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Abstract 

Uncertainty and variability in demand and supply processes make it difficult for companies to make inventory 

management decisions. In this study, a model is developed that will provide the maximum service level of a 

pharmaceutical warehouse under the budget constraint, taking into account stochastic demand. Due to stochastic demand, 

the chance constraint programming approach is used to achieve the desired service level at different levels. In this study, 

the problem of a pharmaceutical warehouse that supplies medicines to pharmacies and hospitals is considered as a real-

world problem. The model is designed as a dynamic programming model based on periods. Since there are thousands of 

drugs in the pharmaceutical warehouse, as the number of products increases, it becomes difficult to find the appropriate 

solution in an acceptable time. The model is first solved as a mixed integer linear programming model in Lingo. A genetic 

algorithm (GA) approach is then proposed for large-scale problems. The simulation optimization method also applied to 

the problem and compared with the optimization method and GA. The GA approach yields better results in the shortest 

time as the number of periods increases. The developed integrated model demonstrated a numerical example in a 

pharmaceutical warehouse and was solved using three different approaches. This study is of great importance in terms of 

providing results that will enable managers to decide the amount of items they should keep in their warehouses by using 

their budgets in the most efficient way. Nine different scenarios have been derived with various chance constraint risk 

factors and budget values. Scenario analysis has revealed that the budget has a significant impact on the results at a 95% 

confidence level. If a pharmaceutical warehouse increases its budget by 10%, it can reduce its total annual inventory 

carrying costs by 70%. 

Keywords: Inventory Management; Stochastic Demand; Chance-Constrained Approach; Genetic Algorithm. 

Introduction 

Inventory management is an important aspect discussed in the literature, especially in the field of supply chain 

management. The aim is to identify and implement activities that will increase the profit of the business by minimizing 

all inventory costs (Ahmadi et al., 2020). The primary goal is to increase customer service levels while minimizing 

associated inventory costs. Inventory models aim to answer fundamental questions about when and how much to order 

on an ongoing basis. This involves determining optimal stock levels to achieve desired service levels. Inventory 

management ensures that sufficient stock is maintained to meet service level targets. Effective inventory control in the 

face of conflicting objectives is important for the proper use of significant capital. Whether deterministic or probabilistic, 

demand structure plays a vital role and real-life scenarios often have a probabilistic demand structure. Cost and lead time 

are other critical factors in inventory models. Lead time, whether random or fixed, significantly affects the solution. 

Models may also need to include constraint conditions, such as budget limitations or storage space limitations. 

Effective stock management can be achieved by thoroughly understanding the needs of the industry and choosing the 

appropriate stock strategy. Keeping excess stock allows us to eliminate uncertainties and, as a result, increase customer 
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satisfaction. However, as a result, it requires more capital and may result in idle stocks due to constraints such as 

obsolescence or shelf life. On the other hand, in real life, delivery time and demand may vary. Due to this uncertainty, if 

the desired products cannot be provided at the desired time, customers may become dissatisfied (Qiu et al., 2022). To 

prevent such a situation and to ensure they can meet demand, businesses often turn to keeping excess inventory, also 

known as "safety stock." 

At the beginning of the study, interviews were held with company managers and the necessary data for the problem was 

collected. The company under study is a large-scale wholesaler that purchases medical supplies from manufacturers, 

stocks them, and fulfills orders from pharmacies and hospitals. Figure 1 shows the flow of product from the suppliers to 

patients. 

 

 
 

Figure 1. The supply chain in pharmaceutical items marketing 

 

Inventory management establishes the required level of inventory to offset the cost of holding in the event that excessive 

inventory is kept, and the lost sales costs associated with inventory shortages. Multi-item storage, however, is a problem 

that frequently arises in real inventory systems. For example, department stores, large distribution chains, and wholesalers 

all oversee an inventory system that carries a variety of goods. Moreover, these products might have distinct features. 

They could differ in terms of cost, weight, size, lead time, shelf life, and/or storage capacity. However, over time, those 

items with different qualities will need to use the same resources, like money or storage space. Therefore, in these 

situations, inventory management becomes more difficult.  

Whether a demand is deterministic or stochastic, whether it involves multiple products or just one product, can influence 

the approaches taken to solve inventory management problems. The majority of solutions to deterministic systems and 

single product problems have been found with mathematical techniques. Unfortunately, in multi-item inventory problems, 

the solution space's size leads to complexity, making it impossible to find optimal values. As a result, it is stated that 

multi-item inventory systems use evolutionary techniques such as heuristics and metaheuristics to reach near-optimal 

solutions within an acceptable time frame (Gómez-Rocha et al., 2021). Our problem is mathematically modeled and 

solved using a metaheuristic approach—the genetic algorithm (GA)—because it is a multi-item inventory problem. Most 

combinatorial optimization problems (COPs) are unsolvable. Because the solution run-time for these problems grows 

exponentially, they are referred to as NP-hard problems in the literature. An NP-hard problem is a type of computational 

problem that is known for its high level of difficulty. This means that any problem in NP can be translated or reduced to 

an NP-hard problem in polynomial time. In practical terms, an NP-hard problem is one for which there is no known 

algorithm that can solve it efficiently—that is, in polynomial time relative to the size of the input. Solving NP-hard 

problems often requires the use of approximation algorithms or heuristic methods, as finding an exact solution quickly is 

typically not feasible for large instances (Li et al., 2020). Genetic algorithms (GAs) are employed to address the 

computational complexity of large instances of the problem (Ahmadi et al., 2019). The approach for solving multi-item, 

multiple periods (s, S) inventory models is developed in this paper. It determines the best order-up-to inventory level and 

reorder point given budget constraints and an uncertain demand structure. There are two steps in the method utilized to 

solve this issue. First, the proposed inventory policy is solved with the Lingo optimization program considering a constant 

demand structure. The (s, S) values obtained with the mathematical model are defined as initial solution values in the GA 

approach where stochastic demand is considered. Also, OptQuest search engine is used to show the GA performance. 

