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Abstract 

This study proposes a multi-objective location-routing problem considering the capacity of vehicles to decline the 

system's costs. The model considers probabilistic times of traveling, service, and waiting by vehicles while 

guaranteeing the least probability which the cumulative values of these parameters are less than a pre-determined 

value when minimization of this value is considered an objective function.  To cope with uncertainty, fuzzy numbers 

for important parameters of customer demand, vehicle capacity, variable and fixed transportation costs, and depot 

opening costs are used. Moreover, the nonlinear constraints are linearized to reduce computational time. We also use 

a fuzzy ranking method to transform the presented model into an equivalent auxiliary crisp model. As the model is 

NP-hard, we introduce a novel Multi-Objective Imperialist Competitive Algorithm (MOICA) to address the issue. 

The efficacy of the presented MOICA is evaluated by comparing its performance against two well-established multi-

objective metaheuristics, Pareto Archived Evolution Strategy (PAES), and Non-Dominated Sorting Genetic 

Algorithm-II (NSGA-II). Leveraging Response Surface Methodology (RSM), the mutation and crossover operators 

employed by each algorithm were meticulously tuned. Subsequently, the performance of all three algorithms was 

examined using four benchmark comparison metrics across a range of established benchmark examples. The results 

demonstrably substantiate the superiority of the proposed MOICA in achieving optimal solutions. 

Keywords: Imperialist Competitive Algorithm (ICA); Facility location; Vehicle routing; Fuzzy mathematical 

programming; Linearization; Location-routing problem (LRP). 

1. Introduction 

Distribution network design hinges on two critical decisions: route planning and facility location. Traditionally, these 

problems are addressed sequentially due to their inherent complexity. However, this approach frequently brings about 

suboptimal solutions, as evidenced by Salhi & Rand (1989). The LRP addresses this limitation by integrating facility 

location and vehicle routing decisions (Vincent et al., 2010, Tordecilla et al., 2023, Shi et al., 2023). This integrated 

approach offers practical and cost-effective solutions for various real-world applications, including the distribution of 

perishable food products (Govindan et al., 2014), waste collection (Caballero et al., 2007, Han et al., 2024), mission 

planning in space exploration (Ahn et al., 2012), hub location and routing (Çetiner et al., 2010), parcel delivery 

(Wasner & Zäpfel, 2004), and blood bank location (Or & Pierskalla, 1979, Kaya & Ozkok, 2020). 

http://www.ijsom.com/


Golmohammadi, Abedsoltan and Hajizadeh Ebrahimi 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.XX, NO.X  

 

 

In recent years, numerous studies have developed combined Location-Routing Problems (LRPs) with varying 

characteristics. A recent survey by Drexl and Schneider (2015) indicates that most of the literature assumes 

deterministic data due to the additional challenges posed by incorporating uncertainty (Drexl and Schneider, 2015). 

However, it is frequently unrealistic to consider that all parameters are precisely known in advance, as real-world 

applications are rife with uncertainties. Consequently, the volume of research on stochastic LRPs is significantly 

smaller compared to deterministic problems. Fuzzy logic has been employed in LRP issues to address vague or 

uncertain parameters. Zarandi et al. (2011) were the first to formulate LRP using fuzzy parameters. However, previous 

studies primarily considered customer demand or travel time as the only fuzzy parameters. For a more realistic 

approach, it is essential to account for the fact that the most critical parameters are not precisely known in advance 

and must be treated as fuzzy data. 

Traditional Location-Routing Problems (LRPs) typically focus on minimizing the total cost. However, real-world 

scenarios often involve multiple, conflicting objectives. Research on LRPs with multiple objectives remains limited 

(Nagy & Salhi, 2007). Therefore, investigating LRPs that incorporate both monetary and non-monetary objectives 

simultaneously is a worthwhile pursuit. 

This research proposes a multi-objective LRP with fuzzy parameters and a homogeneous fleet of vehicles with 

capacity constraints. The model employs probabilistic travel, service, and waiting times due to the inherent difficulty 

or impossibility of precisely determining these parameters in real-world situations with factors like variable traffic 

conditions and unforeseen events. Additionally, real-world applications necessitate timely customer deliveries within 

predefined time windows. To balance these competing objectives of on-time delivery and efficient location-routing, 

the model minimizes the probability of exceeding a predetermined threshold for the total travel, service, and waiting 

times. This objective function prioritizes meeting customer time constraints. The second objective minimizes the 

overall system cost, encompassing variable transportation costs, fixed transportation costs, and depot opening costs. 

The proposed model's capability expands to handle a wider range of uncertainties by incorporating fuzzy numbers for 

crucial parameters. These parameters include customer demand, vehicle capacity, fixed and variable transportation 

costs, and depot opening costs. This approach aligns better with real-world scenarios where precise knowledge of 

these parameters beforehand is often unrealistic. This paper addresses the transformation of a fuzzy Logic Regression 

Problem (LRP) model into a corresponding crisp multi-objective model. To achieve this, a ranking methodology is 

employed that leverages the comparative analysis of expected intervals associated with the fuzzy numbers. 

However, the inherent NP-hardness of the issue is exacerbated by the introduction of non-linear constraints, 

significantly increasing solution time (Alizadeh et al., 2015). To address this challenge, we propose a simplification 

of the model by transforming the non-linear constraint into a linear one using a uniform distribution function. 

Because the proposed model is NP-hard, obtaining optimal solutions within reasonable computational times, 

especially for large-scale instances, necessitates the use of heuristic algorithms. This research leverages MOICA to 

answer the model (Atashpaz-Gargari & Lucas, 2007, Golmohammadi and Abedsoltan, 2023). Prior research suggests 

that the Imperialist Competitive Algorithm (ICA) exhibits superior performance compared to population-based 

approaches (Mozafari et al., 2012; Shiripour et al., 2012; Rahimi et al., 2013; Nia et al., 2015). Inspired by these 

findings, we implement ICA to address the proposed model. The performance of the presented MOICA is evaluated 

against two well-established evolutionary meta-heuristics: PAES and NSGA-II. This evaluation employs four 

benchmark comparison metrics across a range of established benchmark instances. To facilitate an efficient search of 

the solution space, RSM is utilized to define and customize mutation and operators tailored to each algorithm. In 

summary, this paper presents several novel contributions to the field of multi-objective LRPs: 

 Incorporating fuzzy parameters for customer demand, vehicle capacity, costs, and depot opening costs, 

reflecting real-world uncertainties. 

 Modeling probabilistic travel, service, and waiting times to account for inherent variability. 

 Proposing a crisp equivalent by the use of a ranking method based on expected fuzzy number intervals. 

 Guaranteeing a minimum probability of on-time delivery by minimizing the total travel, service, and waiting 

times. 

 Simplifying the model by transforming a non-linear constraint to a linear one. 
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 Employing MOICA, a recently developed multi-objective evolutionary algorithm, to answer the problem. 

 Evaluating MOICA's performance against established algorithms (NSGA-II and PAES) using four 

comparison metrics on benchmark instances. 

The proposed model incorporates a unique combination of features, including, Fuzzy parameters reflecting real-world 

uncertainties in customer demand, vehicle capacity, costs, and depot opening costs, probabilistic travel, service, and 

waiting times to account for inherent variability, classic LRP constraints related to distribution centers, vehicle 

capacity, sub-tour elimination, and graph-based considerations. To the best of our knowledge, this combination has 

not been previously addressed in the literature, resulting in a model that closely resembles real-world logistics 

problems. The complexity introduced by these assumptions aligns the model with the inherent complexities of real-

world scenarios. The research is structured as follows, 

The section 2 presents a review of relevant past works. Section 3 defines and formulates the addressed problem. 

Section 4 details the simplification techniques applied to the proposed model. Section 5 explains the transformation 

of the fuzzy model into a crisp equivalent. Section 6 discusses the proposed MOICA algorithm, comparative 

metaheuristics, parameter settings, comparison metrics, test problem generation, and computational results, including 

a comparison of the three algorithms. Section seven presents suggestions for future research and concludes the paper. 

2. Literature Review 

2.1 Seminal Works and Variants of LRP 

LRPs have garnered less research attention compared to the extensive literature on individual VRPs or location 

variants (Zarandi et al., 2011). While the concept of integrating facility location and vehicle routing originated nearly 

five decades ago, with early studies recognizing the interdependence of these decisions (Prodhon & Prins, 2014), 

optimization techniques and computational power were insufficient for a comprehensive model (Watson-Gandy & 

Dohrn, 1973; Boventer, 1961; Christofides & Eilon, 1969; Maranzana, 1964; Webb, 1968). Although these pioneering 

works identified the close link between location and routing decisions, they did not capture the full complexity of 

LRPs. 

The pivotal work by Salhi and Rand (1989) quantified the benefits of integrating VRP during facility location. Their 

findings demonstrated that separate decision-making can lead to suboptimal solutions, even for long-term location 

decisions (Salhi & Nagy, 1999). This crucial insight spurred a surge in LRP research, as evidenced by the 

comprehensive survey by Nagy and Salhi (2007). Several review papers have contributed to the LRP literature, 

including those by Prodhon and Prins (2014), Drexl and Schneider (2015), Nagy and Salhi (2007), Min et al. (1998), 

and Balakrishnan et al. (1987). These reviews provide classifications of LRP variants and discuss recent advancements 

in the field. 

Standard LRPs are typically formulated as deterministic, static, discrete, single-objective, and single-echelon 

problems, excluding inventory decisions (Drexl & Schneider, 2015, Prodhon & Prins, 2014). Recent literature 

investigations by Drexl & Schneider (2015), and Prodhon & Prins (2014) highlight this standard form while 

acknowledging extensions that incorporate multiple objectives, uncertainties, and additional distribution echelons. 

