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Abstract 

In this paper, a guaranteed service model (GSM) is considered in a general supply chain with the releasing of the service 

time constraint. For this purpose, a bi-objective model is developed containing minimization of both service time and 

the holding cost of safety stock. In addition to considering the return of items from inside of the chain, the returns from 

outside of the chain are also considered to carry out remanufacturing, refurbishing, and repairing processes. The model 

is solved in a real-world case of the electronic product supply chain and the Pareto solution set is obtained to show the 

changes in the holding cost of safety stock based on the maximum time for the different services offered to customers. 

Keywords: Guaranteed Service Model; Safety Stock; Inventory Control; Reverse logistics; Lead Time. 

1. Introduction 

The safety stock is used as a buffer to reduce the risk of inventory shortages and the risk of unnecessary inventory overage 

in both single and multiple echelon systems (Eruguz et al. 2014). In multi-echelon inventory-control systems, the safety 

stock bears extraordinary significance because it can adjust and optimize the lead times and consequently the inventory 

decisions at different levels, from the external sources to the final customer (Klosterhalfen and Minner 2010). The 

guaranteed service model (GSM) is one of approaches which is used for the optimization of the safety stock (Sitompul 

et al. 2008). In this approach, each stage meant for meeting the demand carries out the orders into its upstream stages 

(i.e. suppliers) after receiving the demand from downstream stages at a certain time. The topic is used in combination 

with other supply chain issues such as supply chain configuration, production scheduling, reverse logistics, and green 

supply chain with the aim of reaching into optimized inventory. Based on our review, it seems that there is only one 

study about the use of guaranteed service model with reverse logistics simultaneously. In that research, Minner (2001) 

considered the returned items from inside of the chain for recovery processes. Almost all previous studies of GSM have 

considered the customer’s service time as a constraint. Therefore, it is essential that a study is conducted considering the 

return of items from both inside and outside of the chain by including more reverse logistics processes as well as 

considering the service time constraint as an objective. 

 

2. Review of the Literature 

As early works, Inderfurth (1991) provided a dynamic programming algorithm for distribution systems, Graves and 

Willems (2000) developed a guaranteed service model for general systems, and Minner (2000) considered the relaxation 

based on the assumption of similar service time for the downstream stages of distribution systems and proposed two 

different models. Later, Grahl et al. (2016) extended the Minner’s (2000) model for general acyclic networks and showed 

that the computational complexity of the network increases significantly for different service periods. Eruguz et al. (2016) 

conducted a comprehensive review of the literature on this topic and provided a classification of optimizing methods for 

safety stock using a guaranteed service model. 
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In another research, Minner (2001) analyzed the effect of byproduct items (which are returned due to defects in the 

production process) on the amount of the safety stock to ensure GSM and then developed the general cyclic network 

model in reverse logistics. In the model, the byproducts can be returned from one stage to the previous stages. Then, the 

gross and net demands at each stage are adjusted with the return quantities. The demands are characterized over different 

intervals depending on the values of service time, regular lead time, and the recovered lead time.  

Graves and Willems (2003) integrated the GSM with the supply chain configuration problem. In the proposed model, 

the best option for each stage and the amount of safety stock is determined in the supply chain at the same time. Later, 

Graves and Willems (2008) considered the optimization of the safety stock in a supply chain with non-stationary demand 

bound. They indicated that if the non-stationary demand bound is a concave function, the optimization problem is 

equivalent to the case that the demand is stationary. Nepal et al. (2011) provided a multi-objective optimization model 

for new products involving the maximization of the total compatibility index for the selected options and the 

minimization of the total supply chain cost.  

For the GSM problem, the effect of using extraordinary measures when the demand exceeds the pre-specified limit has 

been discussed only in a few cases. In this regard, Klosterhalfen and Minner (2010) assumed that the external demand 

would be indefinitely propagated within the system. They used accelerated tasks, such as increasing the speed of transport 

between the stages, as extraordinary measures.  

Li and Jiang (2012) suggested a heuristic approach to the issue of safety stock placement which integrates the genetic 

algorithm with -constraint method by considering the balancing between solution speed and quality. Li et al. (2013) 

decomposed the optimization problem into two independent sub-problems consisting of decision on the order size and 

reorder point and then offered two dynamic programming algorithms to solve the sub-problems. Ni and Shu (2015) 

combined the safety stock placement problem with the environmental impact of carbon dioxide emissions and developed 

two models by taking into account the carbon tax and the carbon cap in trade-off between the service time and carbon 

emissions. Recently, Hong et al. (2018) considered a supply chain configuration problem for a green product family 

using a guaranteed service model and emission constraints. They decomposed the original problem into two sub-

problems and suggested a hybrid algorithm (STA+PSO) to solve the original model. Magnanti et al. (2006) developed a 

GSM model with the maximum service time for which safety stock can be considered at each station by adding a 

constraint to the problem. Then the model is solved using an exact solution method without referring to the optimal 

solution properties. Graves and Schoenmeyr (2016) examined the capacity constraints in the GSM model with a modified 

single-stage base-stock policy and then extended it into a multi-stage policy. They showed that under the base-stock 

policy, adding capacity constraints leads to increases in inventory costs. Hua and Willems (2016) developed a two-stage 

serial line supply chain and indicated that the safety stock cost of downstream stage can be reduced by cutting the cost 

or increasing the lead time of the upstream stage. Martínez and Mastrocinque (2016) considered service time as the 

second objective of the model and proposed a bi-objective water drop algorithm for solving the model. Then they 

examined the algorithm for seven examples in the literature. The results showed that their proposed algorithm 

outperforms many other meta-heuristics such as ant colony optimization algorithm.  

There are many other studies on the GSM but the most important research is reviewed here. To get a better perception 

of the researches done, they are summarized in Table 6 in Appendix B. 

The rest of the paper is structured as follows: In section 3, notations and new equations regarding the return of items 

from outside of the chain are introduced. In section 4, a bi-objective mathematical model is developed. Section 5 is 

devoted to providing a numerical example and analytical results. In section 6, conclusions and future studies are 

presented. 

3. Problem description 

As mentioned above, to extend the Minner’s model (2001), we consider more options of reverse logistics in the GSM 

model after the return of items from outside of the supply chain including remanufacturing, refurbishing, and repairing 

and then propose the developed model. Also, in this study, the Minner’s model is extended by considering the 

replenishment lead time of the recycled items and by putting it along with the former items. Thus, the three permutation 

cases of lead times and service time in the Minner’s model are extended into twelve permutation cases of lead times and 

service time in the model. 