OptQuest optimization tool is a heuristic based optimization tool integrates meta-heuristics from tabu search, neural 

networks, and scatter search into a single search heuristic (Ekren & Arslan, 2020; Kleijnen & Wan, 2007). In stochastic 

processes, we can get expected results, not exact results. Chance constrained programming (CCP) deals with the case 

where constraints have random variables. CCP is a type of programming that ensures that the constraints are satisfied 

with a given probability (Taha, 2007). 
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The rest of this essay is structured as follows: A review of the literature is provided in Section 2. In Section 3, the problem 

formulation and statement are developed. Section 4 provides an illustrative experimental study. Finally, Section 5 offers 

conclusions and suggestions for additional study. 

Literature review 

This paper proposes a model that minimizes the costs for a wholesaler dealing with a large number of parts by treating 

demand as a random variable. (s, S) inventory policy that is considered in this study. The (s, S) inventory policy has been 

widely studied and utilized in literature. It was first analyzed by Sivazlian (1974), who assumed that the entire backlog of 

unmet demand could be managed by the (s, S) policy. The (s, S) policies have been applied to perishable items by several 

researchers. Gürler and Özkaya (2008), Saracoglu (2023) have contributed to this area, examining the unique challenges 

of managing perishable inventory. Veinott (1965) investigated multi-period inventory models primarily applied to 

production lot-sizing issues, focusing on dynamic nonstationary multi-item inventory models. Movahed and Zhang (2015) 

aimed to determine optimal inventory policy parameters for decision-makers facing variability in demand and lead time 

in supply chains. Noordhoek et al. (2018) presented a simulation-optimization (SO) model using scatter search to find (s, 

S) inventory policies for multi-echelon distribution networks, considering fill rate constraints. Ghalebsaz-Jeddi et al. 

(2004) studied a multi-item stochastic inventory system with shortages, backorders, and budgetary restrictions, focusing 

on payment timing.  

Several methods exist for addressing uncertainties in optimization problems, with stochastic programming being one of 

the most widely utilized models (Shaw et al., 2016). Charnes and Cooper (1959) introduced chance-constrained 

programming, providing methodologies for decision-making under uncertainty. Kundu and Chakrabarti (2012) examined 

a multi-product continuous review inventory system under stochastic environments, incorporating budget constraints. 

Aggarwal (2018) proposed a supply chain configuration model for FMCG products, integrating chance constraints to 

address environmental concerns. Armagan Tarim and Kingsman (2004)), Rossi et al. (2008) and Xiang et al. (2023) 

investigated the stochastic dynamic production/inventory lot-sizing problem with service-level constraints. Xiang et al. 

(2018) introduced heuristics for computing non-stationary (s, S) policy parameters, addressing single item and single 

stocking location problems. Guerrero Campanur et al. (2018) introduce an inventory-location model for designing a four-

echelon supply chain network. It considers warehouse and plant locations, transportation costs, inventory costs, and 

supplier selection.  

Chen and Rossi (2021) emphasized the importance of cash constraints in inventory management for small retailers, 

proposing the (s, C(x), S) policy for near-optimal performance. Saracoglu (2023) focused on SO model for multi-product 

(s, S) inventory policies under stochastic demand conditions. 

Žic et al. (2023) identified the relationships and equations needed to optimize transportation activities in supply chains 

operating under the (R, s, S) periodic review policy. Modibbo et al. (2022) presented a multi-objective optimization model 

for managing multi-product inventory and production planning under uncertainty, integrating fuzzy and stochastic 

elements. Xu et al. (2019) used a SO model for perishable items with stochastic demand, highlighting its advantages 

despite long iterative running times. Ali et al. (2021) constructed an approach on the problem as a multi-objective mixed-

integer fuzzy nonlinear programming model to minimize the total cost of the organization. They found that the costs 

incurred at three different echelons, as demonstrated through multiple case scenarios in the analysis, were lower than the 

actual costs of the organization. Hooshangi-Tabrizi et al. (2022) addressed perishable inventory management under 

demand uncertainty with a two-stage robust optimization model. Perera and Sethi (2023) provided a comprehensive 

review of discrete-time stochastic inventory problems with fixed ordering costs, affirming the optimality of (s, S) policies. 

In recent years, the most prominent topic of discussion is how to reduce environmental pollution. Environmental pollution 

causes significant damage to the earth, including climate change and global warming (Barman, Roy, et al., 2023). 

Nowadays, the urgent need for environmental sustainability has introduced an added layer of complexity to logistical 

decision-making (Das et al., 2024). A major global concern for industries is reducing their carbon emissions. We can give 

some researches about carbon emissions related with the supply chain and inventory problems (Barman et al. 2022; Paul 

et al. 2021; Pervin et al. 2023). Table 1 highlights the differences between the key contributions of the present work and 

those of several existing studies. 
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Table 1. Comparisons of previously proposed models 

 

Authors Demand pattern 

Multi 

items 

Multi 

period 

Budget 

constraints 

Carbon 

emission 

Multi-

echelon Solution technique 

(Xiang et al. 2018) Stochastic  *    MILP, Heuristic 

(Guerrero Campanur et al., 

2018) Stochastic     * MINLP, MILP 

(Chen & Rossi, 2021) Stochastic  *    Heuristic 

(Modibbo et al., 2022) Stochastic * * *  * 

Multi-objective optimization, 

Chance-constrained programming 

(Žic et al., 2023) Stochastic  *  * * 

Numerical simulation, Symbolic 

regression 

(Ekren & Arslan, 2020) Stochastic  *   * Simulation-based optimization 

(Das et al., 2024) Uncertain    * * 

Neutrosophic Multi-Objective 

Model 

(Barman, Pervin, et al., 2023) Price dependent   * * Game Theory Model 

(Ali et al., 2021) Uncertain * *   * Fuzzy Non-Linear Programming 

(Barman et al., 2022) Price dependent *  * * Fuzzy Goal Programming 

(Barman, Roy, et al., 2023)  Price dependent *  * * Neutrosophic Environment Model 