A growing trend exists towards addressing more intricate and integrated problems in LRP research. Drexl & Schneider 

(2015) propose a classification scheme for LRP variants and extensions published since the last comprehensive 

investigation by Nagy & Salhi (2007). This classification encompasses issues with fuzzy and stochastic data, multi-

echelon distribution networks, multiple objectives multi-period planning horizons, complex route structures, and 

inventory decisions. Drexl & Schneider (2015) further summarize the core ideas of each classified work and identify 

promising research directions. 

Since in the present paper, we propose a multi-objective LRP with stochastic and fuzzy data, and some metaheuristic 

approaches are suggested to solve the proposed model, so here we categorize the existing literature paying more 

attention to recent developments in these main approaches. 

2.2 Deterministic vs. Stochastic vs. Fuzzy Data. 

Deterministic models, a common approach in LRPs, assume all problem data are known with perfect accuracy. 

However, real-world scenarios are inherently uncertain, making this assumption often unrealistic (Drexl & Schneider, 
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2015). Stochastic data addresses this by representing uncertain parameters (e.g., customer demands, and travel times) 

as probability distributions. Fuzzy data, on the other hand, utilizes fuzzy numbers to model imprecise data. While 

incorporating uncertainty adds complexity, a significant portion of the literature continues to rely on deterministic 

models (Drexl & Schneider, 2015). 

Research on stochastic LRPs remains limited. According to Nagy & Salhi (2007), existing stochastic studies primarily 

focus on customer demand as the sole variable and restrict themselves to single-depot, single-vehicle scenarios 

(Traveling Salesman Location Problem). Similarly, Drexl & Schneider (2015) identified only four and five papers 

published between 2006 and 2014 that addressed stochastic and fuzzy data, respectively. This limited focus on 

stochastic and fuzzy data highlights the potential for further research in these areas compared to the abundance of 

work on deterministic formulations. 

Several studies have addressed LRP complexities by incorporating uncertainty. Hassan-Pour et al. (2009) propose a 

two-stage solution for a multi-objective LRP with stochastic facility and transport link availability. They solve the 

facility location issue mathematically and then employ a hybridized simulated annealing (SA) algorithm for the multi-

objective VRP. Pioneering work by Zarandi et al. (2011) introduced fuzzy variables to LRP modeling. They consider 

an LRP with capacitated vehicles and facilities, where travel times are demonstrated as triangular fuzzy numbers. The 

model leverages credibility theory (Baoding, 2004) and utilizes an SA algorithm for the solution. Zare Mehrjerdi & 

Nadizadeh (2013) focus on an LRP with uncertain customer demands modeled as fuzzy data. Their model, based on 

fuzzy credibility theory, is solved using a greedy clustering method incorporating stochastic simulation. 

2.3 Multi-Objective LRPs 

Traditional LRPs typically focus on minimizing total cost, encompassing depot opening costs and variable and fixed 

transportation costs (Nagy & Salhi, 2007). However, real-world scenarios often involve conflicting objectives. While 

research on multi-objective LRPs remains limited (Nagy & Salhi, 2007), recent studies have begun to address this 

gap. 

Building upon prior research, Tavakkoli-Moghaddam et al. (2010) present a model for a bi-objective LRP that 

accommodates the presence of optional customers. This model simultaneously optimizes for both non-monetary and 

monetary objectives. The monetary objective focuses on minimizing total cost expenditures, encompassing facility 

opening costs, fixed and variable depot costs, and variable transportation costs. In contrast, the non-monetary objective 

prioritizes maximizing the total consumer demand served. This study employs two metaheuristics (Elite TS (Gu et al., 

(2007)), and Multi-Objective Scatter Search (MOSS)) to solve the issue and demonstrate that MOSS outperforms Elite 

TS in terms of robustness based on computational results. 

Wang et al. (2014) propose a non-linear LRP model for relief distribution, considering reliability with split delivery, 

total cost, and travel time simultaneously. They employ Non-Dominated Sorting Differential Evolution Algorithm 

(NSDE), and Non-Dominated Sorting Genetic Algorithm (NSGA) for solution (Wang et al., 2014). Martínez-Salazar 

et al. (2014) presented a two-echelon VRP model that incorporates direct transports on the first level and routing 

options on the second. Minimizing total distribution cost and balancing route duration are the addressed objectives. 

They propose two metaheuristics: Scatter Tabu Search for Multi-Objective Optimization (SSPMO) and NSGA-II. 

Their findings suggest SSPMO's efficiency for smaller instances, while NSGA-II performs better with increasing 

problem size (Martínez-Salazar et al., 2014). Niu et al. (2024) investigated a multi-objective LRP problem in the waste 

management system. The goal was to achieve equilibrium among residential satisfaction, carbon emission, and total 

cost. 

2.4 Solution Approaches and Metaheuristics for LRP Problems 

LRP inherently combines two NP-hard sub-problems: vehicle routing and facility location (Megiddo & Supowit, 

1984; Salhi & Nagy, 1999). This characteristic renders exact solution methods impractical for large-scale LRP 

instances encountered in real-world applications (Nia et al., 2015, Diabat, 2014). Metaheuristic search algorithms offer 

an alternative for tackling such complex optimization issues. These algorithms are designed to obtain high-quality 

(though not necessarily optimal) solutions within reasonable computational times. Several successful applications of 

metaheuristics have been documented in LRP research. Prominent examples include Scatter Search (Tavakkoli-

Moghaddam et al., 2010), Ant Colony Optimization (Sim & Sun, 2003; Ting & Chen, 2013), Multi-objective 

dragonfly algorithm (Golmohammadi et al., 2024), Tabu Search (Burks Jr, 2006; Goścień et al., 2015), Simulated 
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Annealing (Vincent et al., 2010; Yu & Lin, 2015), Genetic Algorithms (Karakatič & Podgorelec, 2015; Khalili-

Damghani et al., 2015), Particle Swarm Optimization (Norouzi et al., 2015, Marinakis et al., 2013, Golmohammadi et 

al., 2024), Neural Networks (Schwardt & Fischer, 2008; Schwardt and Dethloff, 2005), and Evolutionary Algorithms 

(Prodhon, 2011; Koç et al., 2015). Among these, population-based approaches like Genetic Algorithms are often 

preferred due to their generally superior performance (Nia et al., 2015). 

ICA, an evolutionary algorithm inspired by socio-political processes (Atashpaz-Gargari & Lucas, 2007), presents 

promising features for LRP applications. Notably, ICA's search process effectively reduces the likelihood of getting 

trapped in local optima for issues with large search spaces (Jula et al., 2015). This is achieved through well-designed 

operators that frequently relocate solutions within the search space. Additionally, ICA's relative youth compared to 

other established algorithms presents ample opportunities for further development (Jula et al., 2015). 

Empirical evidence suggests ICA's effectiveness in solving LRP and related problems. Studies have demonstrated 

ICA's superior performance compared to other similar algorithms in terms of solution quality and computational 

efficiency (Nia et al., 2015). Shiripour et al. (2012) compared ICA and GA for a multi-facility location problem, 

finding ICA preferable in both solution accuracy and computation time. Similar results favoring ICA were obtained 

when applied to non-convex dynamic economic power dispatch (Mohammadi-Ivatloo et al., 2012), project scheduling 

(Rahimi et al., 2013), and composite material design (Mozafari et al., 2012). ICA's versatility is further demonstrated 

by its successful application in various optimization problems, including vehicle routing with time windows (Wang 

et al., 2011), multi-period location problems (Amiri-Aref et al., 2013), hub location problems (Mohammadi et al., 

2014), and generalized traveling salesman problems (Ardalan et al., 2015). 

3. Assumption and Problem Definition 

In the present study, solving the LRP with capacitated vehicles, fuzzy parameters, and also probabilistic times of 

traveling, service, and waiting by vehicles are considered. It is assumed that 𝐺 = (𝑉, 𝐸) is an undirected simple graph 

in which V is a set of nodes including a subset I of P potential depot locations and a subset 𝐽 = 𝑉/𝐼 of n consumers 

respectively. The arc set E that composed of the pairs 𝑒 = (𝑖, 𝑗) in which a normal distribution of travel times of mean 

𝐸(𝑡) and Variance 𝑉(𝑡)  between nodes and also a fuzzy travel cost is related to each element of E. A fuzzy opening 

cost �̃� is considered for each depot 𝑖 𝜖 𝐼. A fuzzy demand  �̃�𝑗 is considered for each customer 𝑗 𝜖 𝐽 which must be met 

by a single vehicle. The transportation unit cost is denoted as a fuzzy variable  �̃�𝑖𝑗. A set K of homogeneous vehicles 

with fuzzy capacity �̃� exists. A dependent fuzzy cost   𝐹�̃�𝑘 is incurred when each vehicle is used by a depot i, and 

performs a single route. Each route should begin from and terminate at the same depot, and its total load should not 

exceed vehicle capacity and also no route is considered between depots. Furthermore, a normal distribution of mean 

𝐸(𝑡) and Variance 𝑉(𝑡) for waiting times 𝑤𝑗𝑘  and service times 𝑠𝑗𝑘 by vehicles are considered, in which there is a 

least probability of 𝛽 that the sum of the total traveling times, service times, and waiting times by vehicles be lower 

than a static value of B when minimization of this value is considered as an objective function. 

The target of the present research is to simultaneously optimize the location and number of depots, obtain the optimum 

allocation of consumers to distribution centers, the optimal number of transportation vehicles, and the allocation of 

customers to them in a fuzzy environment. The addressed problem encompasses two key decisions: facility location 

and vehicle routing. The target is to simultaneously obtain optimal facility locations, transportation routes for vehicles, 

and the most efficient sequence for serving customers while considering vehicle capacities. The proposed model 

incorporates both non-monetary and monetary objective functions. The monetary objective minimizes the total system 

cost, which includes the sum of variable and fixed transportation costs, and fixed facility location costs. The non-

monetary objective minimizes a predetermined value B, representing the trade-off between customer satisfaction 

(served within a predetermined time) and facility location and vehicle routing efficiency. 