Meanwhile, we release the customer’s service time constraint and consider it as a second objective function to reduce 

the service time. In addition, by regarding the total holding cost of the safety stock as another objective function, we 

develop a bi-objective model in which the trade-off results between service time and holding cost can be reported as a 

Pareto frontier.  

The following notations are used to develop the proposed model: 
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3.1. Indices and Sets  

I :  Set of production and holding inventory stages, i, j, k ∈ (1, . . , 𝑖, … , 𝐼) 

Ḽ : Index of  initial permutation cases of lead times and service time developed by Minner ℓ∈ (1,2,3) 

U : Index of extended permutation cases of lead times and service time developed in this study  u ∈ (1, . . ,12) 

T : Index of planning periods, t ∈ 𝑇 

A, P, E : Sets of initial, in-process and final stages respectively 

v(i) : Set of all direct predecessors of stage i  

W : Set of direct connections in the network, example:{(1,2), (2,4), . . , (𝑛 − 1, 𝑛) ∈ 𝑊} 

WW: Set of reverse connections in the network (i.e. backward flow), example:{(3,2), (12,8), … ∈ 𝑊𝑊} 

Wbp : Set of stages with the ability of  receiving the by-products   

rec: Set of stages with the ability of receiving the return items after recycling process 

cap : stages with time limit 

𝜃 ∶ The Overall set of reverse activities including remanufacturing, refurbishing, and repairing, 𝛼, 𝛽, 𝛾 ∈ 𝜃 

3.2. Scalars 

b: Rate of return items from outside of the chain 

Esp., M : a very small & large number respectively 

3.3. Parameters 

𝑎𝑖,𝑗: Number of items required at stage j to produce one item at the successor stage i 

𝑎𝑗,𝑖: The coefficient of by-products produced at stage i  which is sent to stage j for corrective processes 

C(b): The amount of return items 

𝑡𝑖: Processing time at stage i 𝑡𝑖
𝑏𝑝

: Processing time on by-product at stage i 

𝑡𝑟𝑒𝑐: Recycling process time 𝑡𝑟𝑐𝑜: Recovery process time 

𝐷𝑖 : Received demand by stage i (i ∈ 𝐸) 𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

: Gross demand at stage i, (i ∈ 𝐴⋃𝑃⋃𝐸) 

𝑠𝑑𝑑𝑖 : Standard deviation of demand at stage i, (i ∈ 𝐸) 𝑆𝐿𝑖(𝑘𝑖): Service level at stage i 

𝐶𝑎𝑖: The processing time limit at stage i ℎ𝑖: Holding cost at stage i 

𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾: A Portion of the returned items for remanufacturing, refurbishing, and repairing respectively 

3.4. Intermediate Decision Variables 

𝛿𝑖, 𝜂𝑖 , 𝜏𝑖 , 𝜔𝑖 , 𝛹𝑖 : Binary variables of determining the active permutation cases of lead times and service time at stage i 

𝛿𝜂𝑖, 𝛿𝜂𝑖1 : Continuously auxiliary variables for linearization of binary variables at stage i 

𝑎𝑏𝑖,𝑢: Continuously auxiliary variable for linearization of binary variables related to the permutation case u at stage i 

𝑂𝑃ℓ: Multiplication of binary variables at each of triple permutation cases of lead times and service time in the basic 

model   

𝑂𝐶𝑢: Multiplication of binary variables in each of twelve permutation cases of lead times and service time in the 

developed model  

𝐷𝑖
𝑛𝑒𝑡: Net demand at stage i, (i∈ 𝐴⋃𝑃) 

𝑉𝑖
𝑛𝑒𝑡: The demand variance at initial and in-processing stages including returned items 𝑖 ∈ ( 𝐴 ∪ 𝑃) 

𝑉𝑖
𝑛𝑒𝑡∗

: The demand variance at the final stages 𝑖 ∈ 𝐸 

𝜏𝑖: The net replenishment time 

�̃�𝑖  : Total replenishment lead time for the gross requirement at stage i 

𝐿𝑖
𝑟 ∶ Replenishment lead time of regular items at stage i 𝐿𝑖

𝑏𝑝
 :Replenishment lead time of returned items at stage i 

𝐿𝑏𝑝(𝑖)
𝑟  : Regular replenishment lead time of the by-product items at stage i 

𝐿𝑖
𝑟𝑒𝑐  : Replenishment lead time of recycled items at stage i 

3.5.  The main decision variables 

𝑆𝐼𝑖 , 𝑆𝑖: Inbound & outbound service time at stage i, respectively 
𝑄𝑖 : Regular replenishment quantity 
𝑠𝑑𝑖

𝑛𝑒𝑡 : Net standard deviation of demand at stages i, (i ∈ 𝐴⋃𝑃) 
𝑅𝑖: Number of returned items to stage i RRi: Number of recycled items to stage i 
𝑚𝑥𝑖: The preparation time of recovered items at stages 𝑖 ∈ 𝐸 

Based on the GSM, at each stage i ∈ I, an outbound guaranteed service time Si is imposed into downstream stages. Thus, 

any demand that occurs at time T would be satisfied at time T+Si. Also, the time required to receive all inputs of stage i 

from stages j ((i, j) I) to start the process is defined as inbound service time (SIi). At stage i, if demand is received at 

time T, the replenishment of items responding to this demand would be performed at time T SIi ti. In fact, demand 

received at time T is satisfied at time T Si. If SIi ti Si, then demand during the lead time which is iSIi ti Si, 

(i.e. net replenishment time) should be covered. 
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Based on the Kimball control approach (1988), the internal returns can be considered as follows (Minner, 2000): 

𝐷𝑖
𝑔𝑟𝑜𝑠𝑠=𝐷𝑖  𝑖 ∈ 𝐸 (1) 

𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

= ∑ 𝑎𝑖,𝑗𝑄𝑗𝑗∈𝑛(𝑖)  𝑖 ∈ 𝐴 ∪ 𝑃 (2) 

𝐿𝑖
𝑟 =  𝑚𝑎𝑥{𝑆𝑗} + 𝑡𝑖  𝑖 ∈ 𝐴 ∪ 𝑃 ∪ 𝐸, 𝑗 ∈ 𝑣(𝑖) (3) 

𝑅𝑖 = 𝑎𝑗,𝑖𝑄𝑗  𝑖 ∈ 𝐴 ∪ 𝑃, (𝑗, 𝑖) ∈ 𝑤𝑤 (4) 

𝐿𝑖
𝑏𝑝

= 𝑚𝑎𝑥{𝐿𝑏𝑝(𝑖)
𝑟 } + 𝑡𝑖

𝑏𝑝
 𝑖 ∈ 𝐴 ∪ 𝑃, 𝑗 |(𝑗, 𝑖) ∈ 𝑤𝑤 (5) 

𝑄𝑖 = 𝐷𝑖,𝑡
𝑔𝑟𝑜𝑠𝑠

− 𝑅𝑖 𝑖 ∈ 𝐴 ∪ 𝑃 (6) 

In the case of external returns, according to the quality level of the returned items, remanufacturing, refurbishing, and 

repairing items are determined. 

