A New Multi-Objective Location Routing Problem with Hybrid Fuzzy-Stochastic Approach by Considering Capacity Restrictions: Model, Solution and Application

Document Type : Research Paper

Authors

1 Department of Industrial Engineering, Arak University, Arak, Iran.

2 Research Assistant, Department of Industrial Engineering, Arak University, Arak, Iran.

Abstract

This study proposes a multi-objective location-routing problem considering the capacity of vehicles to decline the system's costs. The model considers probabilistic times of traveling, service, and waiting by vehicles while guaranteeing the least probability which the cumulative values of these parameters are less than a pre-determined value when minimization of this value is considered an objective function.  To cope with uncertainty, fuzzy numbers for important parameters of customer demand, vehicle capacity, variable and fixed transportation costs, and depot opening costs are used. Moreover, the nonlinear constraints are linearized to reduce computational time. We also use a fuzzy ranking method to transform the presented model into an equivalent auxiliary crisp model. As the model is NP-hard, we introduce a novel Multi-Objective Imperialist Competitive Algorithm (MOICA) to address the issue. The efficacy of the presented MOICA is evaluated by comparing its performance against two well-established multi-objective metaheuristics, Pareto Archived Evolution Strategy (PAES), and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). Leveraging Response Surface Methodology (RSM), the mutation and crossover operators employed by each algorithm were meticulously tuned. Subsequently, the performance of all three algorithms was examined using four benchmark comparison metrics across a range of established benchmark examples. The results demonstrably substantiate the superiority of the proposed MOICA in achieving optimal solutions.