3.1 Notations 

3.1.1 Sets 

𝐾    Transportation vehicles 𝑘 ∈ {1, … , 𝑘} 

𝐼    Potential depot locations 𝑖 ∈ {1, … ,𝑚} 

𝐽    Customers 𝑗 ∈ {1, … , 𝑛} 
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3.1.2 Parameters 

�̃� The fixed fuzzy loading capacity of transportation vehicles; 

𝑤𝑗𝑘  Waiting time of vehicle 𝑘 in the place of the costumer 𝑗; 

𝑠𝑗𝑘 Service time of vehicle 𝑘 in the place of the costumer 𝑗; 

�̃�𝑗 The fuzzy demand of the costumer 𝑗; 

𝐹�̃�𝑘  The fixed fuzzy cost of transportation by vehicle 𝑘; 

𝐷𝑖𝑗  Distance among point 𝑖 and point 𝑗 (𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽) ; 

�̃�𝑖𝑗  The fuzzy unit cost of transportation from point 𝑖 to point (𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽); 

�̃�𝑖 The fixed fuzzy cost of opening a depot at site 𝑖; 

𝑡𝑖𝑗 Traveling time from point 𝑖 to point (𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽) ; 

𝐾 Number of available vehicles; 

𝑃 Number of depot locations; 

𝑁 Number of customers; 

3.1.3 Decision Variables 

𝑈𝑙𝑘  Auxiliary variables used in sub-tour elimination constraints; 

𝑧𝑖𝑗  If customer j is served by depot I, it is equal to 1; 0 otherwise; 

𝑦𝑖  If a depot is located at site I, it is equal to 1; 0 otherwise; 

𝑥𝑖𝑗𝑘 If point j is immediately met after point i by vehicle k (𝑖, 𝑗 ∈  𝐼 ∪  𝐽, 𝑘 ∈  𝐾), it is equal to 1; 0 

otherwise 

3.1.4 The Mathematical Model 

The formulation of the proposed multi-objective stochastic and fuzzy LRP can be stated as follows: 

𝑀𝑖𝑛∑�̃�𝑖𝑦𝑖
𝑖∈𝐼

+∑𝐹�̃�𝑘∑∑𝑥𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼𝑘∈𝐾

+∑∑∑�̃�𝑖𝑗𝐷𝑖𝑗𝑥𝑖𝑗𝑘
𝑘∈𝐾𝑗∈𝐽𝑖∈𝐽

 (1) 

𝑀𝑖𝑛    𝐵  (2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜:   

∑𝑦𝑖
𝑖∈𝐼

= 𝑃 
 

(3) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑖∈𝐼∪𝐽𝑘∈𝐾

= 1 ∀𝑗 ∈ 𝐽 (4) 

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝐼∪𝐽

− ∑ 𝑥𝑗𝑖𝑘
𝑗∈𝐼∪𝐽

= 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ∪ 𝐽 (5) 

∑∑𝑥𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼

≤ 1 
∀𝑘 ∈ 𝐾 (6) 
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∑�̃�𝑗
𝑗∈𝐽

∑ 𝑥𝑖𝑗𝑘
𝑖∈𝐼∪𝐽

≤ �̃� ∀𝑘 ∈ 𝐾 (7) 

−𝑧𝑖𝑗 + ∑ (𝑥𝑖𝑢𝑘 + 𝑥𝑢𝑗𝑘)

𝑢∈𝐼∪𝐽

≤ 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (8) 

𝑃 {∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑘
𝑗∈𝐼∪𝐽𝑖∈𝐼∪𝐽

+∑(𝑠𝑗𝑘 + 𝑤𝑗𝑘) ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝐼∪𝐽𝑗∈𝐽

≤ 𝐵} ≥ 𝛽 ∀𝑘 ∈ 𝐾 (9) 

𝑧𝑖𝑗 ≤ 𝑦𝑖  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (10) 

𝑈𝑔𝑘 − 𝑈𝑗𝑘 +𝑁𝑥𝑔𝑗𝑘 ≤ 𝑁 − 1 ∀𝑔, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (11) 

𝑥𝑖𝑗𝑘 , 𝑦𝑖 , 𝑧𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽, 𝑘 ∈ 𝐾 (12) 

𝑈𝑙𝑘 ≥ 0 ∀𝑙 ∈ 𝐼, 𝑘 ∈ 𝐾 (13) 

The model employs two objective functions and a set of constraints to optimize vehicle routing and facility location 

decisions. Objective Function 1 (Eq. 1): Minimizes total system cost, encompassing depot opening costs, and variable 

and fixed transportation costs. Objective Function 2 (Eq. 2): Minimizes total travel time, service time, and waiting 

time for vehicles. This is achieved by minimizing a predetermined value B, introduced in constraint (9).  

Constraint Set 3 ensures the number of open depots meets a predetermined value. Constraint Set 4 (Eq. 4) guarantees 

each consumer is assigned to a single open depot and served by one vehicle. Constraint Set 5 represents vehicle flow, 

mandating each route starts and ends at the same depot (a vehicle cannot leave a customer unserved). Constraint Set 

6 limits the existence of a direct route between any two customers to at most one. Constraint Set 7 enforces vehicle 

capacity limitations. Constraint Set 8 permits customer demand allocation only on routes that include both a depot and 

customers. Constraint Set 9 ensures a minimum probability (β) that the total travel, service, and waiting times for 

vehicles fall below a specified value (B). Constraint Set 10 links depot service to the establishment; a depot can serve 

consumers only if it is open. Constraint Set 11 eliminates sub-tours, ensuring efficient routing. Constraint sets 12-13 

define the decision variables' nature. 

4. Presented Model Simplification 

LRPs are NP-hard issues, and the inclusion of non-linear constraints further exacerbates their computational 

complexity (Megiddo & Supowit, 1984). Consequently, obtaining optimal solutions for models with non-linear 

constraints can be highly time-consuming. To address this challenge, we propose the linearization of non-linear 

constraint (9). This linearization enhances the efficiency of our presented model by enabling the application of efficient 

solution algorithms. The non-linear constraint (9) is linearized using a uniform distribution function, as follows: 

First, we need to define an integer variable y as follows, 

𝑦 =∑∑𝑡𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝑠𝑗𝑘 + 𝑤𝑗𝑘)

𝑁

𝑖=0

− 𝐵 (14) 

Considering the normal distribution of mean E (t) and Variance V(t) for traveling times, service times, and waiting 

times by vehicles, the variance and mean of variable y can be stated as follows: 

𝐸(𝑦) =∑∑𝐸(𝑡𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝐸(𝑠𝑗𝑘) + 𝐸(𝑤𝑗𝑘))

𝑁

𝑖=0

− 𝐵 (15) 
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𝑉(𝑦) =∑∑𝑉(𝑡𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝑉(𝑠𝑗𝑘) + 𝑉(𝑤𝑗𝑘))

𝑁

𝑖=0

 (16) 

So, it is evident that the following term has a standard normal distribution: 

∑∑𝑡𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝑠𝑗𝑘 +𝑤𝑗𝑘)

𝑁

𝑖=0

− 𝐵 − 𝐸(𝑦) √𝑉(𝑦)⁄ ~𝑁(0,1) (17) 

Then, constrain (9) is equal to the following term: 

(18) 
∑ ∑ 𝑡𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1 +∑ (𝑠𝑗𝑘 + 𝑤𝑗𝑘)

𝑁
𝑖=0 − 𝐵 − 𝐸(𝑦)

√𝑉(𝑦)
≤ −

𝐸(𝑦)

√𝑉(𝑦)
 

Also, in normal distribution if 𝜃~𝑁(0,1), we have: 

(19) 𝑃{𝜃 ≤ −𝐸(𝑦) √𝑉(𝑦)⁄ } ≥ 𝛽 

So, the service level constraint can be established only when we have the following term: 

(20) ∅−1(𝛽) ≤ −𝐸(𝑦) √𝑉(𝑦)⁄  

Finally, considering constraint (20), constrain (9) is linearized as follows: 

(21) 

∅−1(𝛽)√∑∑𝑉(𝑡𝑖𝑗)𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝑉(𝑠𝑗𝑘) + 𝑉(𝑤𝑗𝑘))∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=0

+∑∑𝐸(𝑡𝑖𝑗)𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝐸(𝑠𝑗𝑘) + 𝐸(𝑤𝑗𝑘))

𝑁

𝑖=0

∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

≤ 𝐵 

5. The Auxiliary Crisp Multi-Objective Model  

Fuzzy numbers lack a strict linear order, typically exhibiting a partial order (Lai & Hwang, 1993). To address this, 

various ranking methods have been presented in the literature to transform fuzzy numbers into a totally ordered set 

(JIMÉNEZ, 1996; Inuiguchi & Ramık, 2000; Baykasoglu & Gocken, 2010; Hatami-Marbini et al., 2011). These 

approaches play a crucial role in possibility models by facilitating the ranking of objective function values and 

constraint feasibility. The selection of a ranking method is guided by several desirable attributes, including rationality, 

distinguishability, adherence to fuzzy representation, and robustness (Jiménez et al., 2007). This study adopts the 

ranking method based on expected interval comparison, as introduced by JIMÉNEZ (1996). This approach not only 

satisfies the essential properties of existing methods but also offers computational efficiency for linear problems due 

to its linearity-preserving nature (Jiménez et al., 2007). 