We consider that the amount of returned items is determined based on the return rate of the items as well as the portion 

of remanufacturing, refurbishing, and repairing activities defined as follows: 

𝐶(𝑏) = 𝐷𝑡 . 𝑏 (7) 

𝜃𝛼 = 3
𝑏

4
 

(8.a) 

𝜃𝛽 = 𝜃𝛾 =
𝑏

8
 

 (8.b) 

The items are sent to recycling centers and after passing the recovery processes, they will be sent back to one of stages 

of the chain. The recycling time of the items is equal to trec and so the products or returned items can be used in the 

supply chain after: 

𝐿𝑖
𝑟𝑒𝑐 = 𝑡𝑟𝑒𝑐                                                                                                                                                                (9) 

Now, let’s use both receiving internal and external returns to determine demand at stage i; such that total replenishment 

time is equal to the maximum time of all three lead times (i.e. max [Li
r, Li

bp, Lirec]). As shown in equation (10), the time 

duration which is needed to overcome the uncertainties of demand by safety stock would be: 

�̃�𝑖 = 𝑚𝑎𝑥{ 𝐿𝑖
𝑟 , 𝐿𝑖

𝑏𝑝
, 𝐿𝑖

𝑟𝑒𝑐}   − 𝑆𝑖   𝑖 ∈ 𝐴 ∪ 𝑃    (10) 

So, if demand is occurred at time t, the first period that can be fully affected would be t+�̃�𝑖 + 𝑆𝑖. 

Let us suppose 𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

[𝐴, 𝐵, 𝐶, 𝐷 ] and 𝐷𝑖
𝑛𝑒𝑡[𝐴, 𝐵, 𝐶, 𝐷 ] as gross and net demand values respectively over the interval 

[t+Si; t + T̃i + Si]. A, B, C, and D are defined respectively as the service time, the regular replenishment time, the 

byproduct replenishment time, and the recycling replenishment time at each stage. In the following, we will determine 

the required safety stock for dealing with the uncertainty of the demand during �̃�𝑖. Depending on the values of Li
bp, Li

rec, 

Si, and Li
r, and by considering all possible permutations of these values and also considering that the service time is 

limited to the regular replenishing time (𝐿𝑖
𝑟) at each stage, four new permutation cases can be generated at each of the 

three previous permutation cases as shown in Appendix A.  

But first, let’s consider Minner’s model and develop the mathematical relations for it. In Minner’s model, for the stages 

that include regular replenishment as well as byproduct replenishment, three following cases are considered: 

1) 𝑆𝑖 ≤ 𝐿𝑖
𝑟 ≤ 𝐿𝑖

𝑏𝑝
, 2)𝑆𝑖 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟 , 3)𝐿𝑖
𝑏𝑝

≤ 𝑆𝑖 ≤ 𝐿𝑖
𝑟 

In which, by defining binary variables and adding the following constraints, the cases are distinguished from each other.  

(11.a) 𝐿𝑖
𝑟 − 𝐿𝑖

𝑏𝑝
≤   𝑀𝛿𝑖 

(11.b) 𝐿𝑖
𝑏𝑝

− 𝐿𝑖
𝑟 ≤   𝑀(1 − 𝛿𝑖) 

(12.a) 𝐿𝑖
𝑏𝑝

− 𝑆𝑖 ≤   𝑀𝜂𝑖 

(12.b) 𝑆𝑖 − 𝐿𝑖
𝑏𝑝

≤   𝑀(1 − 𝜂𝑖) 

Meanwhile, the following demand terms should be considered corresponding to the three cases: 

1)𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 ≤ 𝐿𝑖

𝑟 ≤ 𝐿𝑖
𝑏𝑝

] (1 − 𝛿𝑖) 

2)𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟] 𝛿𝑖𝜂𝑖  

3) 𝐷𝑖
𝑛𝑒𝑡[𝐿𝑖

𝑏𝑝
≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟] 𝛿𝑖(1 − 𝜂𝑖) 

Then, the net demand is obtained by integration of above terms into Equation 13.a: 
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𝐷𝑖
𝑛𝑒𝑡 = {𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
[𝑡+𝑆𝑖 ; 𝑡 + 𝐿𝑖

𝑏𝑝
] − 𝑄𝑖[𝑡 + 𝐿𝑖

𝑟; 𝑡 + 𝐿𝑖
𝑏𝑝

]}(1 − 𝛿𝑖) + {𝐷𝑖
𝑔𝑟𝑜𝑠𝑠[𝑡+𝑆𝑖; 𝑡 + 𝐿𝑖

𝑟] −

𝑅𝑖[𝑡 + 𝐿𝑖
𝑏𝑝

; 𝑡 + 𝐿𝑖
𝑟]   }(𝛿𝑖𝜂𝑖) + {𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[𝑡+𝑆𝑖; 𝑡 + 𝐿𝑖
𝑟] − 𝑅𝑖[𝑡 + 𝐿𝑖

𝑏𝑝
; 𝑡 + 𝐿𝑖

𝑟]  }𝛿𝑖(1 − 𝜂𝑖)                      

(13.a) 

For simplification, the binary multiplications at each term are shown by OPℓ. Equivalently, by dividing the intervals at 

each term into sub-intervals and replacing OPℓ, Equation 13.b is obtained: 

𝐷𝑖
𝑛𝑒𝑡 = {𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[𝑡 + 𝑆𝑖; 𝑡 + 𝐿𝑖
𝑟] + 𝑅𝑖[𝑡 + 𝐿𝑖

𝑟; 𝑡 + 𝐿𝑖
𝑏𝑝

]}𝑂𝑃1 + {𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

[𝑡 + 𝑆𝑖; 𝑡 + 𝐿𝑖
𝑏𝑝

] +

𝑄𝑖[𝑡 + 𝐿𝑖
𝑏𝑝

; 𝑡 + 𝐿𝑖
𝑟]}𝑂𝑃2 + {𝑄𝑖[𝑡 + 𝑆𝑖 ; 𝑡 + 𝐿𝑖

𝑟] − 𝑅𝑖[𝑡 + 𝐿𝑖
𝑏𝑝

; 𝑡 + 𝑆𝑖]}𝑂𝑃3                                   

(13.b) 

