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Abstract 

Based on a copula function, this paper addresses a maintenance scheduling problem for parallel systems whose 

components are dependent and their failures are detected only by inspections. To carry out preventive maintenance 

actions, the decision process is steered by the excursions of the state process 𝑋(𝑡) describing the total number of failed 

components up to age t. Since both the maintenance costs and the level of maintenance are driven by the inspection 

interval 𝜏 and the preventive replacement threshold j, using the standard renewal theory arguments, the paper aims to 

jointly determine both optimal inspection and optimal replacement policy to truly balance the two factors. The model is 

examined for the case when the dependence structure is modelled by the FGM copula function and the marginal lifetime 

distribution of components conforms to a Weibull distribution. Further, a sensitivity analysis is performed to examine 

some important features of the model's parameters. We will see the unified framework developed not only generalizes 

age replacement policy and other classic maintenance models, but also allows considerable flexibility such that different 

scenarios can be explored. 

Keywords: Inspection; Maintenance; Replacement; Hidden failures; Copula function; Renewal-reward theorem. 

1. Introduction 

Motivated by the extension of the approach in previous works, this paper is different with regard to presenting a unified 

copula-based maintenance model in which the decision process is driven by the excursion of the underlying state as a 

decision variable and the degradation phenomenon is modelled by the FGM copula function. The copula framework 

allows us to model the dependence structure among components of the system. The approach proposed here is typically 

appropriate for multi-component parallel systems with non-self-announcing failures and dependent components. Fire 

detectors, nuclear reactor safety systems, emergency core cooling systems, and protective devise are some examples of 

parallel systems whose failures are detected only by inspections. A common characteristic of such systems is that the 

failure of a component may not make its system fail and the system's failures are detected only by inspections. Therefore, 

repair and maintenance actions (see Hosseini, 2016; Fallahnezhad and Pourgharibshahi, 2017) including inspections and 

preventive replacements for such systems are essential to detect the system's failures and increase reliability and in turn 

availability (Kharazmi, 2017 and Javid et al., 2018) against risky and costly position arises from the system downtime.  

 

In this paper, we address the maintenance scheduling problem with two tools. The common method of seeking the 

regeneration points is the first one. More specifically, the approach depends on the identification of an embedded renewal 

process defined by the replacement epochs and this allows the application of the renewal reward theorem and the 

formulation of the average cost rate used as a measure of policy. Secondly, the problem is addressed by considering a 

state process as a decision variable and partitioning the state space into two exclusive sets by means of a replacement 

threshold. In this way, the system is inspected to revel the true state of the system and maintenance actions are carried 

out on the basis of the observed system state falling into exclusive sets. Since both the maintenance costs and the level 

of maintenance are driven by the inter-inspection time and the replacement threshold, this raises an intriguing question 

that how often to inspect the system and when to replace the system that balances the two factors. This paper aims to 

answer these questions. 

 
Corresponding author email address: ahmadi_reza@iust.ac.ir 



A Copula-based Maintenance Modeling for Parallel Systems with … 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.4 283 

 

Essentially, our model is an extension of optimal inspection policies and other maintenance policies whose attention is 

restricted to inspection and perfect repair on failure (corrective replacement). The most common policies for such systems 

include optimal inspection policies. It has a key role in maintenance cost and functioning systems. During the past 

decades, many optimum inspection policies as an extension of classical optimum checking policies (e.g. see Barlow et 

al. (1963); Hauge, (2002); Keller, (1974); Munford and Shahani, (1972)) for such systems have been studied. For 

example, Jiang and Jardine (2005) propose two optimization models to determine the optimum sequence of inspection 

times. In comparison to classical optimum inspection policies, their model more accurate and computationally simple. 

Chelbi et al. (2008) study an optimal inspection model for systems with self-announcing and non-self-announcing 

failures. The approach aims at determining the age T for inspection which maximizes the stationary availability of the 

system. Taghipour and Kassaei (2016) present a maintenance model to find the optimal inspection interval for a k-out-

of-n load-sharing system. Chosen on the basis of the components state (total number of failed components), the decision 

maker's action is restricted to only minimal repair and perfect repair on failure. Rezaei (2017) proposes a maintenance 

model for inspection planning. Similar to Taghipour and Kassaei (2016), his model accounts two repair actions (minimal 

repair and perfect repair) for systems with failure-dependent components. Liu et al. (2017) schedule inspection intervals 

for multi-component systems characterized by hidden failures and dependent components. Recently, Seyedhosseini et 

al. (2018) propose an imperfect inspection model to find the optimal periodic inspection interval. 

 

To develop the previous maintenance modelling approach, recent works have turned their attention to jointly determine 

optimal inspection interval and preventive replacement policy. For instance, He et al. (2015) propose a periodic 

inspection and preventive replacement policy for a system subject to hidden failures. Preventive replacement (PR) policy 

is implemented whenever the number of inspections scheduled between PRs reaches the quantity 𝑛. Babishin and 

Taghipour (2016) propose a joint optimal inspection and replacement policy for a k-out-of system. The optimal number 

of minimal repairs is used as a basis for maintenance decision making. Ahmadi and Wu (2017) given partial information 

propose a new approach for inspection scheduling and threshold-type replacement policy of parallel systems subject to 

hidden failures. Their approach rests on estimating a disruption time at which the total number of failed components 

reaches 𝑑. Recently, Ahmadi (2019) through the virtual age concept (e.g. see Lugtigheid et al. (2004); Kijima (1989)) 

develops extension of the existing modeling techniques from non-repairable systems (e.g. see Najari et al. (2018)) to 

repairable systems. 

 

Additional motivation comes from the fact that dependencies of structure among components of the system are often 

neglected. Although some maintenance models examine the joint inspection and preventive replacement policy (Ahmadi 

and Wu, (2017, 2018); He et al., (2015); Babishin and Taghipour, (2016); Ahmadi (2019)), or regard the failure 

interaction of components (Taghipour and Kassaei, (2016); Liu, et al. (2017); Rezaei, (2017)), to our knowledge, a 

maintenance model which considers both factors does not exist. This paper aims to respectively develop the above 

modelling approach via (i) setting the model in an FGM copula framework and (ii) constructing a decision making 

process through using a state process as a decision variable. We will see the approach provides considerable flexibility 

in developing maintenance policies as well as matching the model to the real situations. In addition, the settings and the 

structure developed here allow different general repair models to be explored. 