Here, the framework of the implementation of the ranking method is presented (JIMÉNEZ, 1996): 

Suppose that we have the following linear programming issue with fuzzy parameters: 

(22) 
𝑚𝑖𝑛 �̃�𝑥 

𝑠. 𝑡. : 𝑥 ∈ {𝑥 ∈ 𝑅𝑛|�̃�𝑥 ≥ �̃�, 𝑥 ≥ 0} 

The membership function of a fuzzy number �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4)will be defined thus: 
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(23) 𝜇𝐴(𝑥) =

{
 
 

 
 
0                ; ∀𝑥 ∈ (𝑎4, ∞)

𝑓𝐴(𝑥)        ; ∀𝑥 ∈ [𝑎1, 𝑎2]

1               ; ∀𝑥 ∈ [𝑎2, 𝑎3]

𝑔𝐴(𝑥)       ; ∀𝑥 ∈ [𝑎3, 𝑎4]

0               ; ∀𝑥 ∈ (𝑎4, ∞)

 

In order to demonstrate the existence of the inverse functions 𝑓𝐴
−1(𝑥) and 𝑔𝐴

−1(𝑥), considered that 𝑓𝐴(𝑥) be continuous 

and increasing but 𝑔𝐴(𝑥) be decreasing and continuous. Then, the expected interval of a fuzzy number is calculable 

(JIMÉNEZ, 1996). 

(24) 𝐸𝐼(�̃�) = [𝐸1
𝐴, 𝐸2

𝐴] = [ ∫ 𝑥𝑑𝑓𝐴(𝑥)

𝑎2

𝑎1

, − ∫ 𝑥𝑑𝑔𝐴(𝑥)

𝑎4

𝑎3

] 

Integrating by parts and also changing the variable 𝛼= 𝑓𝐴(𝑥), 𝛼= 𝑔𝐴(𝑥), the expected interval of a fuzzy number �̃�, 

noted 𝐸𝐼(�̃�), can be stated by: 

(25) 𝐸𝐼(�̃�) = [𝐸1
𝐴, 𝐸2

𝐴] = [∫𝑓𝐴
−1(𝛼)𝑑𝛼

1

0

, −∫𝑔𝐴
−1(𝛼)𝑑𝛼

1

0

] 

If 𝑓𝐴(𝑥)and 𝑔𝐴(𝑥)are linear, the expected interval for a triangular or trapezoidal fuzzy number �̃�, noted 𝐸𝐼(�̃�), is 

easily calculated as eq.(26) and the expected value of a fuzzy number, noted 𝐸𝑉(�̃�), is the half point of its expected 

interval, as follows: 

 (26) 𝐸𝐼(�̃�) = [
1

2
(𝑎1 + 𝑎2),

1

2
(𝑎3 + 𝑎4)] 

(27) 𝐸𝑉(�̃�) =
𝐸1
𝐴 + 𝐸2

𝐴

2
 

Which for a trapezoidal fuzzy number can be written as follows: 

(28) 𝐸𝑉(�̃�) =
𝑎1 + 𝑎2 + 𝑎3 + 𝑎4

4
 

On the other hand, for any pair of fuzzy numbers A ̃and B,̃ based on the ranking method of Jimenez, the degree to 

which 𝐴 ̃is bigger than 𝐵 ̃is defined as: 

(29) 
𝜇𝑀(�̃�, �̃�) =

{
 
 

 
 0                                               𝑖𝑓𝐸2

𝑎 − 𝐸1
𝑏 < 0                            

𝐸2
𝐴 − 𝐸1

𝐵

𝐸2
𝐴 − 𝐸2

𝐵 − [𝐸1
𝐴 − 𝐸2

𝐵]
       𝑖𝑓  0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏 , 𝐸2

𝑎 − 𝐸1
𝑏]

1                                              𝑖𝑓𝐸1
𝑎 − 𝐸2

𝑏 > 0                            

 

Where [𝐸1
𝐴, 𝐸2

𝐴] 𝑎𝑛𝑑 [𝐸1
𝐵 , 𝐸2

𝐵] are expected intervals of A ̃and B ̃. When 𝜇𝑀(�̃�, �̃�) = 0.5, it implies that �̃� and �̃� are 

indifferent and when 𝜇𝑀(�̃�, �̃�) ≥ 𝛼, 𝐴 ̃is greater than, or equal to 𝐵 ̃at least in a degree of preferences 𝛼, that will be 

denoted by �̃� ≥𝛼 �̃�. 

Also, for any pair of fuzzy numbers �̃� and �̃�, when �̃� is indifferent to 𝐵 ̃in degree of 𝛼, the following relationships can 

be defined simultaneously (Parra, Terol et al. 2005, Jiménez, Arenas et al. 2007): 
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�̃� ≤𝛼/2 �̃�      �̃� ≥𝛼/2 �̃� (30) 

Eq. (30) can be rewritten as follow: 

𝛼/2 ≤ 𝜇𝑀(�̃�, �̃�) ≤ 1 − 𝛼/2 (31) 

Moreover, if  𝑚𝑖𝑛 {𝜇𝑀(�̃�𝑥, �̃�)} = 𝛼, the decision vector 𝑥 ∈ 𝑅𝑛 will be feasible in a degree of 𝛼, that is stated 

as �̃�𝑥 ≥𝛼 �̃� (Jiménez, Arenas et al. 2007). So, according to the above explanation, eq. (29) can be rewritten as the 

follows: 

(32) 

[(1 − 𝛼). 𝐸2
𝐴 + 𝛼. 𝐸1

𝐴]. 𝑥 ≥ 𝛼. 𝐸2
𝐵 + (1 − 𝛼). 𝐸1

𝐵    𝑜𝑟   

𝐸2
𝐴𝑥 − 𝐸1

𝐵

𝐸2
𝐴𝑥 − 𝐸1

𝐴𝑥 + 𝐸2
𝐵 − 𝐸1

𝐵 ≥ 𝛼 

Jimenez et al. (2007) proved that the feasible solution 𝑥0 is 𝛼-acceptable optimal solution of the model eq.(22), if it is 

verified that: 

�̃�𝑥 ≥ �̃�𝑥0 

∀𝑥 ∈ {𝑥 ∈ 𝑅𝑛|�̃�𝑥 ≥𝛼 �̃�, 𝑥 ≥ 0} 
(33) 

And at least in the degree of ½, we can say 𝑥0 is a better solution in opposition to the other feasible vectors. So eq. 

(33) can be written as follows: 

𝐸1
𝐶𝑥 + 𝐸2

𝐶𝑥

2
≥
𝐸1
𝐶𝑥0 + 𝐸2

𝐶𝑥0

2
 (34) 

In the end, according to above explanation, with substitution of fuzzy parameters with the expected interval and 

expected values, model (22) can be transformed into an equivalent crisp 𝛼-parametric linear model as follows:  

(35) 
𝑚𝑖𝑛 𝐸𝑉(�̃�). 𝑥 

𝑠. 𝑡. : 𝑥 ∈ {𝑥 ∈ 𝑅𝑛|�̃�𝑥 ≥𝛼 �̃�, 𝑥 ≥ 0} 

Where 𝐸𝑉(�̃�) represents the expected value of the fuzzy vector �̃�. 

Therefore, considering the above explanations and definitions, after the use of proper linearization and substitution of 

fuzzy parameters with the expected interval and expected values, the presented model is converted to the equivalent 

auxiliary crisp multi-objective model as follows: 

𝑀𝑖𝑛∑𝐸𝑉(�̃�𝑖)𝑦𝑖
𝑖∈𝐼

+∑𝐸𝑉(𝐹�̃�𝑘)∑∑𝑥𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼𝑘∈𝐾

+∑∑∑𝐸𝑉(�̃�𝑖𝑗)𝐷𝑖𝑗𝑥𝑖𝑗𝑘
𝑘∈𝐾𝑗∈𝐽𝑖∈𝐽

 (36) 

𝑀𝑖𝑛𝐵  )37) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜:   

∑𝑦𝑖
𝑖∈𝐼

= 𝑃 
 

(38) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑖∈𝐼∪𝐽𝑘∈𝐾

= 1              ∀𝑗 ∈ 𝐽 (39) 

http://www.bing.com/search?q=define+in+the+end
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∑ 𝑥𝑖𝑗𝑘
𝑗∈𝐼∪𝐽

− ∑ 𝑥𝑗𝑖𝑘
𝑗∈𝐼∪𝐽

= 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ∪ 𝐽 (40) 

∑∑𝑥𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼

≤ 1 
∀𝑘 ∈ 𝐾 (41) 

∑(𝛼. 𝐸2
𝑑𝑗
+ (1 − 𝛼). 𝐸1

𝑑𝑗
)

𝑗∈𝐽

∑ 𝑥𝑖𝑗𝑘
𝑖∈𝐼∪𝐽

≤ [(1 − 𝛼). 𝐸2
𝑄 + 𝛼. 𝐸1

𝑄] ∀𝑘 ∈ 𝐾 (42) 

−𝑧𝑖𝑗 + ∑ (𝑥𝑖𝑢𝑘 + 𝑥𝑢𝑗𝑘)

𝑢∈𝐼∪𝐽

≤ 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (43) 

∅−1(𝛽)√∑∑𝑉(𝑡𝑖𝑗)𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝑉(𝑠𝑗𝑘) + 𝑉(𝑤𝑗𝑘))∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=0

+∑∑𝐸(𝑡𝑖𝑗)𝑥𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

+∑(𝐸(𝑠𝑗𝑘) + 𝐸(𝑤𝑗𝑘))

𝑁

𝑖=0

∑𝑥𝑖𝑗𝑘

𝑁

𝑗=1

≤ 𝐵 

∀𝑘 ∈ 𝐾 (44) 

𝑧𝑖𝑗 ≤ 𝑦𝑖  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (45) 

𝑈𝑔𝑘 − 𝑈𝑗𝑘 +𝑁𝑥𝑔𝑗𝑘 ≤ 𝑁 − 1 ∀𝑔, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (46) 

𝑥𝑖𝑗𝑘 , 𝑦𝑖 , 𝑧𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽, 𝑘 ∈ 𝐾 (47) 

𝑈𝑙𝑘 ≥ 0 ∀𝑙 ∈ 𝐼, 𝑘 ∈ 𝐾 (48) 

6. Solution Approaches and Proposed Algorithms 

The NP-hard nature of LRPs necessitates the use of metaheuristic search algorithms for obtaining near-optimal 

solutions within practical timeframes (Salhi & Nagy, 1999). This study proposes a novel MOICA to address the 

proposed multi-objective LRP model. To benchmark MOICA's effectiveness, we compare its performance with two 

established multi-objective evolutionary algorithms: PAES and NSGA-II. Additionally, to enhance the search 

efficiency within the solution space, we customize mutation and crossover strategies for each algorithm using RSM. 