Return to equations 3 and 5, the demand variance at each of three cases is determined based on the service time and 

replenishment time as follows.                                                              

𝑉𝑗,ℓ
𝑛𝑒𝑡 = 𝜎2. (𝑆𝐼𝑗 + 𝑡𝑗 − 𝑆𝑗) + 𝑎𝑖,𝑗

2 𝜎2 (𝑆𝑖 + 𝑡𝑗
𝑏𝑝

− (𝑆𝐼𝑗 + 𝑡𝑗)) ℓ=1,j ∈ 𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤      (14.a) 

𝑉j,ℓ
𝑛𝑒𝑡 = σ2(Si + tj

bp
− Sj) + (1 − 𝑎i,j)

2
σ2 (SIj + tj − (Si + tj

bp
)) ℓ=2,j ∈ wbp, i |(i, j) ∈ ww      (14.b) 

Vj,ℓ
net = (1 − 𝑎i,j)

2
σ2(SIj + tj − Sj) + 𝑎𝑖,𝑗

2 σ2(Si − (Si + tj
bp

)) ℓ=3,j ∈ wbp, i |(i, j) ∈ ww      (14.c) 

It should be noted that in these equations, 𝑉𝑗
𝑛𝑒𝑡   is used instead of the classical 𝑠𝑑𝑗

𝑛𝑒𝑡  (i.e. 𝑠𝑑𝑗
𝑛𝑒𝑡(𝑆𝑗 , 𝐿𝑗

𝑟 , 𝐿𝑗
𝑏𝑝

, 𝐿𝑗
𝑟𝑒𝑐) =

√𝑉[𝐷𝑗
𝑛𝑒𝑡 (𝑆𝑗 , 𝐿𝑗

𝑟 , 𝐿𝑗
𝑏𝑝

, 𝐿𝑗
𝑟𝑒𝑐)] ) and the term ∑ 𝑠𝑑𝑑𝑘

2
𝑘∈𝐸  is replaced by 𝜎2.  

Moreover, by exerting the following replacements, the previous equations can be simply used for final stages. 

𝑚𝑥𝑖 → 𝑚𝑎𝑥𝑗 |(𝑗,𝑖)∈𝑤𝑤{𝐿𝑏𝑝(𝑖)
𝑟 } + 𝑡𝑖

𝑏𝑝
 (15) 

𝜃𝛼 → 𝑎𝑗,𝑖  

𝑠𝑑𝑖
𝑛𝑒𝑡 → ∑ 𝑠𝑑𝑑𝑘

2
𝑘∈𝐸   

Now, let’s return into the model which is developed in this study. In our development, as mentioned before, there are 

twelve permutation cases. So, to make a distinction between the outlined cases, equations 16 to 18 are introduced in a 

similar way as used in equations 11 and 12. 

(16.a) 𝐿𝑖
𝑟𝑒𝑐 − 𝐿𝑖

𝑏𝑝
≤   𝑀𝜏𝑖 

(16.b) 𝐿𝑖
𝑏𝑝

− 𝐿𝑖
𝑟𝑒𝑐 ≤   𝑀(1 − 𝜏𝑖) 

(17.a) 𝐿𝑖
𝑟𝑒𝑐 − 𝐿𝑖

𝑟 ≤   𝑀𝜔𝑖  

(17.b) 𝐿𝑖
𝑟 − 𝐿𝑖

𝑟𝑒𝑐 ≤   𝑀(1 − 𝜔𝑖) 

(18.a) 𝐿𝑖
𝑟𝑒𝑐 − 𝑆𝑖 ≤   𝑀𝛹𝑖  

(18.b) 𝑆𝑖 − 𝐿𝑖
𝑟𝑒𝑐 ≤   𝑀(1 − 𝛹𝑖) 

As a result, the following binary multiplication terms are developed at each of twelve permutation cases.  

 

1)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑟 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟𝑒𝑐 𝑡ℎ𝑒𝑛 (1 − 𝛿𝑖)𝜂𝑖𝜏𝑖

2)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑟 ≤ 𝐿𝑖

𝑟𝑒𝑐 ≤ 𝐿𝑖
𝑏𝑝

𝑡ℎ𝑒𝑛 (1 − 𝛿𝑖)𝜂𝑖(1 − 𝜏𝑖)𝜔𝑖

3)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟 ≤ 𝐿𝑖
𝑏𝑝

𝑡ℎ𝑒𝑛 (1 − 𝛿𝑖)𝜂𝑖(1 − 𝜏𝑖)(1 − 𝜔𝑖)𝛹𝑖

4)𝑖𝑓 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟 ≤ 𝐿𝑖
𝑏𝑝

𝑡ℎ𝑒𝑛 (1 − 𝛿𝑖)𝜂𝑖(1 − 𝜏𝑖)(1 − 𝜔𝑖)(1 − 𝛹𝑖)

5)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟 ≤ 𝐿𝑖

𝑟𝑒𝑐 𝑡ℎ𝑒𝑛 𝛿𝑖𝜂𝑖𝜔𝑖

6)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖𝜂𝑖(1 − 𝜔𝑖)𝜏𝑖

7)𝑖𝑓 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖𝜂𝑖(1 − 𝜔𝑖)(1 − 𝜏𝑖)𝛹𝑖

8)𝑖𝑓 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖𝜂𝑖(1 − 𝜔𝑖)(1 − 𝜏𝑖)(1 − 𝛹𝑖

9)𝑖𝑓 𝐿𝑖
𝑏𝑝

≤ 𝑆𝑖 ≤ 𝐿𝑖
𝑟 ≤ 𝐿𝑖

𝑟𝑒𝑐 𝑡ℎ𝑒𝑛 𝛿𝑖(1 − 𝜂𝑖)𝜔𝑖

10)𝑖𝑓 𝐿𝑖
𝑏𝑝

≤ 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖(1 − 𝜂𝑖)(1 − 𝜔𝑖)𝛹𝑖

11)𝑖𝑓 𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖(1 − 𝜂𝑖)(1 − 𝜔𝑖)(1 − 𝛹𝑖)𝜏𝑖

12)𝑖𝑓 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟 𝑡ℎ𝑒𝑛 𝛿𝑖(1 − 𝜂𝑖)(1 − 𝜔𝑖)(1 − 𝛹𝑖)(1 − 𝜏𝑖)

 (19) 