Keywords


References
Ahn, J., De Weck, O., Geng, Y., & Klabjan, D. (2012). Column generation based heuristics for a generalized location routing problem with profits arising in space exploration. European Journal of Operational Research, 223(1), 47-59.
Alizadeh, M., Mahdavi, I., Mahdavi-Amiri, N., & Shiripour, S. (2015). A capacitated location-allocation problem with stochastic demands using sub-sources: An empirical study. Applied Soft Computing, 34, 551-571
Amiri-Aref, M., Javadian, N., Tavakkoli-Moghaddam, R., Baboli, A., & Shiripour, S. (2013). The center location-dependent relocation problem with a probabilistic line barrier. Applied Soft Computing, 13(7), 3380-3391.
Ardalan, Z., Karimi, S., Poursabzi, O., & Naderi, B. (2015). A novel imperialist competitive algorithm for generalized traveling salesman problems. Applied Soft Computing, 26, 546-555.
Atashpaz-Gargari, E. and C. Lucas (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Evolutionary computation, 2007. CEC 2007. IEEE Congress on, IEEE.
Balakrishnan, A., Ward, J. E., & Wong, R. T. (1987). Integrated facility location and vehicle routing models: Recent work and future prospects. American Journal of Mathematical and Management Sciences, 7(1-2), 35-61.
Baoding, L. (2004). Uncertainty theory: an introduction to its axiomatic foundations, Berlin: Springer-Verlag.
Baykasoglu, A. and T. Gocken (2010). Multi-objective aggregate production planning with fuzzy parameters. Advances in Engineering Software, 41(9): 1124-1131.
Boventer, E. (1961). The relationship between transportation costs and location rent in transportation problems. Journal of Regional Science, 3(2): 27-40.
Burks Jr, R. E. (2006). An adaptive tabu search heuristic for the location routing pickup and delivery problem with time windows with a theater distribution application, DTIC Document.
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Caballero, R., González, M., Guerrero, F. M., Molina, J., & Paralera, C. (2007). Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia. European Journal of Operational Research, 177(3), 1751-1763.
Çetiner, S., Sepil, C., & Süral, H. (2010). Hubbing and routing in postal delivery systems. Annals of Operations research, 181, 109-124.
Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal of the Operational Research Society, 20(3), 309-318.
Deb, K. (2001). Nonlinear goal programming using multi-objective genetic algorithms. Journal of the Operational Research Society, 52(3), 291-302.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Diabat, A. (2014). Hybrid algorithm for a vendor managed inventory system in a two-echelon supply chain. European Journal of Operational Research, 238(1): 114-121.
Drexl, M. and M. Schneider (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2): 283-308.
Golmohammadi, A. M., & Abedsoltan, H. (2023). A Bi-objective Model of Many-To-Many Hub Vehicle Location-Routing Problem by Considering Hard Time Window and Vehicle-Cost Balancing. Iranian Journal of Operations Research, 14(2), 156-167.
Golmohammadi, A. M., Abedsoltan, H., Goli, A., & Ali, I. (2024). Multi-objective dragonfly algorithm for optimizing a sustainable supply chain under resource sharing conditions. Computers & Industrial Engineering, 187, 109837.
Golmohammadi, A. M., Goli, A., Jahanbakhsh-Javid, N., & Farughi, H. (2024). Simultaneous consideration of time and cost impacts of machine failures on cellular manufacturing systems. Engineering Applications of Artificial Intelligence, 134, 108480.
Goścień, R., Walkowiak, K., & Klinkowski, M. (2015). Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic. Computer Networks, 79, 148-165.
Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International journal of production economics, 152, 9-28.
Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
Han, J., Zhang, J., Guo, H., & Zhang, N. (2024). Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm. European Journal of Operational Research, 316(3), 958-975.
Hassan-Pour, H. A., Mosadegh-Khah, M., & Tavakkoli-Moghaddam, R. (2009). Solving a multi-objective multi-depot stochastic location-routing problem by a hybrid simulated annealing algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(8), 1045-1054.
Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. European journal of operational research, 214(3), 457-472.
Inuiguchi, M. and J. Ramık (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111(1): 3-28.
JIMÉNEZ, M. (1996). Ranking fuzzy numbers through the comparison of its expected intervals. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4(04): 379-388.
Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European journal of operational research, 177(3), 1599-1609.
Jula, A., Othman, Z., & Sundararajan, E. (2015). Imperialist competitive algorithm with PROCLUS classifier for service time optimization in cloud computing service composition. Expert Systems with applications, 42(1), 135-145.
Karakatič, S. and V. Podgorelec (2015). A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing 27, 519-532.
Kaya, O., & Ozkok, D. (2020). A blood bank network design problem with integrated facility location, inventory and routing decisions. Networks and Spatial Economics, 20(3), 757-783.
Khalili-Damghani, K., Abtahi, A. R., & Ghasemi, A. (2015). A new bi-objective location-routing problem for distribution of perishable products: evolutionary computation approach. Journal of Mathematical Modelling and Algorithms in Operations Research, 14, 287-312.
Knowles, J. and D. Corne (1999). The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, IEEE.
Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2015). A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems with time windows. Computers & Operations Research, 64, 11-27.
Lai, Y.-J. and C.-L. Hwang (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2): 121-133.
Lai, Y.-J. and C.-L. Hwang (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146.
Laporte, G., & Nobert, Y. (1981). An exact algorithm for minimizing routing and operating costs in depot location. European journal of operational research, 6(2), 224-226.
Maranzana, F. E. (1964). On the location of supply points to minimize transport costs. Journal of the Operational Research Society, 15(3), 261-270.
Marinakis, Y., Iordanidou, G. R., & Marinaki, M. (2013). Particle swarm optimization for the vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4), 1693-1704.
Martínez-Salazar, I. A., Molina, J., Ángel-Bello, F., Gómez, T., & Caballero, R. (2014). Solving a bi-objective transportation location routing problem by metaheuristic algorithms. European journal of operational research, 234(1), 25-36.