 

This paper shares some features with the works cited above, but it includes and investigates in a unifying framework 

some characteristics which have not been addressed or previously studied in isolation. More specifically, common and 

distinctive features of our model are as follows:  

 

 Unlike most models, using a copula modeling technique, our modeling approach accounts for failure interaction among 

components. In this sense, our model is similar to the one suggested by Taghipour and Kasaei (2016); Liu, et al. (2017); 

Rezaei, (2017). 

 In comparison to classical maintenance models cited above, our model differs in the action space including three kinds 

of actions: (i) no action, (ii) preventive replacement and (iii) corrective replacement. 

 Our model resembles those models cited above considering the joint inspection and preventive replacement policy. 

 The maintenance approach adopted in this paper is similar to that used by Ahmadi (2019); the decision process is 

driven by the excursions of a stochastic process 𝑋(𝑡) (decision variable) counting the total number of failed components.  

However, our model accounts for the failure interactions among components by means of an FGM copula function.  

 Similar to Babishin and Taghipour (2016), He et al. (2015) and Ahmadi and Wu (2017), we consider a threshold-type 

policy, but our model differs in the decision variable; they respectively consider age, the number of inspections and the 

number of minimal repairs as decision variables. 

 With the same approach as Lienhardt et al. (2008); Rasay et al. (2018); Hosseini et al. (2019) and Ahmadi (2019), the 

average cost rate is used as a measure of policy. 

 

Furthermore, the most important contribution of the proposed model is that by means of the renewal reward theorem we 

make no assumptions about the process and the maintenance formulation is not restricted to some specific framework 

such as semi-Markov decision process. Additionally, the modeling approach explored here allows more general 

situations to be explored in later work. 
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2. Problem description and notations 

We consider the problem of inspecting and maintaining an n-component parallel system characterized by non-self 

announcing failures and dependent components. The degradation process is modelled by a multi-dimensional FGM 

copula function. To monitor the system state and take an appropriate action, the system is inspected according to a 

periodic policy Π={𝜏, 2𝜏, ⋯ } similar to that used by some researchers (e.g. see Tang et al. (2013); He et al. (2015); 

Rezaei, (2017)). With the same approach as Taghipour and Kassaei (2016), the components state is used as a basis for 

making maintenance decisions. More precisely, corrective and preventive maintenance actions carried out after an 

inspection are completely determined by the state of the stochastic process 𝑋(𝑡) counting the number of failed 

components up to age t. The decision process is steered by the excursions of the state process X(t) ∈ Ω = {𝑥, 𝑥 + 1, ⋯ , 𝑛} 

where 𝑋(0) = 𝑥. Decisions can then be made by partitioning the state space Ω into exclusive subsets 𝐴0(𝑗) =
{𝑥, 𝑥 + 1, ⋯ , 𝑗 − 1}, 𝐴1(𝑗) = {𝑗, 𝑗 + 1, ⋯ , 𝑛 − 1} and the failure set 𝐴2 = {𝑛}. An inspection reveals the system state 

𝑋(𝑡) ∈ 𝐴𝑖(𝑖 = 0,1,2), then an action is chosen on the basis of the set 𝐴𝑖. The action space denoted by the doubleton 

‹a,3›={𝑎0, 𝑎1, 𝑎2} includes three kinds of actions: (i) no action, {𝑎0}, if the revealed state on inspection 𝑋(𝑡) falls in the 

state set 𝐴0(𝑗), (ii) preventive replacement action, {𝑎1}, whenever on inspection the total number of failed components 

falls in the state set 𝐴1(𝑗), and (iii) replace on failure, {𝑎2}, if on inspection 𝑋(𝑡) is found in the set 𝐴2 = {𝑛}. The 

structure of the model allows two variants of repair models to be examined; an age replacement model and a repair model 

whose action space is restricted to no action and perfect repair (corrective replacement). They are recovered by an 

appropriate choice of the decision threshold𝑗. It is common that changes in the period of inspection 𝜏 and the preventive 

replacement threshold 𝑗 may cause changes in the amount of maintenance and maintenance costs. On the one hand, 

inadequate maintenance may save maintenance cost but may result in undetected failures. On the other hand, excessive 

maintenance leads to increasing availability and detecting the system failure more rapidly, but it incurs higher 

maintenance costs. Thus, an optimal policy determined by (𝜏∗, 𝑗∗) is required to balance the amount of maintenance to 

increase availability against the costly and risky position arising from the system downtime. To this end, using the 

standard renewal theory argument, this paper minimizes the average cost rate for optimizing maintenance policy. 

 
The paper is organized as follows. Section 2 includes the assumption and the degradation features of the model. The 

section is developed by giving some structural results. The maintenance model is described in Section 3. Section 4 

formulates both the expected cost per cycle and the expected cycle length. The next section proposes a recursive 

algorithm to solve them. Section 6 demonstrates the generality of the proposed model and indicates how some current 

maintenance models emerge as specific cases. Some numerical results along with sensitivity analysis are given in section 

7. Finally, the last section concludes the paper with a summary of the proposed model as well as future directions. 
 

Notations 

𝑛: The number of components of the system 

𝐶∗: Copula function 

θ: Dependence degree 

‹a,i› The action space including 𝑖 action(s) 

𝛺: The state space 

𝑗: Preventive replacement threshold 

𝐴0(𝑗): The subset of 𝛺 associated with no action {𝑎0}  

𝐴1(𝑗): The subset of 𝛺 associated with preventive replacement {𝑎1} 

𝐴2: The subset of 𝛺 associated with corrective replacement {𝑎𝑛} 

τ: Inspection interval 

Ti: The lifetime of the 𝑖𝑡ℎ component 

Hj
x: The first hitting time of the set 𝐴1(𝑗) by the state process 𝑋(𝑡) 