This customization aims to improve the algorithms' ability to explore and exploit promising regions of the search 

space. The subsequent sections detail the solution representation scheme (Section 6.1) and the proposed MOICA 

(Section 6.2). A comprehensive comparison study will be conducted using several benchmark instances and 

performance metrics to validate MOICA's efficacy. Section 6.3 describes comparative metaheuristic algorithms, 

Section 6.4 explains parameter setting, Section 6.5 introduces comparison metrics, Section 6.6 describes the 

initialization of numerical test problems and finally, Section 6.7 presents a comparison of metaheuristic algorithms. 

6.1 Solution Method and Implementation  

A candidate solution in our LRP model must represent three crucial aspects: 

1. Customer Allocation: This determines which consumers are served by each vehicle. 

2. Depot Selection: It identifies which depots will be opened to serve customers. 

3. Vehicle Routing: This defines the sequence that consumers are visited by each vehicle, starting and ending 

at the same depot. 

We propose a string-based solution representation scheme using a permutation of 𝑛 consumers, 𝑑 potential depots, 

and 𝑚 vehicles. This string comprises three distinct parts: 
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 Part 1 (n elements): This encodes the customer sequence for each route. 

 Part 2 (m elements): This indicates the consumer indices served by each vehicle's route. 

 Part 3 (m elements): This specifies the starting depots for each vehicle's route. 

Decoding the Solution Representation: 

 Part 1: The customer sequence in each route is determined by reading elements from left to right. 

 Part 2: Consecutive elements define a customer subset served by a single vehicle. The values are sorted from 

smallest to largest, ensuring each consumer is served by one vehicle. 

 Part 3: This part identifies the starting depot for each vehicle. Duplicate values represent opened depots. A 

new route begins at each opened depot, serving customers assigned to that depot until vehicle capacity is 

reached. 

6.1.1 Effectiveness of the Representation: 

This solution representation offers several advantages: 

 Comprehensiveness: It encodes all essential decision variables (customer allocation, depot selection, and 

vehicle routing) within a single structure. 

 Efficiency: The decoding process is straightforward and computationally efficient. 

 Constraint Satisfaction: The design ensures that vehicle capacity constraints are not violated. 

Figure 1 provides this solution representation for a sample problem. 

4 2 2 1 1 8 6 5 3 1 7 8 2 6 1 4 3 5 
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Figure 1. Sample solution 
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6.2 Multi-Objective Imperialist Competitive Algorithm 

The ICA is a recent evolutionary optimization algorithm inspired by socio-political processes (Atashpaz-Gargari & 

Lucas, 2007). It has demonstrated effectiveness in achieving fast convergence rates and finding high-quality solutions 

(global optima) for various optimization problems (Nazari-Shirkouhi et al., 2010). ICA utilizes an initial population, 

with each individual referred to as a "country." The following subsections will provide a detailed explanation of ICA's 

key steps. 

6.2.1 Generating Initial Empires 

Within the domain of optimization, the objective lies in identifying an optimal solution defined by a set of decision 

variables structured as an array. This array is referred to as a "chromosome" within the framework of GA, while the 

terminology "country" is employed within the context of ICA. In the case of N-dimensional optimization problems, a 

"country" is constructed as an 1 × 𝑁 array, as detailed below: 

(49) 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 = [𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁] 

The constituent elements of a country are represented by floating-point numerical values, with each element 

corresponding to a specific parameter, such as cultural attributes, linguistic characteristics, or economic policies. The 

determination of a country's cost is predicated upon the application of predefined cost functions. Subsequently, 

(50) 𝐶𝑜𝑠𝑡 = 𝑓[𝐶𝑜𝑢𝑛𝑡𝑟𝑦] = 𝑓[𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁] 

To initiate the optimization algorithm, an initial population of size 𝑁𝑝𝑜𝑝 is generated. Subsequently, a subset of 𝑁𝑖𝑚𝑝 

countries deemed the most influential, are designated as imperialists. The remaining population, comprising 

𝑁𝑐𝑜𝑙(𝑁𝑐𝑜𝑙 =  𝑁𝑝𝑜𝑝 −  𝑁𝑖𝑚𝑝) individuals, is partitioned into colonies, each affiliated with a specific empire. The 

cost value associated with each objective function is computed, enabling the calculation of the cost value for each 

imperialist through the following equation: 

(51) 𝐶𝑜𝑠𝑡𝑖,𝑛 =
|𝑓𝑖,𝑛
𝑝
− 𝑓𝑖,𝑛

𝑝,𝑏𝑒𝑠𝑡
|

𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
𝑝,𝑚𝑎𝑥

− 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
𝑝,𝑚𝑖𝑛

 

In the aforementioned equation, 𝐶𝑜𝑠𝑡𝑖,𝑛 denotes the normalized value of the 𝑖𝑡ℎ objective function for the 𝑛𝑡ℎ 

imperialist, while 𝑓𝑖,𝑛
𝑝
 represents the corresponding raw value. The optimal value of the 𝑖𝑡ℎ objective function at each 

iteration is denoted by 𝑓𝑖 
𝑝,𝑏𝑒𝑠𝑡

, with 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
𝑝,𝑚𝑎𝑥

 and 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
𝑝,𝑚𝑖𝑛

 representing the maximum and minimum values, respectively. 

The normalized value of the cost of each imperialist is determined by summing the normalized values of all objective 

functions, as expressed by the following formula: 

(52) 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑛 =∑𝐶𝑜𝑠𝑡𝑖,𝑛

𝑟

𝑖=1

 

Where r denotes the number of objective functions. Subsequent to the computation of normalized objective function 

values, the power of each imperialist is determined based on the following equation. Based on the imperialists' 

respective powers, the colonies are subsequently partitioned among them. Through this process, 

(53) 𝑝𝑛 = |
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑛

∑ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑖
𝑁𝑖𝑚𝑝
𝑖=1

| 

Ultimately, the initial population of colonies within an empire is computed using the following equation, 

(54) 𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝑝𝑛. 𝑁𝑐𝑜𝑙} 

In the equation,  𝑁𝐶𝑛 represents the initial number of colonies assigned to the 𝑛𝑡ℎ imperialist, while 𝑁𝑐𝑜𝑙  signifies the 

total number of colonies. Subsequently, a random selection of 𝑁𝐶𝑛 colonies is undertaken and assigned to the 
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respective imperialists. These colonies, in conjunction with their corresponding imperialists, constitute the 𝑛𝑡ℎ empire. 

Consequently, empires with greater power are characterized by a larger number of colonies, whereas those with lesser 

power exhibit a smaller colony count. 

6.2.2 Total Power of an Empire 

The aggregate power of an empire is computed as the sum of the imperialist's power and a percentage of the mean 

power of its constituent colonies, as formalized in Equation (55). Subsequently, the imperialistic competition 

commences, resulting in the elimination of weaker empires from the competitive landscape. 

(55) 𝑇𝑃 𝐸𝑚𝑝𝑛 = (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑛) + 𝜉𝑚𝑒𝑎𝑛{𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛)}) 

Where 𝑇𝑃 𝐸𝑚𝑝𝑛 is the total power of the𝑛𝑡ℎ empire and 𝜉(zeta) is a positive small number, that is advised to be less 

than 1 in order to augment the role of the colonies in determining the total power of an empire. 

In Equation (55), 𝑇𝑃 𝐸𝑚𝑝𝑛 represents the total power of the 𝑛𝑡ℎ empire. The parameter 𝜉 (zeta), a positive constant 

less than unity, is introduced to amplify the influence of colonies on the determination of an empire's overall power. 

6.2.3 Assimilation 

The absorption policy inherent to the ICA algorithm mandates the translocation of colonies towards their respective 

imperialist counterparts. This movement is influenced by a constellation of socio-political factors, visually depicted 

in Figure 2. The directional vector, originating from the colony and terminating at the imperialist, defines the trajectory 

of this movement. As illustrated in Figure 2, the scalar quantity 'd' represents the inter-colonial distance between the 

imperialist and its colony. The actual displacement (x) of the colony towards its imperialist is modeled as a random 

variable uniformly distributed within the interval [0, d]. 

 

Figure 2. Moving colonies toward the imperialists with a random angle θ 

6.2.4 Crossover Policy 

During this phase, information exchange among colonies is facilitated through the application of crossover operators. 

The proportion of the population participating in the crossover operation is denoted by p-Crossover. 

6.2.5 Revolution 

A random selection process is employed to identify a subset of colonies, which are subsequently replaced by an 

equivalent number of newly generated individuals. This mechanism, analogous to the mutation in Genetic Algorithms, 

is termed 'revolution'. The revolution operation induces random modifications to a colony's socio-political attributes. 

The implementation of the revolution operation enhances the algorithm's diversity, augments its capacity to evade 

local optima, and mitigates the risk of premature convergence. 
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6.2.6 Exchanging Positions of a Colony and the Imperialist  

Moving colonies toward their imperialist, a colony might reach a better position with lower cost than the imperialist. 

In this case, when a colony becomes more powerful than its imperialist, its position will be reversed and the total cost 

of each imperialism will be up-to-date. 

6.2.7 Uniting similar empires 

During the search for the global minimum, convergence of imperialist positions can occur. When the distance between 

two imperialists falls below a predefined threshold, they are merged into a single empire. This process involves 

combining all their colonies to form the colony set of the newly formed empire. 

