 

8.1. Sensitivity Analysis of 𝝌𝝊 

A sensitivity analysis is conducted on the proposed model to examine the impact of various parameters. This type of 

analysis is commonly performed in optimization and modeling to assess the robustness and performance of a model 

under varying input conditions. The focus is on the vehicle’s capacity (𝑣), and the results are summarized in Table 6. It 

is observed that increasing the vehicle’s capacity led to a decrease in objective function 2. Figure 4 plots the sensitivity 

of objective function 2 to the capacity of the vehicle. According to this figure, a rise in the capacity of vehicle 𝑣 

decreased objective function (2).  

Table 6. Sensitivity analysis of 𝜒𝜐. 

Row Parameter 𝝌𝝊 Obj 2 

1 15 286.325 

2 20 271.65 

3 25 225.49 

4 30 193.74 

5 35 145.39 
 

 

 

Figure 4. Sensitivity of the objective function 2 versus 𝜒𝜐. 
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This information is crucial for decision-making and optimizing the proposed model, indicating that higher vehicle 

capacity may result in better outcomes in terms of response phase costs according to the specified objective function. 

8.2. Sensitivity analysis of 𝒕𝝊𝒊𝒋 

Table 7 shows the sensitivity of the objective function (3) to the travel time from nodes 𝑖 to 𝑗 for vehicle 𝑣. It can be 

inferred that an increase in the travel time resulted in a corresponding rise in the value of objective function (3). Figure 

5 plots the objective function (3) versus the travel time from nodes 𝑖 to 𝑗 for vehicle 𝑣. The plot shows that as the travel 

time increases, the objective function (3) also increases. In other words, the maximum service time is found to be higher 

when the travel time from nodes 𝑖 to 𝑗 for vehicle 𝑣 is higher. 

Table 7. Sensitivity analysis of 𝑡𝜐𝑖𝑗. 

Row Parameter 𝒕𝝊𝒊𝒋 Obj 3 

1 0.5 2.368 

2 1 2.846 

3 1.5 3.749 

4 2 4.547 

5 2.5 6.589 
 

 

Figure 5. Sensitivity of the objective function 3 versus 𝑡𝜐𝑖𝑗. 

This visual representation confirms the positive correlation between travel time and the values of the objective function 

(3). This information is valuable for optimizing vehicle routes and service times in the context of service time 

optimization. 

9. Conclusion and Future Study 

This paper presented an integrated model for distributing temporary shelters after disasters, validated using different 

scenarios. Due to its NP-hard nature, a well-known multi-objective evolutionary algorithm, namely the NSGA-II, was 

employed to final Pareto-optimal solutions for four presented objective functions: minimizing prevention and response 

costs, reducing maximum service time, and maximizing route reliability. The novelty of our methodology lies in its 

ability to provide a range of optimal solutions that offer decision-makers flexibility in selecting the best trade-offs 

among competing objectives. This key feature distinguishes it from traditional optimization methods, such as NGP. The 

study revealed a logical correlation between prevention costs and the number of helicopters and trucks. As problem 

dimensions increased, time to assist decreased, and route reliability improved for the third and fourth objective 

functions. The research has significant implications for disaster management stakeholders in disaster-prone regions. 

The proposed model can be utilized by policymakers in affected countries and adapted for other types of disasters like 

forest fires. For future studies, an uncertainty approach is recommended to estimate demand levels effectively, and a 

machine learning approach can enhance the model’s accuracy. 
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