(𝛼, 𝛽): The shape and scale parameter of a Weibull degradation model 

𝑋(𝑡):                     System state at age t  

𝑋(0) = 𝑥: Starting state 

𝑋𝑖(𝑡): The state of 𝑖𝑡ℎ component 

𝜇(𝑡; 𝑥): Mean past lifetime of the parallel system at age 𝑡 

𝑃𝑥𝑢(𝑡): The transition probability of 𝑋(𝑡) from x to 𝑢 at age 𝑡 

𝐹(𝑡): Common failure distribution of components 

𝐶0: Inspection cost 

𝐶𝐹: Penalty cost incurred due to undetected failures 

𝐶𝑟: Preventive replacement cost 

𝐶𝑅: Corrective replacement cost 

𝒞𝜏(𝑗; 𝑥): Expected cost per cycle 

ℓ𝜏(𝑗; 𝑥): Expected cycle length 

ℂ𝜏(𝑗; 𝑥): Expected cost per unit time 

𝜙: The Cumulative distribution of the standard normal distribution  
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3. Modeling the system 

3.1. Assumptions 

 The system is composed of 𝑛 dependent components connected in parallel. 

 The dependence structure of components is modelled by an FGM copula function. 

 The marginal lifetime distribution of components is described by a Weibull distribution. 

 Inspections are scheduled at fixed age intervals {𝜏, 2𝜏, ⋯ }. 

 Inspections are perfect and reveal the true state of components. This makes the state process 𝑋(𝑡) (the total number of 

failed components) discernible at fixed age intervals {𝜏, 2𝜏, ⋯ }. 
 Corrective and preventive maintenance actions are carried out in response to the system state revealed at {𝜏, 2𝜏, ⋯ }. 
 The preventive replacement is a threshold-type policy with respect to the state process 𝑋(𝑡). 

3.2. Degradation model 

Consider a parallel system consisting of n components with lifetimes 𝑇𝑖  (𝑖 = 1,2, ⋯ , 𝑛) and corresponding common 

distribution function 𝐹(𝑡). The joint distribution function of random lifetimes 𝑇𝑖  is specified by a multi-variate FGM 

copula function 𝐶∗ with the dependence degree 𝜃 ∈ [0,1]: 

C∗(u1, u2, ⋯ , un) = ∏ 𝑢𝑖

𝑛

𝑖=1

+ 𝜃 ∏ 𝑢𝑖(1 − 𝑢𝑖

𝑛

𝑖=1

);     ∀(𝑢1, 𝑢2, ⋯ 𝑢𝑛) ∈ 𝐼𝑛 ≔ [0,1]𝑛 . 

So, by setting 𝑢𝑖 = 𝐹(𝑡𝑖) (𝑖 = 1,2, ⋯ , 𝑛), the joint lifetime distribution of components is given by 

F(t1, t2, ⋯ , tn) = C∗(𝐹(𝑡1), 𝐹(𝑡2), ⋯ , 𝐹(𝑡𝑛)) = ∏ 𝐹(𝑡𝑖)

𝑛

𝑖=1

+ 𝜃 ∏ 𝐹(𝑡𝑖)(1 − 𝐹(𝑡𝑖)

𝑛

𝑖=1

).                                              (1) 

The model (1) is an extension of the trivariate FGM copula function studied by Spanhel and Kurz (2016). The model is 

developed by presenting a stochastic process 𝑋𝑖(𝑡) (i=1,2,⋯ , 𝑛) taking 0 or 1 if the component at age t is in a functioning 

state or failed state, respectively. In other words, 

𝑋𝑖(𝑡) = {
0    𝑇𝑖 > 𝑡
1    𝑇𝑖 ≤ 𝑡.

 

Thus, if 𝑋(𝑡) denotes the total number of failed component up to age t, then the counting process 𝑋(𝑡) (describing the 

system state) in terms of 𝑋𝑖(𝑡) can be expressed as 

𝑋(𝑡) = ∑ 𝑋𝑖

𝑛

𝑖=1

(𝑡). 

Before proceeding to the next section, using the proposed degradation model, we study some reliability characteristics 

of the model. We will see how these measures contribute to the model development. For this, we assume that the lifetime 

of components conforms to a Weibull distribution with the shape and scale parameter (𝛼, 𝛽): 

𝐹̅(𝑡) = 𝑒−(𝑡 𝛽⁄ )𝛼
. 

3.2.1. Mean Past Lifetime 

Let 𝜇(𝑡; 𝑥) denote the mean past lifetime (MPL) of the system at age t given that the system starts operating at t = 0 with 

(𝑛 − 𝑥) components, i.e. 𝑋(0) = 𝑥 . Then given 𝛼 = 2 we have 

μ(t; x) = E(t − T|t > T) =
∫ Fx:n(u)du

t

0

Fx:n(t)
=

𝔸1(t; x)

𝔸2(t; x)
,                                                                                                        (2) 

 

where 𝐹𝑥:𝑛(𝑡) denotes the lifetime distribution of an (n-x) component parallel system with random lifetime 𝑇𝑥:𝑛, 

 

𝔸1(𝑡; 𝑥) = ∑ (
𝑛 − 𝑥

𝑖
)𝑛−𝑥

𝑖=1 (−1)𝑖𝛽√
𝜋

𝑖
× [𝜙 (

√2𝑖

𝛽
𝑡) − 0.5] + [𝑡 + 𝜃𝛽√

𝜋

𝑛−𝑥
× [𝜙 (

√2(𝑛−𝑥)

𝛽
𝑡) − 0.5]] +

𝜃 ∑ (
𝑛 − 𝑥

𝑖
) (−1)𝑖𝑛−𝑥

𝑖=1 𝛽√(
𝜋

𝑛−𝑥+𝑖
) × [𝜙 (

√2(𝑛−𝑥+𝑖)

𝛽
𝑡) − 0.5], 

 

and 

𝔸2(𝑡; 𝑥) = (1 − exp (−(𝑡 𝛽⁄ )2))
𝑛−𝑥

× (1 + 𝜃 × exp(−(𝑛 − 𝑥)(𝑡 𝛽⁄ )2)). 