(Pervin et al., 2023) Composite  *  *  Mathematical Programming 

(Paul et al., 2021) Price dependent *    Concave Fractional Programming 

This Paper (2024) Stochastic * * *    

MILP, Genetic Algorithm, 

Simulation optimization 

(OptQuest) 

 

The aim of this paper is to introduce the MILP model and meta-heuristic method for computing near-optimal (s, S) policy 

parameters. Genetic Algorithm (GA) approach is offered and evaluated in this study because of the stochastic search 

engine. Among the various metaheuristics, this one is the most widely used algorithm to solve uncertainty and large-scale 

problems (Hiassat et al., 2017). GA was first proposed by (Holland, 1973) and models the evolution of biological systems 

according to Darwin's "survival of the fittest" theory (Goldberg & Samtani, 1986). In comparison to other heuristics, it is 

also one of the algorithms that is utilized in inventory problems the most. GA initially served to solve continuous non-

linear optimization issues. It has since been successfully used to solve combinatorial optimization issues as well, including 

issues with inventory management, supply chain and transportation, job shop scheduling, traveling salesmen, and vehicle 

routing (Gen, M., & Cheng, 1997). A further explanation of evolution and the role of natural selection in the survival of 

the fittest can be found in the contemporary field of genetics. GAs selects parents to reproduce from a population, which 

is an initial set of random solutions. Every member of the population is referred to as a chromosome. In natural systems, 

a single chromosome or multiple chromosomes work together to form the entire genetic blueprint for an organism's 

development and functioning. A genotype is the entire set of chromosomes, and a phenotype is the resultant organism. 

The contribution of our work is to develop a solution methodology for a real-life problem of a pharmaceutical warehouse 

operating under uncertain demand conditions. A dynamic mathematical model is proposed, which can easily adapt to 

demand and price changes occurring within the planning horizon. The proposed model can adapt to seasonal demand 

fluctuations. We develop a GA that is capable of providing good solutions within a reasonable computational time. 

Problem statement and formulation 

Proposed mathematical method 

A mathematical model is developed to implement the (s, S) inventory policy, which is one of the continuous review 

control inventory policies, in order to establish an efficient inventory policy for a large pharmaceutical distribution 

warehouse. (s, S) inventory policy determines the order-up-to inventory level that should be in the warehouse. When the 

stock level reaches the specified reorder point, an order is placed to reach the maximum stock level. In this study, multiple 

products with variable demand and budget constraints are considered. Due to the large number of alternative warehouses 

where pharmacies can meet the demand for pharmaceuticals and the criticality of the items, the situation of backlogging 
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for demand was not considered. The objective of this study is to minimize the total annual inventory cost with budget 

constraint. However, due to the high level of competition, it is desirable to meet the demand at a high service satisfaction 

level. Under these assumptions, MILP is constructed to decide the variables (s, S) by considering deterministic demand 

structure. The following notations are used in the model. 

 

Index Set: 

I Number of items,  𝑖 = 1,2, … , 𝑁. 

 

 

T Planning horizon, 𝑡 = 1,2, … , 𝑇. 

 
Parameters: 

𝑑𝑖,𝑡   demand for item i in period t. 

𝑚𝑢𝑑𝑖  expected average demand in lead time period for item i. 

𝐿𝑇𝑖   lead time for item i. 

𝑢𝑝𝑐𝑖  purchase price per unit for item i. 

𝑢𝑜𝑐𝑖  ordering cost per unit for item i. 

𝑢𝑠𝑐𝑖   shortage cost per unit for item i. 

𝑢ℎ𝑐𝑖  inventory holding cost per unit for item i. 

𝑦𝑖,0  inventory level for item i in period 0. 

𝑢𝑙_𝑠𝑖  the upper bound of the reorder point for item i. 

𝑢𝑙_𝑆𝑖  the upper bound of the order-up-to level for item i. 

𝐵𝑔𝑡  budget. 

𝐺  big number. 

Decision variables: 

𝑦𝑖,𝑡 inventory level for item i at the end of period t. 

𝑦𝑖,𝑡
+  positive inventory level for item i in period t, 𝑦𝑖,𝑡

+ = 𝑚𝑎𝑥{0, 𝑦𝑖,𝑡} 

𝑦𝑖,𝑡
−  inventory shortage for item i in period t, 𝑦𝑖,𝑡

− = 𝑚𝑎𝑥{0, −𝑦𝑖,𝑡} 

𝑥𝑖,𝑡 order quantity for item i in period t. 

𝑆𝑖 Order-up-to level for item i. 

𝑠𝑖 reorder point for item i. 

𝑉𝑖,𝑡 . , 0 otherwiset at the beginning of period iis less than s i if inventory level of item, 1 

𝑍𝑖,𝑡 1, if inventory level of item i at the ending of period t is positive, 0 otherwise.  