Again for simplicity, the binary multiplication terms will be shown by 𝑂𝐶𝑢 (𝑂𝐶1,𝑂𝐶2,…, 𝑂𝐶12). 
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Now, by considering the net demand terms introduced in Appendix A, the demand variance at each case (𝑉𝑗,𝑢
𝑛𝑒𝑡) can be 

obtained similarly based on the service time. For instance, the equations of the first three cases are shown as follows: 

𝑉𝑗,𝑢
𝑛𝑒𝑡 = 𝜎2(𝑆𝐼𝑗 + 𝑡𝑗 − 𝑆𝑗) + (𝑎𝑖,𝑗 + 𝜃𝛾)

2
𝜎2 (𝑆𝑖 + 𝑡𝑗

𝑏𝑝
− (𝑆𝐼𝑗 + 𝑡𝑗)) 

+𝜃𝛾
2𝜎2(𝑡𝑟𝑒𝑐 − (𝑆𝑖 + 𝑡𝑗

𝑏𝑝
) 

u=1,  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (20.a) 

𝑉𝑗,𝑢
𝑛𝑒𝑡 = 𝜎2(𝑆𝐼𝑗 + 𝑡𝑗 − 𝑆𝑗) + (𝑎𝑖,𝑗 + 𝜃𝛾)

2
𝜎2 (𝑡𝑟𝑒𝑐 − (𝑆𝐼𝑗 + 𝑡𝑗)) 

+𝑎𝑖,𝑗
2 𝜎2(𝑆𝑖 + 𝑡𝑗

𝑏𝑝
− 𝑡𝑟𝑒𝑐) 

u=2,  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤  (20.b) 

𝑉𝑗,𝑢
𝑛𝑒𝑡 = 𝜎2(𝑡𝑟𝑒𝑐 − 𝑆𝑗) + (1 − 𝜃𝛾)

2
𝜎2(𝑆𝐼𝑗 + 𝑡𝑗 − 𝑡𝑟𝑒𝑐) 

+𝑎𝑖,𝑗
2 𝜎2(𝑆𝑖 + 𝑡𝑗

𝑏𝑝
− (𝑆𝐼𝑗 + 𝑡𝑗)) 

u=3,  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤  (20.c) 

The equations for other cases can be developed in a similar way. Now, based on the above equations, the mathematical 

model can be developed. 

4. Mathematical Model 

In this section, a bi-objective model for considering safety stocks in reverse logistics based on guaranteed service model 

will be presented.  

Min 𝑍1 =  

∑ ℎ𝑗𝑘𝑗𝑠𝑑𝑗
𝑛𝑒𝑡2

√𝑆𝐼𝑗 + 𝑡𝑗 − 𝑆𝑗 + ∑ ∑ ℎ𝑗𝑘𝑗𝑖 |(𝑖,𝑗)∈𝑤𝑤 (∑ 𝑉𝑗,ℓ
𝑛𝑒𝑡  𝑂𝑃ℓ

3
ℓ=1 )

0.5
𝑗∈𝑤𝑏𝑝 +𝑗∈𝐴∪𝑃\𝑤𝑏𝑝⋃𝑟𝑒𝑐

∑ ∑ ℎ𝑗𝑘𝑗(∑ 𝑉𝑗,𝑢
𝑛𝑒𝑡𝑂𝐶𝑢

12
𝑢=1 )

0.5
𝑖 | (𝑖,𝑗)∈𝑤𝑤𝑗∈𝑤𝑏𝑝⋂𝑟𝑒𝑐 + ∑ ℎ𝑗𝑘𝑗(∑ 𝑉𝑗,ℓ

𝑛𝑒𝑡∗
 𝑂𝑃ℓ

3
ℓ=1 )

0.5

𝑗∈𝐸                              

(21) 

 

Min 𝑍2 = 𝑚𝑎𝑥 𝑗∈𝐸{𝑆𝑗}                                                                                                      (22) 

𝑆𝐼𝑗 + 𝑡𝑗 ≥ 𝑆𝑗   𝑗 ∈ 𝐴 ∪ 𝑃 ∪ 𝐸 (23) 

SIj ≥ Si ∀(𝑖, 𝑗) ∈ 𝑤 (24) 

𝑆𝐼𝑗 + 𝑡𝑗 − 𝑆𝑗 ≤ 𝐶𝑎𝑗  𝑗 ∈ 𝑐𝑎𝑝 (25) 

𝑄𝑗 = (1 − 𝜃𝛼) 𝐷𝑗
𝑔𝑟𝑜𝑠𝑠  𝑗 ∈ 𝐸 (26) 

𝐷𝑗
𝑔𝑟𝑜𝑠𝑠

= ∑  𝑄𝑖

𝑖|(𝑗,𝑖)∈𝑤

 𝑗 ∈  𝐴 ∪ 𝑃        (27) 

𝑅𝑗 = ∑ 𝑎𝑖,𝑗𝑄𝑖

𝑖|(𝑖,𝑗)∈𝑤𝑤

 𝑗 ∈  𝐴 ∪ 𝑃 (28) 

𝑅𝑅𝑗 = 𝜃𝛾 ∑ 𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

𝑖∈𝐸

  j ∈ 𝑟𝑒𝑐     (29) 

𝑄𝑗 = 𝐷𝑗
𝑔𝑟𝑜𝑠𝑠

− (𝑅𝑗 + 𝑅𝑅𝑗) 𝑗 ∈  𝐴 ∪ 𝑃 (30) 

𝑠𝑑𝑗
𝑛𝑒𝑡 = (

𝑄𝑗

𝐷𝑗
𝑔𝑟𝑜𝑠𝑠) 𝑠𝑑𝑑𝑗  

𝑗 ∈ 𝐸            (31) 

𝑠𝑑𝑗
𝑛𝑒𝑡 = (

𝑄𝑗

∑ 𝑄𝑖𝑖∈𝐸

)𝜎0.5 
j ∈  𝐴 ∪ 𝑃 (32) 

𝑚𝑥𝑗 = 𝜃𝛾 . 𝑡𝑟𝑐𝑜. ∑ 𝐷𝑖

𝑖∈𝐸

 𝑗 ∈ 𝐸 (33) 

𝑆𝐼𝑗 + 𝑡𝑗 − (𝑆𝑖 + 𝑡𝑗
𝑏𝑝

) ≤ 𝑀 𝛿𝑗        j ∈ (𝑟𝑒𝑐⋂𝑤𝑏𝑝&𝑤𝑏𝑝&𝐸), 𝑖 |(𝑖, 𝑗)𝑤𝑤     (34.a) 