Figure 1 demonstrates the behavior of the mean past lifetime of a 2-component system as a function of 𝜏 for different𝜃 ∈
{0.1,0.9}. It indicates that the mean past lifetime of the system is an increasing function of the inspection interval𝜏. In 

addition, the higher-level dependency 𝜃: 0.1 → 0.9 makes the system more prone to failure. This may arise from the fact 

that in the absence of one component due to failure, a surplus load is transferred to another remaining component and so 

makes it more susceptible to failure. 
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Figure 1. Mean past lifetime of the system given (𝜶, 𝜷) = (𝟐, √𝟐) and (𝒙, 𝒏) = (𝟎, 𝟐). 

Proposition 1. Let 𝑃𝑥𝑢(𝑡) = 𝑃(𝑋(𝑡) = 𝑢|𝑋(0) = 𝑥) denote the transition probability of the system state from the 

starting state 𝑋(0) = 𝑥 to the state 𝑋(𝑡) = 𝑢 at age t. Then given the assumption (1) we have 

 

𝑃𝑥𝑢(𝑡) = 𝔅𝜃(𝑢 − 𝑥; 𝑛 − 𝑥, 𝐹(𝑡)) =𝔅 (u − x; n − x, F(t)) × [1 + (−1)𝑛−𝑢𝜃̃ × 𝔅(𝑢 − 𝑥; 𝑛 − 𝑥, 𝐹̅(𝑡))]             (3)    
  where 

𝜃̃ = 𝜃 ÷ (
𝑛 − 𝑥
𝑢 − 𝑥

), 

and 

𝔅(𝑢 − 𝑥; 𝑛 − 𝑥, 𝐹̅(𝑡)) = (
𝑛 − 𝑥
𝑢 − 𝑥

) 𝐹(𝑡)𝑢−𝑥𝐹̅(𝑡)𝑛−𝑢. 

 

To help with intuition on the behavior of the system, as a function of the inspection period, an evolution of transition 

probabilities for 𝜃 ∈ {0.1,0.9} as (𝑥, 𝑛) = (2,5) is given (see Figure 2). 

 

4. Maintenance model 

 
The decision process is directed by the excursions of the state process 𝑋(𝑡) ∈ Ω split into three exclusive subsets 𝐴0(𝑗) =
{𝑥, 𝑥 + 1, ⋯ , 𝑗 − 1}, 𝐴1(𝑗) = {𝑗, 𝑗 + 1, ⋯ , 𝑛 − 1} and 𝐴2 = {𝑛}. Inspections reveal the true state of the system as 𝑋(𝑡) ∈
𝐴𝑖 (𝑖 = 0,1,2) Then an action of the action space ‹a,3›={𝑎0, 𝑎1, 𝑎2} including no action, {𝑎0}, preventive replacement, 
{𝑎1}, and corrective replacement, {𝑎2} is chosen on the basis of the set 𝐴𝑖. In fact, the decision maker inspects the system 

according to a periodic policy Π={𝑘𝜏: 𝑘 = 1,2, ⋯ }. Inspections reveal the true state of the system and preventive and 

corrective maintenance actions are carried out in response to the observed system state. 

 

Preventive actions are decided by partitioning the state space Ω into sets 𝐴0(𝑗) and 𝐴1(𝑗) where the decision threshold 𝑗 

is used as the definition of preventive replacement action: as an observation indicates that 𝑋(𝑡) ∈ 𝐴0(𝑗) =
{𝑥, 𝑥 + 1, ⋯ , 𝑗 − 1}, the system is not repaired until the next inspection (no action). This action which incurs a cost 𝐶0 

is denoted by {𝑎0}. On making an inspection if 𝑋(𝑡) ∈ 𝐴1(𝑗) = {𝑗, 𝑗 + 1, ⋯ , 𝑛 − 1} preventive replacement actions, {𝑎1}, 

are taken with corresponding cost 𝐶𝑟. The system is regarded as failed and a subsequent corrective maintenance action 

(replacement), {𝑎𝑛}, with cost 𝐶𝑅 (𝐶𝑅 > 𝐶𝑟) is performed if on inspection 𝑋(𝑡) ∈ 𝐴𝑛 = {𝑛}.  

 

The above threshold-type replacement policy raises an intriguing question that how to get an estimate of the minimum 

number of inspections until the system is observed in set 𝐴1(𝑗). We formulate the answer to this question as the following 

proposition. 

 

Proposition 2. Let the starting state of the system be 𝑋(0) = 𝑥 and 𝐻𝑗
𝑥 denote the first hitting time of the set 𝐴1(𝑗) by 

the state process 𝑋(𝑡): 

Hj
x = inf{t ∈ ℝ+: 𝑋(𝑡) ∈ 𝐴1(𝑗)}. 

Then the minimum number of inspection until the system is observed in 𝐴1(𝑗) is 

 n0 = ⌊
μj:n

τ
⌋ + 1,                                                                                                                                                                          (4)  

where 𝜇𝑗:𝑛 denotes the mean hitting time of 𝐴1(𝑗) by the state process expressed as 
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  μj:n = 𝔼(Hj
x) = βΓ(1 + 1 α⁄ )                                    

× [∑ ∑ (
nx

k
) (

k
i
)

(−1)i

(nx + i − k)1 α⁄

k

i=0

j−1

k=0

+ θ ∑ ∑ (
nx

k
) (

nx

i
)

(−1)nx+i−k

(nx + i)1 α⁄

nx

i=0

j−1

k=0

],                                                                                                 (5) 

and 𝑛𝑥 = 𝑛 − 𝑥.  

 
Figure 2. Transition probabilities 𝑷𝒙𝒖(𝝉) as a function of 𝝉 for different 𝜽 ∈ {𝟎. 𝟏, 𝟎. 𝟗} as (𝒙, 𝒏) = (𝟐, 𝟓). 