6.2.8 Imperialistic competition 

During the imperialistic competition phase, empires engage in a contest to acquire a subset of the weakest colonies 

belonging to the least powerful empire. The probability of each empire successfully obtaining these colonies is 

determined by its respective possession probability, as calculated according to the following Equation, 

(56) 𝑁𝑇𝑃 𝐸𝑚𝑝𝑛 = 𝑚𝑎𝑥{𝑇𝑃 𝐸𝑚𝑝𝑖} − 𝑇𝑃 𝐸𝑚𝑝𝑛 

Where 𝑁𝑇𝑃 𝐸𝑚𝑝𝑛 represents the total power of the 𝑛𝑡ℎ empire and 𝑇𝑃 𝐸𝑚𝑝𝑛 its corresponding normalized total 

power. Given the normalized total power of all empires, the normalized power or possession probability of each empire 

can be expressed by the following equation: 

(57) 𝑃𝑝𝑛 = |
𝑁𝑇𝑃 𝐸𝑚𝑝𝑛

∑ 𝑇𝑁𝑇𝑃 𝐸𝑚𝑝𝑖
𝑁𝑖𝑚𝑝
𝑖=1

| 

Subsequently, the aforementioned colony is assigned to an empire through the application of the roulette wheel 

selection method. To facilitate the distribution of the weakest colonies among the empires, the vector P is defined as 

follows, 

(58) 𝑃 = [𝑝𝑝1 , 𝑝𝑝2 , 𝑝𝑝3 , … , 𝑝𝑝𝑁𝑖𝑚𝑝
] 

Then, the vector R with the same size as P is created in which its elements are random numbers generated by the 

uniform distribution function between 0 and 1. 

   (59) 𝑅 = [𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁𝑖𝑚𝑝] 

 

Also, vector D is expressed by subtracting vector R from P, as follows, 

(60) 𝐷 = 𝑃 − 𝑅 = [𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑁𝑖𝑚𝑝] = [𝑝𝑝1 − 𝑟1, 𝑝𝑝2 − 𝑟2, 𝑝𝑝3−𝑟3, … , 𝑝𝑝𝑁𝑖𝑚𝑝
− 𝑟𝑁𝑖𝑚𝑝] 

By examining vector D, the element possessing the maximum value is identified. The corresponding index of this 

element determines the empire that will acquire the colony (or colonies). The process of empire selection bears 

resemblance to the roulette wheel selection method employed in Genetic Algorithms for parent selection. However, 

this mechanism exhibits a significantly enhanced computational efficiency compared to the traditional roulette wheel, 

thereby accelerating the overall execution speed.  

6.2.9 Eliminating the Powerless Empires 

The core competition mechanism in ICA drives the elimination of weaker empires. This occurs when weak empires 

lose all their colonies, effectively removing them from the competition. This process fosters a gradual augment in the 

power of strong empires and a corresponding decline in the power of weak ones. Over time, this competition ideally 

leads to the collapse of all empires except the most powerful one, resulting in the convergence of all colonies into a 
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single empire. Consequently, the solutions (countries) within this final empire converge towards the cost function 

global minimum, signifying the termination of the algorithm. 

6.2.10 Stopping Criteria 

The termination criteria for ICA typically encompass several factors including maximum Iterations, predefined CPU 

time, and single remaining empire: If only one empire persists after the competition process, the algorithm terminates, 

indicating potential convergence. In this study, we adopt the single remaining empire criterion for termination. This 

signifies the elimination of all weaker empires, suggesting convergence towards a global minimum within the final 

remaining empire. Additionally, the algorithm will be terminated if the best solution remains stagnant for a consecutive 

period, but this criterion is not employed here. 

6.3 Comparative Meta-Heuristics  

This study aims to evaluate the effectiveness of the presented MOICA by comparing its performance with two 

established multi-objective evolutionary algorithms: PAES and NSGA-II. The evaluation will be conducted using four 

key performance metrics, which will be detailed in Section 6.5. 

6.3.1 Non-Dominated Sorting Genetic Algorithm II (NSGAII) 

The NSGA-II, introduced by Deb et al. (2000) and further elaborated by Deb et al. (2002), is a prominent algorithm 

for multi-objective optimization issues. It builds upon the foundation of GA to identify the Pareto-optimal front, a set 

of solutions where no improvement in one objective can be achieved without sacrificing another (Deb, 2001). NSGA-

II serves as an improvement over NSGA (Srinivas & Deb, 1994) by incorporating elitism through non-dominated 

sorting and maintaining population diversity using crowding distance sorting. Similar to GAs, NSGA-II utilizes 

mutation and crossover operators to generate new solutions. After population initialization, the following key steps 

are employed. 

6.3.2 Non-Dominated Sorting 

This is a core principle in multi-objective optimization algorithms. It aims to classify candidate solutions into distinct 

fronts. Within each front, no solution dominates any other solution according to all objective functions simultaneously. 

In simpler terms, for any two solutions in the same front, there is no way to improve one objective function without 

worsening another. Then, after sorting these small groups the best of them will be selected. For an n objective functions 

model, solution 𝑥1 is superior to the solution 𝑥2 if: 

1. For all of the objective functions, solution x1 is not worse than solution x2.  

2. For at least one of the individual objective functions, x1 is exactly better than x2 

Employing this technique, all solutions that are non-dominated by any other are classified into the first front. 

Subsequently, solutions dominated exclusively by members of the first front are grouped into the second front. 

6.3.3 Crowding Distance 

Crowding distance sorting, a key component of NSGA-II, refines the solution selection process within each non-

dominated front. It aims to maintain a diverse population by favoring solutions located on the periphery of the fronts, 

promoting exploration of the entire Pareto-optimal frontier. The crowding distance of a solution is a metric that 

estimates its neighbor density within the front. Solutions with a higher crowding distance reside in less crowded 

regions and are thus more likely to be chosen for the next generation, fostering diversity. The calculation of crowding 

distance in NSGA-II is presented in Equation (61): 

𝐶𝐷𝑖 =∑
𝑓𝑟,𝑖+1
𝑃 − 𝑓𝑟,𝑖−1

𝑃

𝑓𝑟,𝑇𝑜𝑡𝑎𝑙
𝑃.𝑚𝑎𝑥 − 𝑓𝑟,𝑇𝑜𝑡𝑎𝑙

𝑃.𝑚𝑖𝑛

𝑛

𝑟=1

 (61) 

Wherein n denotes the number of objective functions,  𝑓𝑟,𝑖+1
𝑝

 represents the value of the 𝑟𝑡ℎ  objective function for the 

(𝑖 + 1)𝑡ℎ solution, and  𝑓𝑟,𝑖−1 
𝑝,

 represents the value of the rth objective function for the (𝑖 − 1)𝑡ℎ solution when the 

population is ordered based on the crowding distance of the 𝑟𝑡ℎ objective function. Additionally,  𝑓𝑟,𝑡𝑜𝑡𝑎𝑙
𝑝,𝑚𝑎𝑥

 and 𝑡𝑜𝑡𝑎𝑙 

signify the maximum and minimum values, respectively, of the 𝑟𝑡ℎ objective function. 
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6.3.4 Selection and Recombination 

Individual selection is conducted via tournament selection, incorporating a crowding comparison operator. This 

process is executed subsequent to the ranking and assignment of individuals based on non-domination and crowding 

distance criteria. The first step of the tournament selection mechanism is selecting two solutions for the population 

size. This methodology amalgamates the current and offspring populations to form a combined pool from which 

individuals for the subsequent generation are selected. The new population is sequentially populated by each non-

dominated front until the prescribed population size is attained.  

6.3.5 Pareto Archived Evolution Strategy (PAES) 

The PAES is a metaheuristic algorithm designed to address multi-objective optimization problems (Knowles and 

Corne, 1999; Corne et al., 2000). Leveraging a simple (1 + 1) local search evolution strategy, PAES effectively 

identifies diverse solutions within the Pareto optimal set. To maintain population diversity along the Pareto front and 

assess the quality of newly generated candidate solutions, the algorithm employs an archive to store non-dominated 

solutions. Initially, the algorithm commences with a single randomly generated chromosome, which undergoes 

evaluation using the specified multi-objective cost function. Subsequently, at each iteration, a new candidate solution 

is produced through a random mutation operation. The newly generated solution is then compared to the current 

solution, and an update to the archive is performed accordingly (Knowles and Corne, 1999). This iterative process 

continues until the termination criterion is met.  

6.4 Parameter Setting 

The success of optimization algorithms is highly contingent upon appropriate parameter settings. Inappropriate 

parameter selection can hinder the algorithm's ability to find high-quality solutions. To address this challenge, we 

employ RSM to identify parameter configurations that lead to optimal solutions for Location-Routing Problems 

(LRPs) of varying sizes (small and large). Compared to factorial design (Montgomery, 1997), RSM offers the 

advantage of continuous parameter optimization. The initial step involves determining statistically significant factors 

influencing elapsed time and makespan for each algorithm. Each factor will be evaluated at two levels, coded as "1" 

for the high value and "-1" for the low value. The specific coded variables will be presented as follows: 

𝑋𝑖 =
𝑟𝑖 − (

ℎ + 𝑙
2
)

(
ℎ − 𝑙
2
)

 (62) 

Where 𝑥𝑖 and 𝑟𝑖 denote coded and natural variables, respectively, with ℎ and 𝑙 representing high and low factor levels. 

To facilitate the comparison of diverse parameter combinations within the context of the multi-objective LRP model, 

a quality index is introduced. This metric aggregates Pareto solutions obtained from various parameter settings, 

subjecting them to a collective non-domination analysis. The percentage of Pareto solutions attributable to a specific 

parameter combination serves as its quality index. For computational efficiency, the number of function evaluations 

(NFC) is set to 30,000 for small-scale problems and 100,000 for larger instances. 

6.4.1 MOICA 

Factors and their values for large and small size issues in the MOICA algorithm are demonstrated in Table 1. 