𝑆𝑖 + 𝑡𝑗
𝑏𝑝

− (𝑆𝐼𝑗 + 𝑡𝑗) ≤ 𝑀 (1 − 𝛿𝑗)        𝑗 ∈ (𝑟𝑒𝑐⋂𝑤𝑏𝑝&𝑤𝑏𝑝&𝐸), 𝑖 |(𝑖, 𝑗)𝑤𝑤 (34.b) 

(𝑆𝑖 + 𝑡𝑗
𝑏𝑝

) − 𝑆𝑗 ≤ 𝑀𝜂𝑗  𝑗 ∈ (𝑟𝑒𝑐⋂𝑤𝑏𝑝&𝑤𝑏𝑝&𝐸), 𝑖 |(𝑖, 𝑗)𝑤𝑤 (35.a) 

𝑆𝑗 − (𝑆𝑖 + 𝑡𝑗
𝑏𝑝

) ≤ 𝑀(1 − 𝜂𝑗) 𝑗 ∈ (𝑟𝑒𝑐⋂𝑤𝑏𝑝&𝑤𝑏𝑝&𝐸), 𝑖 |(𝑖, 𝑗)𝑤𝑤 (35.b) 

𝑡𝑟𝑒𝑐 − (𝑆𝑖 + 𝑡𝑗
𝑏𝑝

) ≤ 𝑀𝜏𝑗  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (36.a) 

(𝑆𝑖 + 𝑡𝑗
𝑏𝑝

) − 𝑡𝑟𝑒𝑐 ≤ 𝑀(1 − 𝜏𝑗) j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (36.b) 

𝑡𝑟𝑒𝑐  −(𝑆𝐼𝑗 + 𝑡𝑗) ≤ 𝑀𝜔𝑗  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (37.a) 
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(𝑆𝐼𝑗 + 𝑡𝑗) − 𝑡𝑟𝑒𝑐 ≤ 𝑀(1 − 𝜔𝑗)               j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (37.b) 

𝑡𝑟𝑒𝑐– (𝑆𝑗) ≤ 𝑀𝛹𝑗  j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (38.a) 

𝑆𝑗  – 𝑡𝑟𝑒𝑐  ≤ 𝑀(1 − 𝛹𝑗) j ∈ 𝑟𝑒𝑐⋂𝑤𝑏𝑝, 𝑖 |(𝑖, 𝑗) ∈ 𝑤𝑤     (38.b) 

𝛿𝑗, 𝜂𝑗 , 𝜏𝑗, 𝜔𝑗 , 𝛹𝑗 ∈ {0,1} j ∈ 𝐴 ∪ 𝑃 ∪ 𝐸 (39) 

𝑆𝐼𝑗 , 𝑆𝑗 , 𝑚𝑥𝑗 , 𝑄𝑗 , 𝑅𝑗 , 𝑅𝑅𝑗, 𝑠𝑑𝑖
𝑛𝑒𝑡 ≥ 0 j ∈ 𝐴 ∪ 𝑃 ∪ 𝐸 (40) 

The holding cost of the safety stock is minimized at the first objective function. This cost includes four terms that 

represent the holding cost of the safety stock with no return, with only internal returns, with both internal and external 

returns, and with only the final stages. The second objective function minimizes the service time. As mentioned before, 

in previous studies the service time is used in the model as a constraint. But in this study, we consider the service time 

as an objective function. In this way, we can generate a Pareto frontier solutions that shows the balance between service 

time and holding cost of the safety stock.  

Equation 23 shows that the safety stock is needed only when the net replenishment time at each stage is positive. Equation 

24 indicates that the inbound service time at each stage should be no shorter than the outbound service time of its 

upstream stages. Equation 25 guarantees that the processing time at each stage does not exceed the time limit of that 

stage. Equation 26 represents the amount of replenishment of new items at the final stages. Equation 27 denotes the gross 

demands at the mid and initial stages. Equations 28 and 29 show the amount of internal and external returns to the chain, 

respectively. Equation 30 represents the amount of replenishment at each of the initial and mid-level stages. Equations 

31 and 32 show the net standard deviation of the final stages and the net standard deviation of the initial and mid-level 

stages, respectively. Equation 33 indicates the preparation time of recovered items at the final stages. Equations 34 to 38 

determine which of the twelve permutation cases for the stages with both types of returns are active. In addition, these 

equations reveal which of the three basic permutation cases for the final stages and the stages with internal returns are 

active. Finally, equations 39 and 40 determine the state of the decision variables of the problem. 

4.1. Linearization of the model 

Because of the similarities in the linearization process, this process is carried out only for a couple terms (i.e. 𝛿𝑗. 𝜂𝑗 and 

𝛿𝑗. (1 − 𝜂𝑗) ) and the process for other binary terms are not discussed. For this purpose, new variables 𝛿𝜂𝑗  and 𝛿𝜂𝑖1 are 

defined and consequently new constraints (41, 42) are added to the model (Glover and Wolsey, 1974). 

(41.a) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑗  ≤ 𝛿𝑗 

(41.b) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑗 ≤ 𝜂𝑗 

(41.c) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑗  ≥ 𝛿𝑗 + 𝜂𝑗 − 1 

(41.d) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑗 ≥ 0 

(42.a) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑖1  ≤ 𝛿𝑗 

(42.b) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑖1  ≤ (1 − 𝜂𝑗) 

(42.c) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑖1  ≥ 𝛿𝑗 − 𝜂𝑗  

(42.d) 𝑗 ∈ 𝑤𝑏𝑝(𝑖), 𝑗 ∈ 𝐸 𝛿𝜂𝑖1 ≥ 0 

 

5. Computational results 

The model has been solved for an example of supply chain in an electronic product with 18 stages, as shown in Fig. 1. 

In this example, stages 15 to 18 are the final stages that are directly faced with customer demands. The service level at 

all stages is assumed to be equal to 0.99. The returns are shown with bidirectional arrows. The return rate from stage 3 

to stage 2 and from stage 12 to stage 8 is equal to 0.1. The processing time on by-products at stages 2 and 8 is 2 and 4, 

respectively. Besides, only stage 14 has the time limit in the size of 30 units (i.e. Ca14=30). The rest of the input data is 

shown in Tables 1 to 3. It should be noted that some parts of data are gathered from historical data records and the other 

parts, which are not accessible, are collected through interviews with experienced experts in the field.  