Proof. From (1) we get  

𝑃(𝐻𝑗
𝑥 > 𝑡) = ∑ (

𝑛
𝑘

) 𝐹(𝑡)𝑘

𝑗−1

𝑘=0

𝐹̅(𝑡)𝑛𝑥−𝑖 × [1 + 𝜃(−1)𝑛𝑥−𝑖𝐹̅(𝑡)𝑘𝐹(𝑡)𝑛𝑥−𝑘].                                                              (6) 

Since  

(1 − exp(−(𝑡 𝛽⁄ )𝛼))
𝑢

= ∑ (
𝑢
𝑖

)

𝑢

𝑖=0

(−1)𝑖exp(−𝑖(𝑡 𝛽⁄ )𝛼)                                                                                             (7) 

by plugging (7) in (6) we have  

𝑃(𝐻𝑗
𝑥 > 𝑡) = ∑ ∑ (

𝑛𝑥

𝑘
) (

𝑘
𝑖

) (−1)𝑖

𝑘

𝑖=0

𝑗−1

𝑘=0

exp[−(𝑛𝑥 + 𝑖 − 𝑘)(𝑡 𝛽⁄ )𝛼]

+ 𝜃 ∑ ∑ (
𝑛𝑥

𝑘
) (

𝑛𝑥

𝑖
) (−1)𝑛𝑥+𝑖−𝑘

𝑛𝑥

𝑖=0

𝑗−1

𝑘=0

exp[−(𝑛𝑥

+ 𝑖)(𝑡 𝛽⁄ )𝛼].                                                                            (8) 

By integrating both sides of the above equation, the results are proved.□ 
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Figure 3 illustrates that the hitting time distribution of the set 𝐴1(𝑗) by the state process 𝑋(𝑡) is a decreasing function of 

the preventive replacement threshold 𝑗. This intuitively implies that a lower threshold results in an earlier preventive 

replacement (see Table 3). The results are given known parameters (0) = 0 , (𝛼, 𝛽) = (2, √5) and (𝑛, 𝜃) = (5,0.6).  

 
Table 1. Mean hitting time for 𝒋 ∈ {𝟏, 𝟐, 𝟑, 𝟒} 

j 1 2 3 4 

𝜇𝑗:𝑛 1.41 1.88 2.45 3.26 

 

 

 
Figure 3. Hitting time distribution for different preventive replacement threshold 𝒋 

 

5. Minimizing the Long-Run Average Costs 

 
Since the maintenance costs and the level of maintenance are driven by the inspection interval 𝜏 and the replacement 

threshold 𝑗, the objective of the paper is to determine an optimal inspection and replacement policy which truly balance 

both factors. For this, the long-run average cost rate is used as a measure of policy. Because the replacement instants are 

regeneration points, the time between two consecutive replacements is a renewal cycle. Therefore, by the standard 

renewal theory arguments, the long-run average cost rate can be derived by the expected cost per cycle divided by the 

expected cycle length. 

 

5.1. Expected cost per cycle 

A cycle consists of a sequence of inspections and maintenance actions that ends with planned or unplanned replacement. 

Corrective and preventive maintenance actions costs incurred in a cycle are random. Let 𝐶𝜏
𝑥 denote the cost per cycle 

given starting state 𝑋(0) = 𝑥, that means the system starts operating with (𝑛 − 𝑥) components. At inspection time 𝜏 if 

the system state is observed in 𝐴0(𝑗) the system restarts from the current state 𝑋(𝜏) ∈ 𝐴0(𝑗). It incurs the planned 

inspection cost 𝐶0 and the future costs starting in state 𝑋(𝜏). An additional cost would be incurred if on inspection the 

revealed state falls in 𝐴1(𝑗). In this case the system is returned to the perfect working state (preventive replacement) with 

the replacement cost 𝐶𝑟 and the future cost starting in state 𝑋(0) = 0. If the system is found in a failed state it undergoes 

a corrective maintenance. It incurs an unplanned replacement cost 𝐶𝑅 (𝐶𝑅 > 𝐶𝑟) and a penalty cost per unit time 𝐶𝐹 due 

to an undetected failure within inter-inspection times. In other words, 

 𝐶𝜏
𝑥 = (𝐶0 + 𝐶𝜏

𝑋(𝜏)
)𝐼(𝑋(𝜏) ∈ 𝐴0(𝑗)) + (𝐶𝑟 + 𝐶𝜏

0)𝐼(𝑋(𝜏) ∈ 𝐴1(𝑗))                       

+ (𝐶𝑅 + 𝐶𝐹(𝜏 − 𝑇𝑥:𝑛))𝐼(𝑋(𝜏) ∈ 𝐴𝑛)                                                                                                 (9) 

 

where 𝐶𝜏
0 arises from the preventive replacement which resets all processes to zero. Taking expectations of both sides of 

(9) gives the expected cost per cycle 𝒞𝜏(𝑗; 𝑥) = 𝐸(𝐶𝜏
𝑥): 

𝒞τ(j; x) = ∑(C0 + 𝒞τ(j; u))

j−1

u=x

𝔅θ(u − x; n − x, F(τ))

+ (Cr + 𝒞r(j; 0)) ∑ 𝔅θ(u − x; n − x, F(τ))  + Fx:n(τ)(CR + CFμ(τ; n − x))                      (10)

n−1

u=jx

 

 

where μ(τ; n − x) and 𝔅θ(u − x; n − x, F(τ)) are given in (2) and (3) respectively and jx = Max(x, j).  
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5.2. Expected cycle length 

Let 𝐿𝜏
𝑥 denote the cycle length starting in 𝑋(0) = 𝑥. Using the same argument as above the expected cycle length 

ℓ𝜏(𝑗; 𝑥) = 𝐸(𝐿𝜏
𝑥) is obtained: if at inspection time the system is observed in 𝐴0(𝑗) the cycle length consists of an 

inspection time and an additional cycle length starting from 𝑋(𝜏). In the perfect repair case, when finding the system in 