Megiddo, N. and K. J. Supowit (1984). On the complexity of some common geometric location problems. SIAM journal on computing, 13(1), 182-196.
Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: A synthesis and future research directions. European Journal of Operational Research, 108(1), 1-15.
Mohammadi-Ivatloo, B., Rabiee, A., Soroudi, A., & Ehsan, M. (2012). Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch. Energy, 44(1), 228-240.
Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R. (2014). Sustainable hub location under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 62, 89-115.
Moradi, H., Zandieh, M., & Mahdavi, I. (2011). Non-dominated ranked genetic algorithm for a multi-objective mixed-model assembly line sequencing problem. International Journal of Production Research, 49(12), 3479-3499.
Mozafari, H., Abdi, B., & Ayob, A. (2012). Optimization of adhesive-bonded fiber glass strip using imperialist competitive algorithm. Procedia Technology, 1, 194-198.
Nagy, G. and S. Salhi (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649-672.
Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., & Atashpaz-Gargari, E. (2010). Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm. Expert Systems with Applications, 37(12), 7615-7626.
Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & Javanmard, A. S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76, 204-221.
Niakan, F. and M. Rahimi (2015). A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach. Transportation Research Part E: Logistics and Transportation Review 80, 74-94.
Niu, Y., Xu, C., Liao, S., Zhang, S., & Xiao, J. (2024). Multi-objective location-routing optimization based on machine learning for green municipal waste management. Waste Management, 181, 157-167.
Norouzi, N., Sadegh-Amalnick, M., & Alinaghiyan, M. (2015). Evaluating of the particle swarm optimization in a periodic vehicle routing problem. Measurement, 62, 162-169.
Or, I. and W. P. Pierskalla (1979). A transportation location-allocation model for regional blood banking. AIIE transactions, 11(2), 86-95.
Parra, M. A., Terol, A. B., Gladish, B. P., & Urıa, M. R. (2005). Solving a multiobjective possibilistic problem through compromise programming. European journal of operational research, 164(3), 748-759.
Prodhon, C. (2011). A hybrid evolutionary algorithm for the periodic location-routing problem. European Journal of Operational Research, 210(2), 204-212.
Prodhon, C. and C. Prins (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1-17.
Rahimi, A., Karimi, H., & Afshar-Nadjafi, B. (2013). Using meta-heuristics for project scheduling under mode identity constraints. Applied soft computing, 13(4), 2124-2135.
Nia, A. R., Far, M. H., & Niaki, S. T. A. (2015). A hybrid genetic and imperialist competitive algorithm for green vendor managed inventory of multi-item multi-constraint EOQ model under shortage. Applied Soft Computing, 30, 353-364.
Salhi, S. and G. Nagy (1999). Consistency and robustness in location-routing. Studies in Locational Analysis(13), 3-19.
Salhi, S. and G. K. Rand (1989). The effect of ignoring routes when locating depots. European Journal of Operational Research, 39(2), 150-156.
Schwardt, M., & Dethloff, J. (2005). Solving a continuous location‐routing problem by use of a self‐organizing map. International Journal of Physical Distribution & Logistics Management, 35(6), 390-408.
Schwardt, M. and K. Fischer (2008). Combined location-routing problems—a neural network approach. Annals of Operations Research, 167(1), 253-269.
Shi, Y., Lin, Y., Wang, S., Wen, H., Lim, M. K., & Li, Y. (2023). A simultaneous facility location and vehicle routing problem with recyclable express packaging consideration for sustainable city logistics. Sustainable Cities and Society, 98, 104857.
Shiripour, S., Mahdavi, I., Amiri-Aref, M., Mohammadnia-Otaghsara, M., & Mahdavi-Amiri, N. (2012). Multi-facility location problems in the presence of a probabilistic line barrier: a mixed integer quadratic programming model. International Journal of Production Research, 50(15), 3988-4008.
Sim, K. M. and W. H. Sun (2003). Ant colony optimization for routing and load-balancing: survey and new directions. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 33(5), 560-572.
Srinivas, N. and K. Deb (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
Tavakkoli-Moghaddam, R., Makui, A., & Mazloomi, Z. (2010). A new integrated mathematical model for a bi-objective multi-depot location-routing problem solved by a multi-objective scatter search algorithm. Journal of Manufacturing Systems, 29(2-3), 111-119.
Ting, C.-J. and C.-H. Chen (2013). A multiple ant colony optimization algorithm for the capacitated location routing problem. International Journal of Production Economics, 141(1), 34-44.
Tordecilla, R. D., Montoya‐Torres, J. R., Quintero‐Araujo, C. L., Panadero, J., & Juan, A. A. (2023). The location routing problem with facility sizing decisions. International Transactions in Operational Research, 30(2), 915-945.
Wang, G. J., Zhang, Y. B., & Chen, J. W. (2011). A novel algorithm to solve the vehicle routing problem with time windows: Imperialist competitive algorithm. Advances in Information Sciences and Service Sciences, 3(5), 108-116.
Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation Research Part E: Logistics and Transportation Review, 69, 160-179.
Wasner, M. and G. Zäpfel (2004). An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. International Journal of Production Economics, 90(3), 403-419.
Watson-Gandy, C. and P. Dohrn (1973). Depot location with van salesmen—a practical approach. Omega, 1(3), 321-329.
Webb, M. H. J. (1968). Cost functions in the location of depots for multiple-delivery journeys. Journal of the Operational Research Society, 19(3), 311-320.
Vincent, F. Y., Lin, S. W., Lee, W., & Ting, C. J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & Industrial Engineering, 58(2), 288-299.             
Yu, V. F. and S.-Y. Lin (2015). A simulated annealing heuristic for the open location-routing problem. Computers & Operations Research, 62, 184-196.
Zarandi, M. H. F., Hemmati, A., & Davari, S. (2011). The multi-depot capacitated location-routing problem with fuzzy travel times. Expert systems with applications, 38(8), 10075-10084.
Zare Mehrjerdi, Y. and A. Nadizadeh (2013). Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. European Journal of Operational Research, 229(1), 75-84.