6.4.2 NSGA-II 

The initial population is configured at 200 individuals for small-scale problems and 300 for larger instances. Crossover 

and mutation rates are fixed at 0.8 and 0.2, respectively. The termination criterion is governed by the NFC, set to 

30,000 for large-scale problems and 100,000 for smaller ones.  
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Table 1. Tuned value factors of the proposed MOICA. 

Factors 
  Optimal real value 

  S L 

N-imp   5 8 

n-Pop   193 300 

β   1.8 2.15 

ξ   0.195 0.125 

PR   0.12 0.32 

PC   0.6 0.6 

PA   0.54 0.64 

6.4.3 PAES 

 The archive is maintained at a capacity of 150 solutions. 

 The termination condition is based on NFC, set at 30,000 for small-scale and 100,000 for large-scale problem 

instances. 

6.5 Comparison Metric 

To evaluate the efficacy of the presented MOICA algorithm, four established comparison metrics tailored to multi-

objective optimization are employed. 

6.5.1 Quality Metric (QM) 

This evaluation metric, known as Pareto Front Coverage (PFC), assesses the ability of an algorithm to explore the 

Pareto-optimal front (Moradi et al., 2011). It considers all non-dominated solutions identified by the algorithms 

collectively. The PFC value for each algorithm is then calculated as the percentage of the overall Pareto front covered 

by its solutions. A higher PFC value indicates a more comprehensive exploration of the Pareto-optimal region, 

signifying a better-performing algorithm in this regard. 

6.5.2 Mean ideal distance (MID) 

The MID metric quantifies the distance between the ideal point and the Pareto front, computed according to Equation 

[Equation number]. Unlike the QM, a lower MID value indicates a superior solution according to this metric. 

𝑀𝐼𝐷 =

∑ √(
𝑓1𝑖 − 𝑓1

𝑏𝑒𝑠𝑡

𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 − 𝑓1,𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )

2

+ (
𝑓2𝑖 − 𝑓2

𝑏𝑒𝑠𝑡

𝑓2,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 − 𝑓2,𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )

2

𝑛
𝑖=1

𝑛
 

(63) 

Where n represents the cardinality of the non-dominated solution set,  𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥  denotes the maximum value of the 𝑖𝑡ℎ 

fitness function among all non-dominated solutions generated by the algorithms,  𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑚𝑖𝑛  signifies the minimum value 

of the ith fitness function within the same set, and  𝑓1
𝑏𝑒𝑠𝑡  represents the optimal value of the ith fitness function. 

6.5.3 Diversification metric (DM): 

The DM measures the spread of a Pareto solution set, and is defined by: 

𝐷𝑀 = √(
𝑚𝑎𝑥 𝑓1𝑖 −𝑚𝑖𝑛 𝑓1𝑖

𝑓1.𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 − 𝑓1.𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛
)

2

+ (
𝑚𝑎𝑥 𝑓2𝑖 −𝑚𝑖𝑛 𝑓2𝑖

𝑓2.𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 − 𝑓2.𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛
)

2

 (64) 

A better performance results from the algorithm with a higher value due to this metric.  
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6.5.4 Spacing Metric (SM): 

SM provides a quantitative assessment of the uniformity of distribution within the non-dominated solution set, as 

formulated by Nekooghadirli, Tavakkoli-Moghaddam, et al. (2014).  

𝑆𝑀 =
∑ |�̅� − 𝑑𝑖|
𝑛−1
𝑖=1

(𝑛 − 1)�̅�
 (65) 

Where 𝑑𝑖 represents the Euclidean distance between consecutive solutions within the obtained non-dominated set, and 

𝑑 ̅denotes the average of these distances. The SM leverages these values to quantify the uniformity of distribution 

among the solution set points. Due to the discontinuous nature of the test problems, the associated trade-off surface 

exhibits irregularities, complicating the interpretation of this metric. Our methodological approach for analyzing the 

SM is analogous to the ANOVA-based analysis of the number of non-dominated solutions, with the focus shifted to 

the spacing metric itself. A lower SM value is indicative of superior algorithm performance. 

6.5.5 Generating Numerical Test Problems 

Metaheuristic algorithms are well-known for their sensitivity to initial solutions, which significantly impacts their 

ability to converge to optimal solutions (Talbi, 2009). To comprehensively evaluate the effectiveness of the presented 

model and algorithms, computational experiments using a set of benchmark LRP problems of varying sizes are 

conducted. This allows for a comparative analysis of the algorithms' performance on problems with different 

complexities. Fuzzy parameter determination employs triangular fuzzy numbers using the methodology established 

by Lai and Hwang (1992). In this approach, the most likely value serves as the crisp equivalent, while the optimistic 

and pessimistic values are calculated using the following equations, as presented by Niakan and Rahimi (2015). 

𝑛0 = (1 + 𝑑1)𝑛
𝑚 

(𝑑1, 𝑑2)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0.2,0.8)           (66) 
𝑛𝑃 = (1 + 𝑑2)𝑛

𝑚 

Where, in this paper d1 and d2 result from the uniformly distributed interval of (0.2, 0.8). Following parameter 

adjustments outlined in Table 2, a variable number of potential depot locations were determined for each test problem 

based on the corresponding customer count, as detailed in Table 3. This process resulted in the generation of 67 distinct 

problem classes for the purpose of algorithm evaluation and computational experimentation. A concise problem 

identifier was established using a convention combining the number of customers, a "#" symbol, and the number of 

candidate depots. For instance, an issue involving 50 customers and four potential depots is designated as 50#4. 

Table 2. Corresponding parameter distribution 

Parameters Corresponding distribution 

𝐷𝑖𝑗  𝑈 ~ (10,20) 

𝐶𝑖𝑗 𝐹𝑢𝑧𝑧𝑦(50) 

𝑡𝑖𝑗 𝑁 ~ (40,6) 

𝐹𝑖 𝐹𝑢𝑧𝑧𝑦 (2000) 

𝐹𝑉𝑘 𝐹𝑢𝑧𝑧𝑦 (200) 

𝑑𝑗  𝐹𝑢𝑧𝑧𝑦 (100) 

𝑤𝑗𝑘 𝑁 ~ (8,2) 

𝑠𝑗𝑘 𝑁 ~ (12,4) 

𝑄 𝐹𝑢𝑧𝑧𝑦(400) 
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Table 3. Numbers of potential depots for each test problem. 

100 70 50 40 30 25 20 15 10 
No. of 

costumers 

3 to 18 3 to 16 3 to 12 3 to 10 3 to 8 3 to 6 3 to 6 3 to 5 3 to 4 
No. of Potential 

Depots 

6.6 Comparison of Meta-Heuristic Algorithms 

This section presents a comprehensive comparison of the presented MOICA with established algorithms, PAES and 

NSGA-II. To achieve this, all 67 benchmark problem classes were tackled by each algorithm four times. The best 

solution gained from each run was considered the final output for performance evaluation. The algorithms' 

performance was then compared using four key metrics: QM, DM, MID), and SM. The detailed results for both small-

sized and large-sized issues are proposed in Tables 4 to 9. An analysis of the comparison metrics reveals that MOICA 

consistently achieves superior performance. Specifically, MOICA exhibits higher QM and DM values, indicating 

better solution quality and population diversity across all test problems compared to NSGA-II and PAES. 

Additionally, MOICA demonstrates a lower average SM value compared to the other algorithms in most cases, 

signifying a well-distributed population within the Pareto-optimal front. While MOICA performs well on both 

problem sizes, a clear trend emerges: MOICA's advantage is particularly pronounced for large-sized issues (Table 9) 

compared to small-sized issues (Table 4). This suggests that MOICA's capabilities are well-suited for handling 

complex LRP instances. 

Table 3. Comparison results between MOICA, PAES and NSGA-II in terms of QM and SM for small-size problems 

Problem No. 
Quality Metric (QM)  Spacing Metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

10#3 0.235 0 0.765  0.827 0.625 0.741 

10#4 0.105 0 0.895  0.661 0.495 0.778 

15#3 0.250 0 0.750  0.791 0.788 0.920 

15#4 0 0 1  0.693 0.785 0.868 

15#5 0 0 1  0.571 1.092 0.634 

20#3 0 0 1  1.184 0.999 0.881 

20#4 0.235 0 0.765  0.778 1.257 0.973 

20#5 0.434 0 0.565  0.560 1.036 0.874 

20#6 0.347 0.217 0.434  0.733 1.031 0.924 

25#3 0.100 0 0.900  1.207 1.120 1.361 

25#4 0.272 0 0.727  1.001 0.878 1.287 

25#5 0.292 0 0.708  0.977 1.360 1.220 

25#6 0.190 0 0.809  0.940 0.977 1.481 

30#3 0.167 0.083 0.750  0.651 1.084 1.116 

30#4 0.059 0.294 0.647  1.059 1.322 0.810 

30#5 0 0 1  0.942 0.965 0.978 

30#6 0 0 1  0.670 0.916 0.980 

30#7 0.118 0 0.882  0.986 1.478 1.041 

30#8 0 0 1  0.586 0.911 0.642 
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Table 6. Comparison results between MOICA, PAES and NSGA-II for problem size 40 with various potential depots. 

Problem No. 
Quality Metric (QM)  Spacing Metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

40#3 0.071 0 0.928  1.302 1.417 1.390 

40#4 0.3634 0.272 0.364  1.019 1.167 1.267 

40#5 0.357 0 0.642  1.628 1.295 1.649 

40#6 0.318 0.182 0.500  1.059 1.272 1.321 

40#7 0.370 0 0.630  0.984 1.374 1.372 

40#8 0.0416 0 0.958  1.037 1.296 0.935 

40#9 0.240 0 0.760  1.2678 1.049 1.410 

40#10 0.111 0.111 0.778  0.979 1.422 0.928 

Problem No. 
Diversity Metric (DM)  Mean Ideal Distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

40#3 1.244 1.105 1.267  0.707 0.776 0.430 

Table 4. Comparison results between MOICA, PAES and NSGA-II in terms of DM and MID for small size problems. 