𝐴1(𝑗) the cycle length is made up of a full period 𝜏 and an additional random time 𝐿𝜏
0  starting in state 𝑋 (0) = 𝑥. On 

failure at 𝜏 the cycle length is completed. In other words, 

Lτ
x = (τ + Lτ

X(τ)
)I(X(τ) ∈ A0(j)) + (τ + Lτ

0)I(X(τ) ∈ A1(j)) + τI(X(τ) ∈ An).                                                    (11) 

Taking expectations of both sides of equation (11) gives the expected cycle length  ℓτ(j; x) = 𝔼(Lτ
x ): 

(j; x) = τ + ∑ ℓτ(j; u)𝔅θ(u − x; n − x, F(τ)) + ℓτ

j−1

u=x

(j; 0) ∑ 𝔅θ(u − x; n − x, F(τ))

n−1

u=jx

.                                     (12) 

Thus, using the equations (10) and (12), the average cost rate can be given by 

ℂτ(j; x) =
𝒞τ(j; x)

ℓτ(j; x)
.                                                                                                                                                               (13) 

The optimal period of inspection and preventive maintenance thresholds (𝜏∗, 𝑗∗) can then be determined as: 

(𝜏∗, 𝑗∗) = Argmin
(𝜏,𝑗)∈(0,∞)×𝛺

ℂ𝜏(𝑗; 𝑥).                                                                                                                                          (14) 

 

6. Recursive scheme 

 
In this section, we get a general solution (13) to solve problem (14). To this end, we devise a recursive algorithm to solve 

for 𝒞τ(j; x) and ℓ𝜏(𝑗; 𝑥). To facilitate the presentation, let 𝒞τ
(i)(j; x) and ℓτ

(i)(j; x) (i = 1,2,3) be expressed as 

𝒞τ
(1)(j; x) = 𝐶0 ∑ 𝔅θ(u − x; n − x, F(τ)) + 𝐶𝑟 ∑ 𝔅θ(u − x; n − x, F(τ)) + 𝐹𝑥:𝑛(𝜏)(𝐶𝑅 + 𝐶𝐹𝜇(𝜏; 𝑛 − 𝑥))

𝑛−1

𝑢=𝑗𝑥

𝑗−1

𝑢=𝑥

, 

𝒞𝜏
(2)(𝑗; 𝑥) = ∑ 𝒞𝜏

𝑗−1

𝑢=𝑥+1

(𝑗; 𝑢)𝔅θ(u − x; n − x, F(τ)) + 𝒞𝜏(𝑗; 0) ∑ 𝔅θ(u − x; n − x, F(τ)),

𝑛−1

𝑢=𝑗𝑥

 

𝒞𝜏
(3)(𝑗; 𝑥) = 1 − 𝔅θ(0; n − x, F(τ))𝐼(𝑥 ≤ 𝑗 − 1). 

 

In addition,  

ℓ𝜏
(1)(𝑗; 𝑥) = ∑ ℓ𝜏

𝑗−1

𝑢𝑥+1

(𝑗; 𝑢)𝔅θ(u − x; n − x, F(τ)), 

ℓ𝜏
(2)(𝑗; 𝑥) = ℓ𝜏(𝑗; 0) ∑ 𝔅θ(u − x; n − x, F(τ)),

𝑛−1

𝑢=𝑗𝑥

 

ℓ𝜏
(3)(𝑗; 𝑥) = 1 − 𝔅θ(0; n − x, F(τ))𝐼(𝑥 ≤ 𝑗 − 1). 

 

Then, given starting state 𝑋(0) = 𝑥 both the expected cost per cycle 𝒞𝜏(𝑗; 𝑥) and the expected cycle length ℓ𝜏(𝑗; 𝑥) can 

be solved recursively for 𝑥 = 𝑛 − 1, ⋯ ,1,0: 

𝒞𝜏(𝑗; 𝑥) =
𝒞τ

(1)(j; x) + 𝒞τ
(2)(j; x)

𝒞τ
(3)(j; x)

, 

and 

ℓτ(j; x) =
τ + ℓτ

(1)(j; x) + ℓτ
(2)(j; x)

ℓτ
(3)(j; x)

. 

 

7.  Specific models 

 
The model above encompasses some variants of the repair models as special cases. They can be retrieved by an 

appropriate choice of the maintenance threshold 𝑗. The specific models are given in the following. 

7.1. Variant 1 repair model: ‹a,2›={𝒂𝟎, 𝒂𝒏} 

Letting 𝑗 = 𝑛 recover a special case of our explored model with two possible actions at each decision instant: no action 

if the state is observed in 𝐴0(𝑗) = {𝑥, 𝑥 + 1, ⋯ , 𝑛 − 1}; otherwise it undergoes a major repair at cost 𝐶𝑅. In this case, 

(10) and (12) become 

𝒞τ(j; x) = ∑(C0 + 𝒞τ(j; u))

n−1

u=x

𝔅θ(u − x; n − x, F(τ)) + 𝐹𝑥:𝑛(𝜏)(𝐶𝑅 + 𝐶𝐹𝜇(𝜏; 𝑛 − 𝑥)),                                             (15) 
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And 

ℓτ(j; x) = τ + ∑ ℓτ(j; u)𝔅θ(u − x; n − x, F(τ))

n−1

u=x

.                                                                                                              (16) 

 

7.2. Variant 2 repair model: ‹a,2›={𝒂𝟏, 𝒂𝒏} 
For variant 2 recovered by choosing  𝑗 = 𝑥 , there are two possible actions at each decision instant: (i) planned preventive 

replacement if the system state falls in the set 𝐴1(𝑗), and (ii) corrective replacement if the system state is found in a failed 

state. Given the above assumption, 

 

𝒞τ(j; x) = (𝐶𝑟 + 𝒞𝜏(𝑗; 0)) ∑ 𝔅θ(u − x; n − x, F(τ)) + 𝐹𝑥:𝑛(𝜏)𝑛−1
𝑢=𝑥 (𝐶𝑅 + 𝐶𝐹𝜇(𝜏; 𝑛 − 𝑥)),                                        (17) 

and 

ℓ𝜏(𝑗; 𝑥) = 𝜏 + ℓ𝜏(𝑗; 0) ∑ 𝔅θ(u − x; n − x, F(τ)).                                                                                                           (18)