 

The objective of this study is to minimize annual total inventory cost (TAIC). To achieve this, we consider the total cost 

of holding (THC), ordering (TOC), shortage (TSC), and purchasing (TPC) over the planning horizon. Objective functions 

are defined in the equations as follows: 

 

a. Total holding cost for every period of the planning horizon THC: 

 

=  ∑ ∑ 𝑢ℎ𝑐𝑖 . 𝑦𝑖,𝑡
+

𝑇

𝑡=1

𝑁

𝑖=1

 (1) 

 

b. If replenishment order is opened in the planning horizon, ordering cost must be added in the cost function TOC: 

=  ∑ ∑ 𝑉𝑖,𝑡 . 𝑢𝑜𝑐𝑖

𝑇

𝑡=1

𝑁

𝑖=1

 (2) 
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c. Total shortage cost for every period of the planning horizon TSC: 

=  ∑ ∑ 𝑢𝑠𝑐𝑖 . 𝑦𝑖,𝑡
−

𝑇

𝑡=1

𝑁

𝑖=1

 (3) 

 

d. Total purchasing cost for the planning horizon TPC: 

=  ∑ ∑ 𝑢𝑝𝑐𝑖 . 𝑥𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 (4) 

 

The equation below presents the objective function of the multi-item, multiple periods (s, S) policy model: 

 

𝑀𝑖𝑛 𝑇𝐴𝐼𝐶 (𝑆, 𝑠) = 𝑇𝐻𝐶 + 𝑇𝑂𝐶 + 𝑇𝑆𝐶 + 𝑇𝑃𝐶 
(5) 

 

Constraints: 

The constraints of the model include inventory balance equations, order-up-to inventory level (S) and reorder point level 

(s), boundaries and linearization functions. These constraints are explained in detail as below equations: 

 

Inventory balance equations:   

If   

𝑦𝑖,𝑡−1 ≤  𝑠𝑖  ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (6) 

then   

𝑆𝑖 − 𝑦𝑖,𝑡−1
+ − 𝑥𝑖,𝑡 = 0 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (7) 

𝑥𝑖,𝑡  –  𝑦𝑖,𝑡
+ + 𝑦𝑖,𝑡

− + 𝑦𝑖,𝑡−1
+ – 𝑑𝑖,𝑡 = 0 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (8) 

else   

𝑦𝑖,𝑡−1
+ − 𝑦𝑖,𝑡

+ + 𝑦𝑖,𝑡
− − 𝑑𝑖,𝑡 = 0 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (9) 

𝑦𝑖,𝑡−1
+ – 𝑠𝑖 + 1 ≤ G. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (10) 

𝑠𝑖– 𝑦𝑖,𝑡−1
+ ≤ G. 𝑉𝑖,𝑡 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (11) 

𝑥𝑖,𝑡  –  𝑦𝑖,𝑡
+ + 𝑦𝑖,𝑡

− + 𝑦𝑖,𝑡−1
+ – 𝑑𝑖,𝑡 ≥ −G. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (12) 

𝑥𝑖,𝑡  –  𝑦𝑖,𝑡
+ + 𝑦𝑖,𝑡

− + 𝑦𝑖,𝑡−1
+ – 𝑑𝑖,𝑡 ≤ G. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (13) 

𝑦𝑖,𝑡−1
+ − 𝑦𝑖,𝑡

+ + 𝑦𝑖,𝑡
− − 𝑑𝑖,𝑡 ≥  −𝐺. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (14) 

𝑦𝑖,𝑡−1
+ − 𝑦𝑖,𝑡

+ + 𝑦𝑖,𝑡
− − 𝑑𝑖,𝑡 ≤  𝐺. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (15) 

𝑥𝑖,𝑡 ≤ 𝐺. 𝑉𝑖,𝑡 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (16) 

𝑆𝑖 − 𝑦𝑖,𝑡−1
+ − 𝑥𝑖,𝑡 ≥ −G. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (17) 

𝑆𝑖 − 𝑦𝑖,𝑡−1
+ − 𝑥𝑖,𝑡 ≤ G. (1 − 𝑉𝑖,𝑡) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (18) 

Inventory level constraints:  
  

𝑦𝑖,𝑡
− ≤ G. Z(𝑖, 𝑡)  

 

∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (19) 

𝑦𝑖,𝑡
+ ≤ G. (1 − Z(𝑖, 𝑡)) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (20) 

𝑦𝑖,𝑡 =  𝑦𝑖,𝑡
+ − 𝑦𝑖,𝑡

−  

 

∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (21) 

Budget constraints:  
  

∑ ∑ 𝑥𝑖,𝑡 . 𝑢𝑝𝑐𝑖

𝑇

𝑡=1

𝐼

𝑖=1

≤ 𝐵𝑔𝑡 

 (22) 
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Bound constraints: 
  

𝑆𝑖 ≤ 𝑢𝑙_𝑆𝑖 ∀𝑖 ∈ 𝑁 (23) 

𝑠𝑖 ≤ 𝑢𝑙_𝑠𝑖 ∀𝑖 ∈ 𝑁 (24) 

𝑆𝑖 − 𝑠𝑖 ≤ 0 ∀𝑖 ∈ 𝑁 (25) 

𝑉𝑖,𝑡 , 𝑍𝑖,𝑡  ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (26) 

𝑠𝑖 , 𝑆𝑖 , 𝑥𝑖,𝑡 , 𝑦𝑖,𝑡 , 𝑦𝑖,𝑡
+ , 𝑦𝑖,𝑡

−    ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (27) 

  

According to constraints (6), if the stock level at the beginning of a period is lower than the “s”, an order quantity 𝑥𝑖,𝑡  is 

placed. Constraint (7) asserts that the order quantity should be equal to the difference between the maximum inventory 

level and beginning inventory level. Inventory balance equation is enforced by Constraint (8). If constraint (6) is not 

applied, then constraint (9) should be evaluated for calculation of the ending inventory level. Conversely, if the stock 

level at the beginning of a period is greater than the reorder point, no order is placed, and the inventory balance equation 

is provided by Constraint (9). In order to model these relations linearly, Constraints (10) to (18) were added for the 

constructed ILP model. Constraint (19) defines the positive ending inventory level as 𝑦𝑖,𝑡
+ = 𝑚𝑎𝑥 {𝑦𝑖,𝑡 , 0}. Constraint (20) 

illustrates the negative ending inventory level as 𝑦𝑖,𝑡
− = 𝑚𝑎𝑥 {−𝑦𝑖,𝑡 , 0}. According to these inventory levels, inventory 

holding cost and shortage cost should be calculated. Constraints (23) and (24) ensure that the decision variables are less 

than or equal to the upper bound. Constraint (25) makes Si greater than the reorder point (si). Constraint (26) defines 

binary variables. Constraint (27) ensures that the decision variables are integers and non-negativity. 