 

Table 1. Process time and holding cost of the stages in the real example 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  

9 10 8 8 8 6 5 7 6 10 6 8 10 6 8 7 5 5 tj 

69 65 71 63 45 35 20 40 60 45 20 50 20 35 45 30 15 35 hj 

Table 2. Demand, Standard deviation of demand for the real example 

18 17 16 15 stap 
350 500 400 250 Dj

gross 
70 100 80 50 sddj 
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Table 3 Other input information of the real example 

t𝐫𝐜𝐨 t𝐫𝐞𝐜 θγ θβ θα b M 

0.38 11 0.014 0.014 0.084 0.112 10000 

 

 
 

The model is coded in GAMS 24.1.2 on a PC with Intel Quad Core 2.2 GHz and 6 GB RAM. BARON (version 12.3.3) 

is used for solving the model and presenting the computational results. The computation time for each run in the 

developed cases took about four minutes on average.  

Since the model is bi-objective, the ε-constraint method has been used, which generates efficient solutions under an 

appropriate runtime. Table 4 depicts the changes in the first objective function regarding the different ε values for two 

general situations. The first situation is a state in which both types of returns, i.e. internal and external, are considered. 

In the second situation, only internal returns are considered. The range of 𝜀 value is obtained by optimizing each objective 

function separately, that is ({(𝑍1, 𝑍2) = (251826,0)}) and ({(𝑍1, 𝑍2) = (29357,52)}) respectively. Since Z2 changes in 

the interval (0, 52), the 𝜀2 values are defined by setting 26 steps for both situations. The results are reported in Table 4, 

in which for each𝜀2, the first value corresponds to the first situation (𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑) and the second value corresponds to 

the second situation (𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦). 

Table 4. Values of the first objective function regarding the changes in 𝜀 values 

Z1 𝜺𝟐 Z1 𝜺𝟐 Z1 𝜺𝟐 Z1 𝜺𝟐 

46951 42 93188 28 110819 14 251826 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  0 

26508 83018 111668 263754 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

45434 44 90991 30 109610 16 235678 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  2 

24108 79644 108495 247471 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

43601 46 88608 32 108031 18 215998 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  4 

21384 76113 105193 227874 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

41286 48 84202 34 106154 20 191287 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  6 

18152 70414 101743 203342 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

38056 50 78914 36 98734 22 144543 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  8 

13941 63787 92371 157136 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

29357 52 60379 38 97057 24 116458 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  10 

3744 43125 89367 124464 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

 54707 40 95208 26 111320 𝑍1,𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑  12 

35867 86253 114725 𝑍1,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

Meanwhile, Fig. 2 represents the optimal Pareto frontier with and without considering the external returns. As shown, 

for smaller values of ε2 (i.e. 0–10), the first objective function is significantly reduced, but after 𝜀2 = 12, the changes 

are very slight. This behavior can be interpreted according to the less influential of 𝜀2 at larger values. In other words, 
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by increasing𝜀2, the effect of customer service time in the model is decreased. Also, the first objective function, which 

is the holding cost of safety stock, is less decreased. In fact, for service time values greater than 12, there is enough time 

to replenish the items through a regular source. Therefore, considering the external returns in the model would only lead 

to an increase in the amount of holding cost of the safety stock, without having any effect on the service time. Therefore, 

the holding cost of the safety stock would be increased. 

 

 
Figure 2. Pareto frontier solutions of the real example 

6. Conclusions  

This study aimed at developing a bi-objective optimization model for minimizing the holding cost of safety stock and 

minimizing the service time, using the guaranteed service model used for reverse logistics (RGSM) by considering both 

internal and external returns simultaneously. To this end, with extending the previous models, in which only the internal 

returns were investigated as recovery activity, the effect of remanufacturing, refurbishing, and repairing activities were 

also considered for the external returned items. Meanwhile, considering the time required for replenishment from outside 

of the chain, the new cases for replenishment time permutations were developed.  

Typically in the literature, it is assumed that the delivery of products to the customers would happen immediately. In 

other words, the service time of the final stages in supply chain is equal to zero. But, consideration of such assumptions 

generally leads to a large inventory in the supply chain. In this paper, this problem was solved by releasing the service 

time constraint and adding the minimization of the service time as the second objective function to the model. For this 

purpose, a bi-objective model was developed and the-constraint method was used to solve it. Then, the model was 

examined in a real-world problem of an electronic product supply chain and the results are shown in the form of Pareto 

solution set. Since higher levels of customer satisfaction (i.e. lower levels of service times) obviously rises costs for 

decision-makers and stakeholders, the Pareto frontier solutions help managers and decision-makers to simultaneously 

manage their costs and customers satisfaction with the awareness of the holding cost of safety stock for different amounts 

of service time levels. This research can be extended by classifying the customers based on their information and 

requirements and solving the classified model by coordinating supply chain parties. Moreover, in the solution approach, 

heuristic and meta-heuristic algorithms can be used to decrease the runtime of the model in large scale problems. 
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Appendix A 

Extended Relationships. 

1) 𝑆𝑖 ≤ 𝐿𝑖
𝑟  ≤  𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟𝑒𝑐  

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+Lirec] – Qi[t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑟𝑒𝑐] − 𝑅𝑖[t+𝐿𝑖
𝑏𝑝

,t+𝐿𝑖
𝑟𝑒𝑐 ] =  𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑟] 

+ (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

− Qi ) [t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑏𝑝] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

− Qi −𝑅𝑖) [t+𝐿𝑖
𝑏𝑝,t+𝐿𝑖

𝑟𝑒𝑐] 

  (A.1) 

2) 𝑆𝑖 ≤ 𝐿𝑖
𝑟  ≤ 𝐿𝑖

𝑟𝑒𝑐  ≤ 𝐿𝑖
𝑏𝑝

 



Farahinejad and Gholamian 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.3 198 

 

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑏𝑝] – Qi[t+𝐿𝑖

𝑟 ,t+𝐿𝑖
𝑏𝑝

] − 𝑅𝑅𝑖  [t+𝐿𝑖
𝑟𝑒𝑐 ,t+𝐿𝑖

𝑏𝑝
]    = 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑟] 

+ (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

− Qi ) [t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑟𝑒𝑐] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

− Qi −𝑅𝑅𝑖) [t+𝐿𝑖
𝑟𝑒𝑐 ,t+𝐿𝑖

𝑏𝑝] 

(A.2) 

3) 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟  ≤ 𝐿𝑖
𝑏𝑝

 

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑏𝑝] – 𝑅𝑅𝑖  [t+𝐿𝑖

𝑟𝑒𝑐 ,t+𝐿𝑖
𝑏𝑝

] − Qi[t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑏𝑝
]  = 

𝐷𝑖
𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖

𝑟𝑒𝑐] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−RRi) [t+𝐿𝑖
𝑟𝑒𝑐 ,t+𝐿𝑖

𝑟] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−RRi −𝑄𝑖) [t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑏𝑝]     

(A.3) 

4) 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟  ≤ 𝐿𝑖
𝑏𝑝

 