𝑛−1

𝑢=𝑥

 

As noted, this is similar to the age replacement policy, but the preventive replacement cost at the end of a cycle depends 

on the system state 𝑋(𝜏) (the total number of failed components). A two-region replacement policy with a preventive 

replacement cost 𝐶𝑟 if the system is in functioning state, and an unplanned replacement cost including 𝐶𝑅 and 𝐶𝐹 

otherwise recreates the age replacement policy. More specifically, if 𝑇𝑥:𝑛 denotes the lifetime of an (𝑛 − 𝑥) -components 

system, (10) and (12) in terms of 𝑇𝑥:𝑛 can be reformulated as 

𝒞τ(j; x) = (𝐶𝑟 + 𝒞𝜏(𝑗; 0)) × 𝐹̅𝑥:𝑛(𝜏) + 𝐹𝑥:𝑛(𝜏)(𝐶𝑅 + 𝐶𝐹𝜇(𝜏; 𝑛 − 𝑥)),                                                                           (19) 

And 

ℓ𝜏(𝑗; 𝑥) = 𝜏 + ℓ𝜏(𝑗; 0) × 𝐹̅𝑥:𝑛(𝜏).                                                                                                                                           (20) 

As noted, since  

𝐹̅𝑥:𝑛(𝜏) = ∑ 𝑃𝑥𝑢

𝑛−1

𝑢=𝑥

(𝜏) = ∑ 𝔅θ(u − x; n − x, F(τ)),

𝑛−1

𝑢=𝑥

 

equations (19) and (20) respectively coincide with (17) and (18). This generalization, in comparison to an ordinary age 

replacement policy, permits degradation-dependent age replacement policies to be examined. 

 

8. Numerical results 

Consider an n-component parallel system whose failure mechanism is expressed by multidimensional FGM distribution 

(1) with the common marginal Weibull distribution function 𝐹(𝑡) given as above. For the numerical illustration, we set 

𝑛 = 5, (𝛼, 𝛽) = (2, √5), 𝜃 = 0.6 and 𝑥 = 0. The latter means the system starts operating with five components. The 

cost parameters of the model are 𝐶0 = 1.4, 𝐶𝑟 = 3.4., 𝐶𝑅 = 7 and 𝐶𝐹 = 3. 

By using the recursive algorithm given in section 5, our aim is to minimize the average cost rate (13) with respect to 

maintenance parameters including the inspection interval 𝜏 and the preventive replacement threshold 𝑗. Using the above 

set of known values, optimal solutions are given in Table 2. One can see that given 𝐶𝐹 = 3 and 𝜃 = 0.6 the maintenance 

actions should be scheduled with respect to the optimal maintenance parameters (𝜏∗, 𝑗∗): 

(𝜏∗, 𝑗∗) = Argmin
(𝜏,𝑗)∈(0,∞)×𝛺

ℂ𝜏(𝑗; 𝑥) = (2.1630,4).                                                                                                                     (21)  

This incurs the minimum maintenance cost ℂ𝜏∗(𝑗∗; 0) = 1.54 . The structure of the optimal policy can be described as 

follows: the system should be inspected at periodic times Π∗ = {kτ∗: k = 1,2, ⋯ } with the optimal inspection period 

𝜏∗ = 2.1630. Inspections reveal the true state of components and this allows preventive and corrective maintenance 

actions to be carried out in response to the observed system state: if at 𝜏∗ = 2.1630 the system state is found in 𝐴0(𝑗∗) =
{0,1,2,3} (at the most three components experience failure) no action is taken, if the system state is observed in 𝐴1(𝑗∗) =
{4} (four out of five components experience failure) the system is preventively replaced by a new one; otherwise the 

system undergoes corrective maintenance. 

Table 2. Optimal solutions (𝒋∗, 𝛕∗, ℂ𝛕∗(𝐣∗, 𝟎)) given 𝒏 = 𝟓 for different dependence degrees 𝜽 and penalty costs 𝑪𝑭. 

Dependence degree: 𝜃 

CF 0 0.2 0.4 0.6 0.8 1.0 

3 (4; 1:649; 1:49) (4; 1:643; 1:51) (4; 1:637; 1:52) (4; 1:630; 1:54) (4; 1:622; 1:55) (4,1.613,1.57) 

6 (4; 1:540; 1:54) (4; 1:527; 2:55) (4; 1:512; 2:57) (3; 1:749; 2:59) (3; 1:750; 1:59) (3,1.752,1.60) 

9 (4; 1:467; 1:57) (4; 1:449; 1:59) (3; 1:677; 1:60) (3; 1:675; 1:61) (3; 1:674; 1:62) (3,1.673,1.62) 

12 (4; 1:412; 1:60) (3; 1:626; 1:61) (3; 1:623; 1:62) (3; 1:620; 1:63) (3; 1:617; 1:64) (3,1.613,1.64) 

 

The results are developed by examining the response of optimal solutions to the penalty cost and the dependence degree 

with 𝐶𝐹 = {3,6,9,12} and 𝜃 ∈ {0.2𝑘: 𝑘 = 1,2, ⋯ ,5}. The results reveal that as components operate independently 

(𝜃 = 0), changing 𝐶𝐹 does not affect the optimal repair threshold 𝑗∗, but on the other hand the optimal period of 

inspection decreases with 𝐶𝐹 making inspections more frequent. The model postulates a lower optimal replacement 
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threshold 𝑗∗: 4 → 3 as both the dependence degree and the penalty cost increase uniformly. In this case, the model 

penalizes a costly strategy which favors too many inspections. But, it is not the case as the optimal replacement threshold 

remains fixed. This favorably leads to an earlier detection of the system failure hence reducing the penalty cost. The 

behavior of the average cost rate is also presented graphically in Figure 4 which indicates that the repair model 

characterized by the optimal replacement threshold 𝑗∗ = 4 outperforms other repair models including the age 

replacement model (see Section 6.2) and the variant 1 repair model whose action space is restricted to inspection and 

perfect repair, i.e. ‹a, 2› = {𝑎0, 𝑎𝑛}. 