Methodology 

In this article, five steps were used to solve the stochastic inventory problem for wholesaler company and shown as Fig. 

2. Each step is described below: 

 

1. Data Analysis: The demand data and unit purchasing costs were collected from the company. Initially, an ABC 

analysis was conducted based on annual usage, and items were selected for implementing the proposed model. 

2. Mathematical Modeling: The proposed mathematical model was developed considering a deterministic demand 

structure. This model was solved using varying numbers of periods, and the model's performance was evaluated based 

on solution time. The mathematical model cannot produce optimal results in reasonable amounts of time when the 

number of products and periods rises. 

3. Stochastic Inventory Model: The deterministic model was transformed into a stochastic inventory model, and a 

Genetic Algorithm was employed to solve the model. The demand for selected items was analyzed to determine the 

relevant distribution using Arena Input Analyzer software. 

4. Genetic Algorithm: The proposed mathematical model was also solved using a Genetic Algorithm, and the solutions 

were compared with the optimization results. The Genetic Algorithm approach provided near-optimal solutions within 

a reasonable timeframe. 

 

Figure 2. Steps of the solutions 

When considering random demand, it is impossible to predict how much order should be open prior to the occurrence of 

this random event. In the case of random demand, the equations written in deterministic form are transformed into 

stochastic form as follows. In deterministic form, demand and end-of-period inventory level are known, whereas in 

stochastic form they can be expressed in terms of expected values.  

Step I 
Data Analysis 

 
 

Step II 

Deterministic 

Inventory Model 

Step III 

Stochastic Inventory 

Model 

Step IV 
Genetic 

AlgorithmApproach 



Inventory Optimization with Chance-Constrained Programming Under Demand Uncertainty 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.11, NO.3  

307 
 

min 𝐸[𝑇𝐴𝐼𝐶] = ∑ ∑ 𝑢ℎ𝑐𝑖 . 𝐸{𝑦𝑖,𝑡
+ } + ∑ ∑ 𝑉𝑖,𝑡 . 𝑢𝑜𝑐𝑖 + ∑ ∑ 𝑢𝑠𝑐𝑖 . 𝐸{𝑦𝑖,𝑡

− } + ∑ ∑ 𝑢𝑝𝑐𝑖 . 𝑥𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑁

𝑖=1

 

𝑇

𝑡=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑁

𝑖=1

 

(28) 

𝐸{𝑦𝑖𝑡} = 𝑦0 + ∑ 𝑥𝑖𝑡 − ∑ 𝐸{𝑑𝑖𝑡} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝑇

𝑡=1

𝑇

𝑡=1

 
∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (29) 

Prb{𝐸[𝑦𝑖𝑡] ≥ 0} ≥ ∝ ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (30) 

 

Constraint (28) shows the total expected annual inventory cost under the random demand event. Constraint (29) gives the 

expected value of the inventory balance equation. Constraint (30) shows the chance constraint that ensures that the 

expected end-of-period inventory level is not out of stock at the specified confidence level. The desired level of 

satisfaction is indicated with ∝. In the stochastic modelling stage, depending on the flexibility of the ordering process, 

order quantities can be adjusted at each time period t=, …,T based on known demand realizations up to that point. This 

scenario can be formulated as a multistage stochastic program, allowing for optimal decisions to be made at each time 

period using the available realizations of random data (Shapiro & Ruszczyn, 2003). In this study, different scenarios 

consistent with the distribution defined for the random variable demand have been generated, and decision variables that 

will minimize cost have been identified. The obtained results were tested using simulation optimization, and the expected 

cost values were calculated. The second key category of models in stochastic programming is Chance-Constrained 

Programming (CCP). Like general stochastic programs, CCP models incorporate random variables with known 

distributions.  This model was solved with GA approach in Frontline Solver software. The Evolutionary Solver is based 

on GA. It relies heavily on controlled random search. Fig. 3 illustrates an example of chromosome representation. The 

first line in the chromosome structure shows the order-up-to level (Si) and the second line shows the reorder point levels 

(si) for all items. 

 

𝑆𝑖 300 400 500 

𝑠 50 100 70 

 
Figure 3. Chromosome structure of (s,S) inventory model 

 

The objective function values of the solutions can be determined by their fitness values.  It is crucial to calculate these 

values accurately as the selection method relies on them. A penalty function is utilized in this study to account for 

constraints. To minimize cost, the fitness value is calculated by adding the penalty function to the objective function. The 

penalty method is the most used method to deal with infeasible solutions in GA for constrained optimization problems. 