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑏𝑝] – 𝑅𝑅𝑖  [t+𝐿𝑖

𝑟𝑒𝑐 ,t+𝐿𝑖
𝑏𝑝

] −  𝑄𝑖  [t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑏𝑝
]  = 

−𝑅𝑅𝑖[t+𝐿𝑖
𝑟𝑒𝑐 ,t+Si] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−RRi) [t+Si,t+𝐿𝑖

𝑟] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−RRi −𝑄𝑖) [t+𝐿𝑖
𝑟 ,t+𝐿𝑖

𝑏𝑝]     

    (A.4) 

5) 𝑆𝑖 ≤  𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟  ≤ 𝐿𝑖

𝑟𝑒𝑐  

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si ,t+𝐿𝑖
𝑏𝑝] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri) [t+𝐿𝑖

𝑏𝑝, t+𝐿𝑖
𝑟] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri−𝑄𝑖) 

[t+𝐿𝑖
𝑟 , t+𝐿𝑖

𝑟𝑒𝑐] 

    (A.5) 

6) 𝑆𝑖 ≤  𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟  

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= 𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑏𝑝] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri) [t+𝐿𝑖

𝑏𝑝,t+𝐿𝑖
𝑟𝑒𝑐] +(𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri−𝑅𝑅𝑖) 

[t+𝐿𝑖
𝑟𝑒𝑐 ,t+𝐿𝑖

𝑟]           

     (A.6) 

7) 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤  𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟  

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]=   𝐷𝑖

𝑔𝑟𝑜𝑠𝑠[t+Si,t+𝐿𝑖
𝑟𝑒𝑐] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−RRi) [t+𝐿𝑖

𝑟𝑒𝑐 ,t+𝐿𝑖
𝑏𝑝] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−RRi −𝑅𝑖) 

[t+𝐿𝑖
𝑏𝑝

, t+𝐿𝑖
𝑟]          

     (A.7) 

8) 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤  𝐿𝑖

𝑏𝑝
≤ 𝐿𝑖

𝑟  

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= −𝑅𝑅𝑖[t+𝐿𝑖

𝑟𝑒𝑐 ,t+Si] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−RRi)[t+Si ,t+𝐿𝑖
𝑏𝑝] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−RRi −𝑅𝑖) 

[t+𝐿𝑖
𝑏𝑝

, t+𝐿𝑖
𝑟]           

    (A.8) 

9)  𝐿𝑖
𝑏𝑝

≤ 𝑆𝑖 ≤ 𝐿𝑖
𝑟  ≤ 𝐿𝑖

𝑟𝑒𝑐   

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= −𝑅𝑖[t+𝐿𝑖

𝑏𝑝,t+Si] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−Ri) [t+Si , t+𝐿𝑖
𝑟] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri −𝑄𝑖) 

[t+𝐿𝑖
𝑟 , t+𝐿𝑖

𝑟𝑒𝑐]               

     (A.9) 

10) 𝐿𝑖
𝑏𝑝

≤ 𝑆𝑖 ≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑟   

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐] = −𝑅𝑖[t+𝐿𝑖

𝑏𝑝,t+Si] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−Ri) [t+Si,t+𝐿𝑖
𝑟𝑒𝑐] + (𝐷𝑖

𝑔𝑟𝑜𝑠𝑠
−Ri −𝑅𝑅𝑖) [t+𝐿𝑖

𝑟𝑒𝑐 , 
t+𝐿𝑖

𝑟]               

   (A.10) 

11) 𝐿𝑖
𝑏𝑝

≤ 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟   

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= −𝑅𝑖[t+𝐿𝑖

𝑏𝑝,t+𝐿𝑖
𝑟𝑒𝑐] + (−𝑅𝑖 −RRi) [t+𝐿𝑖

𝑟𝑒𝑐 ,t+Si] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−Ri −𝑅𝑅𝑖) [t+Si , 
t+𝐿𝑖

𝑟]               

   (A.11) 

12) 𝐿𝑖
𝑟𝑒𝑐 ≤ 𝐿𝑖

𝑏𝑝
≤ 𝑆𝑖 ≤ 𝐿𝑖

𝑟   

𝐷𝑖
𝑛𝑒𝑡[𝑆𝑖 , 𝐿𝑖

𝑟 , 𝐿𝑖
𝑏𝑝

, 𝐿𝑖
𝑟𝑒𝑐]= −𝑅𝑅𝑖[t+𝐿𝑖

𝑟𝑒𝑐 ,t+𝐿𝑖
𝑏𝑝] + (−𝑅𝑅𝑖 −Ri) [t+𝐿𝑖

𝑏𝑝,t+Si] + (𝐷𝑖
𝑔𝑟𝑜𝑠𝑠

−RRi −𝑅𝑖) [t+Si , 
t+𝐿𝑖

𝑟]     

 

   (A.12) 



Optimizing the Safety Stock with Guaranteed Service Model in. ... 

 

  

Int J Supply Oper Manage (IJSOM), Vol.6, No.3 199 

 

Appendix B 
Table 6 Review of the Literature     
  
 

R
eferen

ce 

  

Supply Chain Network Modeling Assumptions 
Solution 

Approach 
Objective Function 

S
erial 

A
ssem

b
ly

 

D
istrib

u
tio

n
 

S
p

an
n
in

g
 T

ree 

G
en

eral A
cy

clic 

G
en

eral C
y

clic 

C
ap

acity
 C

o
n

strain
ts 

Demand 
Service 

Times 

Lead 

Times 

E
x

act S
o
lu

tio
n
 

A
p

p
ro

x
im

ate S
o
lu

tio
n

 

Number Type 

S
tatio

n
ary

 

N
o

n
-S

tatio
n

ary
 

C
o
n

stan
t 

C
u

sto
m

er-S
p
ecific 

C
o
n

stan
t  

S
to

ch
astic 

S
in

g
le-O

b
jectiv

e 

B
i-O

b
jectiv

e 

C
o
n

cav
e 

A
rb

itrary
 

 

Simpson (1958)                    

Inderfurth (1991)                    

Graves and 

Willems (2000) 
                   

Minner (2000)                    

Minner (2001)                    

Magnanti (2006)                    

Sitompul et al. 

(2008) 
                   

Graves and 

Willems (2008) 
                   

Nepal et al (2011)                    

Li and Jiang 

(2012) 
                   

Li et al (2013)                    

Eruguz(2014)                    

Ni and Shu 

(2015) 
                   

Grahl et al (2016)                    

Graves and 
Schoenmeyr 

(2016) 
                   

Hua and Willems 

(2016) 
                   

This Study                    

 