 

Table 3 and Figure 5 demonstrate the effect of the starting state 𝑋(0) = 𝑥 on the model. The results reveal that as 

surviving components at initial time decrease (𝑥 increases), the system becomes more susceptible to failure. This induces 

a reduction in the cycle length and so an increase in resulting average cost rate, but on the other hand makes inspections 

more frequent. 
 

Table 3. Optimal solutions (𝝉∗, ℂ𝝉∗(𝒋∗, 𝒙)) for different starting states 𝒙 ∈ {𝟎, 𝟏, 𝟐, 𝟑, 𝟒} given 𝒋∗ = 𝟒 and 𝜽 = 𝟎. 𝟔. 

𝑥 0 1 2 3 4 

(𝜏∗, ℂ𝜏∗(𝑗∗, 𝑥)) (1.163,1.54) (1.585,1.56) (1.525,1.59) (1.426,1.64) (1.345,1.69) 

 

Given (0) = 0 , measured by the ratio of the average cost rate ℂ𝜏(4; 0) to the average cost rate ℂ𝜏(𝑗; 0) (𝑗 ≠ 4) , the 

cost efficiency of the optimal threshold policy 𝑗∗ = 4 , i.e. 𝑒𝜏(4, 𝑗): 

𝑒𝑐(4; 𝑗) =
ℂ𝜏(4; 0)

ℂ𝜏(𝑗; 0)
, 

as a function of the inspection interval 𝜏 is illustrated by Figure 6. It is evident that when ℂ𝜏(4; 0) ÷ ℂ𝜏(𝑗; 0) < 1 (𝑗 ≠ 4), 

the threshold policy 𝑗∗ = 4 is more cost efficient than other threshold policies. Figure 6 indicates that (i) the cost 

efficiency does not respond to the threshold value 𝑗 as the inspection period is large enough (𝜏 ∈ [4, ∞)), (ii) the repair 

model corresponding to the threshold policy 𝑗∗ = 4 is consistently more cost efficient than the variant 1 repair model 

(𝑗 = 5), (iii) within the inspection intervals (2,4) and (2.6,4) the repair models with 𝑗 = 3 and 𝑗 ∈ {0,1,2} respectively 

are slightly more cost efficient than the repair model with 𝑗∗ = 4. As noted, for 𝜏 ∉ (2.6,4) the threshold policy 𝑗∗ = 4, 

particularly for small periods of inspection is more cost efficient than the age replacement policy (𝑒𝑐(4,0) < 1). 

 

 
Figure 4 .Average cost rate for different preventive replacement thresholds 𝒋 ∈ {𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓} given starting state 𝒙 = 𝟎 and the 

dependence degree 𝜽 = 𝟎. 𝟔. 
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Figure 5. Average cost rate for different starting states 𝒙 ∈ {𝟎, 𝟏, 𝟐, 𝟑, 𝟒} given optimal replacement threshold 𝒋∗ = 𝟒 and the 

dependence degree 𝜽 = 𝟎. 𝟔. 

 
 

Figure 6. The cost efficiency ⅇ𝒄(𝟒; 𝒋) as a function of 𝝉 for different preventive replacement thresholds 𝒋 ∈
{𝟎, 𝟏, 𝟐, 𝟑, 𝟓} and the dependence degree 𝜽 = 𝟎. 𝟔. 

9. Conclusions 

 

Using an FGM copula function, this paper has presented a unified maintenance model to jointly determine both optimal 

inspection intervals and optimal preventive replacement policy for parallel systems with non-self-announcing failures 

and dependent components. The model employs the renewal reward theorem based on the identification of an embedded 

renewal process. This allows for formulating the average cost rate used as a measure of policy to optimize the model 

with respect to maintenance parameters. The explored model generalizes age replacement models and outperforms those 

maintenance models whose attentions are restricted to inspection and perfect repair (corrective replacement), or failure 

dependencies between components are ignored. 

 

The results of the model give sensible and realistic inspection and preventive replacement policies for parallel systems 

whose components lifetime conforms to a Weibull distribution. Also, the findings give insight into the behavior of the 

model as some parameters including the dependence factor, starting state and penalty cost vary. In short, the main 

findings of our numerical investigation are as follows: 

 

 The optimal model is characterized by the optimal inspection interval 𝜏∗ = 2.163 and the optimal replacement 

threshold 𝑗∗ = 4. 

 The optimal model with 𝑗∗ = 4 is more cost efficient than the variant 1 repair model with 𝑗 = 5. 

 The maintenance approach adopted in our model outperforms age replacement and other simple maintenance strategies. 

 Increasing the penalty cost makes inspections more frequent. 
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 The higher level of redundancy at initial time (increasing starting state) induces a decrease in the expected cycle length. 

This leads to an increase in both the number of inspections and the average cost rate. 

 An increased interaction of failure characterized by the higher level of dependency leads to an increased tendency of 

failure and hence an earlier preventive replacement time (𝑗∗decreases). The optimal replacement threshold 𝑗∗ responds 

similarly to the penalty cost.  

 In the absence of dependency (𝜃 = 0) the optimal replacement threshold 𝑗∗ does not respond to the penalty cost (a 

risky position).  

  

The model explored here indicates an approach which will be extended by setting the degradation model in a Levy copula 

framework. In comparison to an ordinary copula, the Levy copula framework allows for considerable flexibility to model 

the stochastic dependence for degradation processes of multi-component systems. Also, possible extension of practical 

interest includes the case of partial repairs (e.g. see Huynh, (2019); Huynh, (2020); Mercier and Castro, (2019); 

Syamsundara et al., (2020); Yang (2019) and Zhang, (2020)) implemented through partitioning the state space into four 

non-overlapping state sets and incorporating an age reduction model. The model here and the methodology in an earlier 

paper by Ahmadi (2019) show the possibility of this scheme. Further, the formulation could be developed from a one-

dimensional process to multi-dimensional processes. In this case, a transform of the underlying process could be used as 

a decision variable. This structure makes the maintenance modeling of non-homogeneous populations by means of a 

multivariate process possible. 
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