GA generates a sequence of parameters to be tested objective function and constraints. The model was solved, and then 

objective function was evaluated, and checked the constraints whether violated or not. If the constraints are violated, the 

solution is infeasible, and no fitness is obtained. This approach is adequate, but many practical issues come with significant 

constraints. Identifying a feasible point can be nearly as challenging as locating the optimal one. Consequently, we 

typically aim to gather information from infeasible solutions, potentially by adjusting their fitness ranking based on the 

extent of constraint violation. This is the approach taken in a penalty method. In a penalty method, a constrained 

optimization problem is converted into an unconstrained one by imposing a cost or penalty for any violations of 

constraints. For example, the original constrained problem in minimization form can be written as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 

Subject to  ℎ𝑖(𝑥) ≥ 0, 𝑖 = 1,2, … , 𝑛   

where x is an m vector 

The model transforms to the unconstrained form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) + 𝑟. ∑ 𝜃[ℎ𝑖(𝑥)]

𝑛

𝑖=1

 

where 𝜃 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑟 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

Goldberg (1989) usually used the square the violation of the constraint, 𝜃[ℎ𝑖(𝑥)] = ℎ𝑖
2(𝑥), for all violated constraints i.  
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Experimental Study 

In this study, a wholesaler warehouse in Turkey that sells regional pharmaceutical items is considered. From the 2022 

sales information, 4 products in class A, whose sales are in accordance with the normal distribution, are selected. 

Pharmacies may request one or more pharmaceutical items from a distributor. If the distributor is out of stock for any of 

these items, the pharmacy sources its supply from another distributor with whom it cooperates. Due to the intense 

competition in the industry, it is not feasible for the pharmacy to wait for orders to be fulfilled. The pharmacy incurs a 

loss if an order cannot be met five times. (Nahmias, 2008) demonstrated how Type I and Type II service levels are 

calculated. The Type I service level is the probability, denoted as α, of not experiencing a stockout during the specified 

lead time. The Type II service level measures the rate, β, at which the proportion of demands is met from stock. In this 

study, we estimated the stockout probability using the Type I service level. We considered a one-year planning horizon, 

divided into 52 periods (weeks). The average lead time for drugs from the manufacturing company is one week. If a 

pharmacy loses a customer after five unmet requests during the planning period, it is expected to meet demand in 47 out 

of 52 instances. Therefore, α is calculated as α = 47/52 = 0.90. The objective of the warehouse is to find the order quantity 

to meet the demand for one year under budget constraint and the reorder point to meet 90% customer satisfaction. Firstly, 

the problem is considered as small size and the performance of the mathematical model compared with GA and OptQuest 

optimization tool. The mathematical model is solved in Lingo optimization software. For more products and more periods, 

GA approach was used in Frontline Solver software. ARENA 16.0 version was used to solve the OptQuest search heuristic 

algorithm. Solutions are obtained by using Intel® Core TM i7-1051U CPU running at 1.80GHz and 8.00 GB of RAM 

computer. The data of the products used in this research are given in Table 2. 

Table 2. First data for products used in this study. 

Items 1 2 3 4 

EOQi (unit) 1829 1173 1832 4876 

upci ($) 12.83 15.30 13.17 3.04 

uhci ($) 0.09 0.11 0.09 0.02 

poci ($) 30 30 30 30 

usci ($) 14.14 16.83 14.49 3.34 

yi,0 (unit) 0 0 0 0 

dit N~ (107,46) N~ (49,19) N~ (96,45) N~ (161,40) 

The resulting optimum was compared with optima estimated by two other meta-heuristic algorithms. The percentage 

difference was calculated using with GAP (%) =   ((GA Solution − MILP Solution)) / (MILP Solution)  x 100 to 

compare the results obtained from the MILP model and GA approach. The comparison results of the optimization model 

and the other two methods are given in Table 3. The simulation model of the inventory problem has been set up in Arena 

simulation software to obtain the OptQuest optimization results. The decision variable values obtained with the optimum 

result are defined as initial data. A total of 150 simulation runs were conducted for the OptQuest optimization study. In 

order to further improve the results, if the simulation study is considered for 1000 iterations over 24 periods, the simulation 

study time increases from 370 seconds to 2139 seconds. However, the total cost decreases from $35,867.7 to $32,986. 

The results indicate that GA provides optimum or near-optimum results in a shorter time. 

Table 3. Comparative results of the MILP and GA solution 

Period 

no 

      Total Inventory Cost ($)   Computational time CPU (sec) 

Variables Integers Constraints MILP 
Proposed 

GA 
OptQuest 

GAP 

(%) 
  MILP 

Proposed 

GA 
OptQuest GAP (%) 

4 46 22 60 5277.99 5277.99 6414.05 0  0.19 16.59 93 8631.57 

8 78 42 113 10223.3 10223.3 15675.61 0  0.54 22.91 291 4142.59 

12 110 62 165 14993.73 14993.73 18865.74 0  143 29.41 352 -79.43 

24 206 122 321 31337.72 31089.37 35867.70 -0.79   3600* 126 370 -96.5 

(*): After 1 hour the solution is stopped. 

First, the case of 4 products and a budget of 210,000$ with a 90% probability of not being out of stock for all periods. 

Budget and stock level constraints are defined as chance constraints. Demand is entered as a normal distribution. The 
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expected results obtained under these conditions using 100 populations and a mutation rate of 0.075 are summarized in 

Table 4. 
Table 4. The results of Scenario 1 

Items 1 2 3 4 Total 

Si 706 258 318 4,631  

si 229 17 0 254  

THC ($) $1,807.74 $620.71 $480.32 $2,720.32 $5,629.09 

TOC ($) $300.00 $270.00 $390.00 $60.00 $1,020.00 

TSC ($) $0.00 $2,036.43 $13,994.44 $0.00 $16,030.87 

TPC ($) $72,705 $35,282 $54,445 $27,770 $190,202 

TAIC ($) $74,813 $38,209 $69,310 $30,551 $212,882 

Service Level 1.00 0.95 0.81 1.00 0.94 

 

Over a 52-week period, using the chosen values of Si and si, a simulation with 5 replications of 1000 trials was conducted 

to evaluate whether the budget remains under $210,000 for 90% of the time in Scenario 1. The variability of budget 

utilization as a result of the simulation is illustrated in Fig. 5. Scenarios with different budget levels and probabilities were 

developed and tested with budgets of $210,000, $220,000, and $230,000. The results of these scenarios are presented in 

Table 5. Fig. 4 provides a summary of the expected cost information from Scenario 1. The total holding cost is projected 

to range between $5,443.88 and $5,782.58 at a 90% confidence level (Fig. 4(a)). If a budget of $220,000 can be maintained 

90% of the time, the cost of stockouts is expected to range from $9,376.41 to $16,971.06 (Fig. 4(b)). The total purchasing 

cost could range from $181,770 to $221,877 at a 90% confidence level (Fig. 4(c)). Fig. 4(d) shows that the total cost 

expectation could range between $203,152.16 and $242,152.28. 