Problem No. 
Diversity Metric (DM)  Mean Ideal Distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

10#3 1.397 0.996 1.574  0.633 0.632 0.518 

10#4 1.102 1.067 1.414  0.704 0.597 0.581 

15#3 0.652 0.208 1.414  0.873 0.608 0.242 

15#4 0.404 1.125 0.664  0.712 0.872 0.348 

15#5 0.203 1.232 0.444  0.339 0.708 0.230 

20#3 1.323 1.270 1.087  0.776 0.696 0.523 

20#4 0.714 1.268 0.896  0.440 0.674 0.399 

20#5 0.958 1.029 1.169  0.518 0.845 0.538 

20#6 1.063 1.075 1.161  0.575 0.751 0.621 

25#3 1.295 0.436 1.381  0.601 0.437 0.247 

25#4 0.960 0.943 1.297  0.663 0.762 0.718 

25#5 1.105 0.775 1.314  0.536 0.577 0.511 

25#6 0.559 0.911 1.414  0.482 0.576 0.287 

30#3 0.566 1.012 1.279  0.697 0.731 0.632 

30#4 1.160 0.954 1.178  0.762 0.547 0.485 

30#5 1.103 0.860 1.478  0.781 0.846 0.500 

30#6 0.484 1.021 1.010  0.297 0.481 0.379 

30#7 0.733 1.267 0.947  0.479 0.646 0.276 

30#8 0.699 0.696 1.184  0.579 0.860 0.554 
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40#4 1.019 1.225 1.175  0.609 0.750 0.452 

40#5 0.986 1.264 1.176  0.554 0.813 0.377 

40#6 1.032 1.105 1.179  0.664 0.677 0.408 

40#7 0.702 1.192 1.064  0.731 0.765 0.563 

40#8 0.458 1.170 0.827  0.430 0.767 0.322 

40#9 1.203 0.802 1.132  0.506 0.601 0.431 

40#10 1.036 1.349 1.350  0.692 0.823 0.360 

 

Table 5. Comparison results between MOICA, PAES and NSGA-II for problem size 50 with various potential depots. 

Problem No. 
Quality Metric (QM)  Spacing Metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

50#3 0.434 0.086 0.478  1.339 1.461 1.479 

50#4 0.105 0 0.895  1.342 1.181 1.292 

50#5 0.238 0 0.762  1.465 1.548 1.466 

50#6 0 0 1  1.076 1.346 0.764 

50#7 0 0 1  1.042 1.249 1.446 

50#8 0 0 1  1.469 1.212 0.893 

50#9 0 0 1  0.753 1.202 1.432 

50#10 0 0.107 0.892  1.127 1.043 0.795 

50#11 0.160 0 0.840  0.952 0.998 0.863 

50#12 0 0 1  1.001 1.020 1.033 

Problem No. 
Diversity Metric (DM)  Mean Ideal Distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

50#3 0.722 1.289 1.340  0.641 0.731 0.658 

50#4 0.633 0.826 1.145  0.526 0.679 0.492 

50#5 1.342 1.084 1.175  0.603 0.601 0.443 

50#6 0.799 1.266 0.920  0.554 0.715 0.482 

50#7 0.443 0.985 1.388  0.490 0.517 0.383 

50#8 1.137 1.174 0.752  0.457 0.608 0.281 

50#9 0.875 0.961 1.155  0.504 0.734 0.369 

50#10 1.077 0.500 1.232  0.702 0.526 0.373 

50#11 0.904 1.222 1.414  0.585 0.668 0.640 

50#12 0.918 0.887 1.112  0.680 0.551 0.230 
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Table 6. Comparison results between MOICA, PAES and NSGA-II for problem size 70 with various potential depots. 

Problem No. 
Quality Metric (QM)  Spacing Metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

70#3 0 0 1  0.672 0.501 0.905 

70#4 0 0 1  0.517 1.299 0.811 

70#5 0 0 1  0.586 0.593 0.878 

70#6 0 0 1  0.737 0.402 0.752 

70#7 0.200 0 0.800  0.826 0.514 0.953 

70#8 0 0 1  0.495 1.032 0.427 

70#9 0 0.076 0.924  1.230 0.559 0.893 

70#10 0 0 1  0.994 0.789 0.806 

70#11 0 0 1  0.726 1.119 0.850 

70#12 0 0 1  0.632 0.904 0.608 

70#13 0 0 1  1.019 1.069 1.071 

70#14 0.352 0 0.647  0.721 1.024 0.721 

70#15 0.273 0 0.727  0.491 1.151 0.993 

70#16 0 0 1  1.039 0.550 0.673 

Problem No. 
Diversity Metric (DM)  Mean Ideal Distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

70#3 0.470 0.122 1.00  0.492 0.992 0.125 

70#4 0.110 1.095 0.417  0.519 0.743 0.250 

70#5 0.362 0.249 1.043  0.959 0.806 0.365 

70#6 0.815 0.443 1.367  0.672 0.519 0.174 

70#7 1.066 0.484 0.808  0.692 0.832 0.336 

70#8 0.709 1.189 0.749  0.509 0.846 0.364 

70#9 1.203 0.445 1.041  0.643 0.563 0.257 

70#10 1.081 0.605 0.600  0.696 0.758 0.222 

70#11 0.321 1.184 0.891  0.275 0.668 0.250 

70#12 0.561 1.109 0.723  0.643 0.832 0.127 

70#13 0.604 1.246 0.820  0.518 0.737 0.220 

70#14 0.918 1.136 0.751  0.491 0.753 0.459 

70#15 0.173 1.009 1.051  0.456 0.724 0.256 

70#16 0.724 0.552 0.912  0.847 1.021 0.210 
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Table 7. Comparison results between MOICA, PAES and NSGA-II for problem size 100 with various potential depots. 

Problem No. 
Quality Metric (QM)  Spacing Metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

100#3 0 0 1  0.468 1.231 .653 

100#4 0.5 0 0.5  1.037 0.509 1.364 

100#5 0 0 1  0.013 0.199 1.177 

100#6 0 0.250 0.750  0.499 0.298 0.568 

100#7 0.333 0.0833 0.583  0.659 0.823 1.044 

100#8 0 0 1  1.704 0.285 0.547 

100#9 0 0 1  0.892 1.487 0.454 

100#10 0 0 1  1.035 0.841 0.963 

100#11 0 0 1  0.7051 1.000 0.580 

100#12 0 0 1  1.069 0.062 0.711 

100#13 0 0 1  0.633 0.968 0.392 

100#14 0 0 1  1.240 0.357 1.028 

100#15 0 0 1  0.911 0.861 1.355 

100#16 0 0 1  0.628 1.076 1.114 

100#17 0 0 1  1.105 0.901 0.765 

100#18 0 0 1  0.977 1.106 1.036 

Problem No. 
Diversity Metric (DM)  Mean Ideal Distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

100#3 0.231 0.649 0.656  0.832 1.349 0.243 

100#4 1.039 0.512 1.080  0.449 0.749 0.440 

100#5 1.042 0.422 1.164  0.798 0.852 0.099 

100#6 0.869 1.290 0.834  0.727 0.761 0.397 

100#7 0.442 1.042 1.016  0.310 0.364 0.230 

100#8 1.174 0.255 0.367  0.673 0.606 0.147 

100#9 0.187 1.100 0.562  0.394 0.872 0.027 

100#10 1.131 0.855 0.955  0.653 0.590 0.275 

100#11 0.289 1.146 0.680  0.467 0.830 0.275 

100#12 1.047 0.232 1.191  0.590 0.207 0.340 

100#13 0.585 0.958 0.657  0.571 0.880 0.175 

100#14 1.058 0.724 0.895  0.624 0.523 0.218 

100#15 1.211 0.559 1.121  0.692 0.734 0.482 

100#16 0.871 0.760 1.156  0.963 0.794 0.392 

100#17 0.660 1.064 0.891  0.758 0.916 0.179 

100#18 0.447 1.187 0.943  0.815 0.765 0.280 
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7. Conclusions and Suggestions for Future Research 

This study introduced a MOICA for addressing multi-objective Location-Routing Problems (LRPs) with 

homogeneous and capacitated vehicle fleets. The proposed model offers enhanced capabilities by incorporating fuzzy 

parameters to represent uncertainties in vehicle capacity, customer demand, depot opening costs, and transportation 

costs. Additionally, the model considers probabilistic travel, service, and waiting times while guaranteeing a minimum 

probability threshold for their combined value when minimizing this sum is an objective. The other objective 

minimizes the overall system cost.  

To facilitate the solution, a fuzzy number ranking method based on expected interval comparisons was employed to 

transform the fuzzy model into an equivalent crisp model. Subsequently, the model was simplified by linearizing a 

non-linear constraint, reducing computational time and improving efficiency. Response surface methodology was then 

utilized to tailor crossover and mutation strategies for each algorithm employed in the study. A comprehensive 

comparison evaluated MOICA's performance against established evolutionary algorithms, NSGA-II and PAES. This 

evaluation, based on four key performance metrics across various benchmark instances, demonstrated that MOICA 

consistently outperforms the other algorithms, particularly on large-sized problems. 

Future research directions encompass incorporating additional real-world complexities into the LRP model. These 

include facility availability constraints (time windows), heterogeneous vehicle fleets, and models with pickup and 

delivery demands. Furthermore, hybridizing MOICA with novel local search procedures presents a promising area for 

further investigation. The superior performance of MOICA, compared to established algorithms, highlights its 

potential as a valuable tool for solving complex multi-objective LRPs. Moreover, the consideration of shared logistics 

resources in the model as a way to use the maximum capacity of vehicles as well as reduce greenhouse gas emissions 

is an interesting topic for future research. Considering the collaborative contracts that ease the use of shared resources 

is another suggestion for future research. Additionally, the investigation of blockchain-based and IoT-based solutions 

for optimizing the LRP problem and tracking is another subject that can be addressed. 
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