In the 2nd scenario, the budget of 210 thousand dollars is met 95% of the time. In the 3rd scenario, the case of meeting 

the budget with 95% probability was analyzed. In the 4th scenario, the change in costs in case of having a budget of 220 

thousand dollars was analyzed. In the 7th scenario, the change in results was observed with a higher budget. In order to 

decide on the most appropriate inventory policy, 9 different scenario studies were conducted by considering 3 different 

levels for budget and chance constraint realization probability. For the budget constraint, three levels of 210, 220 and 230 

thousand dollars were considered. As another factor, three levels of 90, 95 and 99% were considered as the probability of 

realization of these budget constraints. The results of all scenarios are given in Table 5. TIC shows the overall of the THC, 

TOC and TSC. As the budget level increases, the number of items purchased increases and as a result, the probability of 

not meeting the demand decreases. If a budget of 210 thousand dollars is required to be met at 90% level, it can be seen 

that under 1000 different demand scenarios, a maximum expected stockout cost of 21,242.56$ can be encountered. By 

increasing the budget to 220 thousand dollars, this amount would decrease to 14,389.99$. If the budget is 230 thousand 

dollars, the maximum expected stockout cost will be 3,624.12$. 

 

 

 

 

a) Expected THC for Scenario 1 

 

 b) Expected TSC for Scenario 1 
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c) Expected TPC for Scenario 1  d) Expected TAIC for Scenario 1 

Figure 4. Expected cost functions for Scenario 1 

Table 5. The results of the GA for different scenarios 

Scenario Budget %chance Cost criteria Average ($) Std.deviation ($) Minimum ($) Maximum ($) 

S1 210000 90 TPC 201,459.00 6,235.00 181,770.00 221,877.00 

   TSC 13,004.43 2,281.13 6,455.00 21,242.56 

   TAIC 221,175.86 6,655.44 203,152.16 242,152.28 

   TIC 19717.3 2270.81 13235.03 27942.34 

S2 210000 95 TPC 193,556.00 4,767.00 176,201.00 212,574.00 

   TSC 14,363.24 2,413.55 7,425.41 23,332.80 

   TAIC 218,365.80 6,049.32 199,840.26 237,023.05 

   TIC 24810.03 2407.41 18137.98 33711.06 

S3 210000 99 TPC 198,733.00 4,364.00 183,312.00 216,443.00 

   TSC 18,440.71 3,165.83 9,219.84 30,053.66 

   TAIC 225,102.84 5,914.72 204,507.49 246,190.61 

   TIC 26337.68 3160.85 16981.02 38018.77 

S4 220000 90 TPC 204,169.00 5,253.00 186,419.00 220,336.00 

   TSC 8,560.54 1,689.60 4,338.80 14,389.99 

   TAIC 221,524.34 5,946.70 203,610.98 239,373.30 

   TIC 17355.17 1681.53 13133.46 23044.65 

S5 220000 95 TPC 204,061.00 5,331.00 186,477.00 220,843.00 

   TSC 5,895.53 1,462.78 2,288.88 11,848.60 

   TAIC 217,414.59 5,934.31 199,589.78 235,278.31 

   TIC 13353.46 1449.8 9819.73 19190.61 

S6 220000 99 TPC 204,032.00 5,413.00 186,837.00 221,832.00 

   TSC 5,336.70 1,663.11 988.19 11,655.55 

   TAIC 216,181.86 5,986.47 198,003.06 233,888.14 

   TIC 12,150.20 1,647.75 7,904.04 18,255.37 

S7 230000 90 TPC 207,767.00 6,007.00 189,310.00 227,303.00 

   TSC 613.21 475.97 0.00 3,624.12 

   TAIC 214,598.97 6,090.22 196,033.10 233,870.89 

   TIC 6,831.98 468.88 6,069.31 9,703.95 

S8 230000 95 TPC 211,509.00 6,158.00 191,971.00 228,858.00 

   TSC 614.06 476.02 0.00 3,624.12 

   TAIC 218,229.73 6,206.14 198,991.29 235,738.95 

   TIC 8,823.46 249.08 8,378.46 10,094.65 

S9 230000 99 TPC 208,090.00 5,948.00 188,530.00 226,981.00 

   TSC 338.31 198.91 0.00 660.86 

   TAIC 214,755.76 6,003.85 195,195.90 233,719.66 

   TIC 6,033.55 199.49 5,630.57 6,272.60 

TPC: Total Purchasing Cost; TSC: Total Shortage Cost; TAIC: Total Annual Inventory Cost. TIC: Total Inventory Cost 
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The effects of the models run at different levels on the results were analyzed by ANOVA analysis. Table 6 shows that 

both factors create a significant difference in the TAIC. The significant level value of the budget factor at 95% confidence 

level is 0.028 and the budget makes a statistically significant difference on total cost. The significance level of 0.855 for 

the three levels of the chance constraint shows that the percentage values have not an equal impact on total cost. Statistical 

analyses were conducted using Minitab® 21.4.2, and results were considered significant at p < 0.05. 

Table 6. Analysis of variance for the effects on TAIC function 

Factor Type Levels Values 

Budget Fixed 3 210000, 220000, 230000 

SL% Fixed 3 90.00%, 95.00%, 99.00% 

 

Source DF Adj SS Adj MS F-Value P-Value 

Budget 2 189007660 94503830 10.01 0.028 

Chance% 2 3073934 1536967 0.16 0.855 

Error 4 37765247 9441312   

Total 8 229846840    

 

The change in total cost when all factors are considered is shown as the main effects plot in Fig. 5. The best inventory 

level can be achieved if the budget of 230 thousand dollars is not to be exceeded with 90% probability according to Fig.5.  

 

 

 

 

 
   

 

 

 
   

Figure 5. Main effects plot for TPC, TSC, TIC and TAIC by Budget - Chance constraint % 

 



Saracoglu 

 

  

INT J SUPPLY OPER MANAGE (IJSOM), VOL.11, NO.3  

312 
 

The company's current inventory management policy involves a weekly review of stock levels, with orders placed based 

on available budget, recent sales data from the past three months, and current promotions. Industry consultations have 

confirmed that calculating reorder points is highly effective. This study aims to offer a useful framework for companies, 

enabling efficient control over numerous products. Through ongoing collaboration with the company, we have identified 

substantial cost savings when our recommended purchasing strategies are implemented. For example, for item 1, the 

company's current approach resulted in a cost of $97,077, whereas our algorithm would have reduced this to $74,813. 

This underscores the need for a systematic approach, as the company currently encounters issues such as product spoilage 

due to limited shelf life and customer loss from budget constraints and suboptimal purchasing practices. The 

pharmaceutical sector's dynamic nature requires that any changes in input variables necessitate rerunning the algorithm 

to maintain optimal inventory management. However, initiating a study involving approximately 5000 products demands 

a considerable investment of time to generate and analyze the initial data. Implementing our proposed model can help 

companies achieve more efficient inventory management, optimize budget utilization, and enhance service levels, 

ultimately leading to reduced costs and improved customer satisfaction. 

Managerial insights 

The study presents a robust framework for optimizing inventory management in a pharmaceutical warehouse, addressing 

the complexities of stochastic demand. Key insights for managers include: 

 The proposed model focuses on maximizing service levels within a budget constraint, crucial for maintaining customer 

satisfaction and operational efficiency. Managers should prioritize strategies that balance inventory holding costs 

against service level objectives. 

 The use of mixed integer linear programming (MILP) and genetic algorithms (GA) demonstrates the importance of 

leveraging advanced optimization techniques for complex, large-scale inventory problems. Implementing such 

methods can provide near-optimal solutions within reasonable timeframes, essential for dynamic and high-demand 

environments. 

 Managing a diverse inventory with various products having different costs, sizes, and demand patterns requires 

sophisticated models. The study's approach to multi-item inventory systems underscores the necessity of iterative and 

metaheuristic techniques in achieving feasible solutions. 

 Recognizing the inherent uncertainty in demand, the model integrates chance-constrained programming to account for 

probabilistic constraints. This approach ensures that inventory decisions are robust under varying demand scenarios, 

helping managers to mitigate risks associated with stockouts and overstocking. 

 The experimental study's scenario analysis provides valuable insights into the impact of different budget levels and 

service probabilities on total inventory costs. Managers can use similar analyses to evaluate various operational 

scenarios, enhancing decision-making under budgetary and service constraints. 

By integrating these insights into their inventory management practices, managers can enhance their ability to maintain 

high service levels, optimize resource allocation, and respond effectively to demand uncertainties in the pharmaceutical 

industry. 

Conclusion 

In this study, an analysis is made to decide the optimal inventory policy for a large pharmaceutical distribution warehouse 

considering the budget constraint and variable demand structure by using chance constraint. The (s, S) model of 

continuous review control policies were constructed mathematically. As the number of products and the number of periods 

increase, we have found that it is not possible to find an optimal solution in a reasonable amount of time using MILP. 

Therefore, the GA approach was used since an appropriate solution could not be found at the desired time. The simulation 

optimization technique is also used to evaluate the performance of the GA, and GA shows better performance than the 

simulation optimization. This study will help to decide how much budget the company needs to reach the desired customer 

service level and the stock levels of the pharmaceutical items it sells.    

There are two main limitations in this proposed study. First, this paper addresses the inventory problem of pharmaceutical 

items but does not include the concept of perishability restrictions, which should be addressed in future studies. The 

planning horizon has been set to one year, and since the lifetime of the items are longer than the planning horizon, they 

have not been included in this model. Additionally, it should be considered that there might be issues with selling 
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pharmaceutical items that are nearing their expiration dates. Secondly, in the multi-period model, the potential price 

changes due to the effects of inflation have been ignored. 

Pharmaceutical items consumption has been increasing over the years. Global healthcare expenditures accounted for 

approximately 9.8% of the global GDP in 2019, reaching $8.5 trillion (WHO 2021). Proper planning of these items is 

crucial for sustainability to reduce medical waste and prevent medication shortages (Ahmadi et al., 2022). This study 

addresses the stock policy of a pharmaceutical warehouse, which is a part of the supply chain. The proposed model is 

designed to be user-friendly and flexible, allowing the addition of new constraints. It will be beneficial for determining 

inventory levels in multi-item wholesalers. 

This model can be further generalized in subsequent studies to take into account various constraints like capacity, lifetime, 

and service level, as well as the variable lead time. Furthermore, the model will be expanded to address supply chain 

management issues, incorporating multi-echelon components. Machine Learning techniques can be used to forecast 

demand of pharmaceutical items. For this type of problem, a multiple objective optimization method can be evaluated. 
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