
234 
 

International Journal of Supply and Operations Management 

 

IJSOM 
 

August 2018, Volume 5, Issue 3, pp. 234-255  
ISSN-Print: 2383-1359  
ISSN-Online: 2383-2525  
www.ijsom.com 

 

A New Mathematical Model for Designing a Municipal Solid Waste System Considering 

Environmentally Issues 

 
Masoud Rabbani a,*, Mahdi Mokhtarzadeh a and Hamed Farrokhi-Asl b 

 

a School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran 
b School of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran 

 

 

 

Abstract 

Nowadays, produced wastes in urban areas are growing exponentially all over the world. Moreover, the environment and 

natural resources are on the way to destruction. One way to deal with increasing waste generation and protecting the 

environment is proper management of municipal solid wastes. One aspect of municipal solid waste management is locating 

the various facilities and the routing between them. In this study, a new mathematical model is developed for the location-

routing problem in MSWM system. The integrity of MSWM facilities is the focus of this study. The proposed model meets 

two objectives including minimization of system costs and environmental impacts. In this model, the location of waste 

collection centers and reverse logistics centers are determined. In order to improve the efficiency and practicality of the 

proposed model, a solution method based on the NSGA-II is proposed. Also, a new method based on best-worst approach 

was developed to parameter tuning of NSGA-II. As a result, it was observed that the total costs of the system increases 

exponentially as a result of increase in the volume of waste in sources. Numeral experiments indicate the efficiency of the 

proposed algorithm in achieving approximate optimum solution in an acceptable time. 

 

Keywords: Location-routing, metaheuristic algorithm, multi-objective problem, Municipal solid waste management. 

1. Introduction 

The increase in urban population will increase waste generated in cities, which has been a major concern for city 

management authorities. Municipal solid waste management (MSW) is a multidisciplinary field which includes production 

of waste, the separation of the generated wastes, storage, collection, transfer, transportation, processing, recovery, and 

disposal (Bovea, Ibáñez-Forés, Gallardo, & Colomer-Mendoza, 2010; Das & Bhattacharyya, 2015; Gallardo, Carlos, Peris, 

& Colomer, 2015; Ionescu et al., 2013; Minoglou & Komilis, 2013; Rada, 2014). Nowadays, urban waste management is 

one of the main concerns of the world's health and environment organization (Habibi, Asadi, Sadjadi, & Barzinpour, 2017). 

Waste production has increased dramatically in recent years, about 3.5 million tons per day are being produced in 2012, 

and this value will double by 2025 (Hoornweg & Bhada-Tata, 2012). Accordingly, it is necessary to pay attention to the 

proper management of MSW and provide an approach that can efficiently handle and optimize this system.  

In recent years, by increasing the importance of environmental issues, the way of dealing with waste management 

haschanged and environmental issues are also considered in addition to the cost of the system. In this regard, multi-objective  
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optimization models are applied to design appropriate waste management systems that simultaneously consider both 

economic and environmental factors.  For example, some studies in the literature have used this approach like (Asefi & 

Lim, 2017; Lee et al., 2016; Nema & Gupta, 1999; Rabbani, Saravi, & Farrokhi-Asl, 2017; Yu & Solvang, 2017). Typically, 

the cost of collecting municipal solid waste is in the range of 80-90% and 80-50% of the waste management budget in low-

income and middle-income countries, (Aremu, 2013). therefore, management of cost of the system along with the 

management of environmental issues in a manner that both goals are met is very critical. Some previous studies have only 

paid attention to the apparent costs of the system. They proposed models to minimize the costs of the system. For example, 

Louati (2016) aimed at minimizing system costs and addressed routing between different sections of the municipal solid 

waste management system. However, what has been more prominent in recent years is environmental issues. For example, 

Tsai and Chou, (2004) take minimization of environmental impacts into account besides the costs of the system. They locate 

the various centers of the system including recycling or disposal centers, along with an examination of the flow between 

them.  

In studies which are related to the optimization of municipal waste systems, special attention should be paid to national and 

international environmentally laws (Lyeme, Mushi, & Nkansah-Gyekye, 2016). MSW management can be divided into 

different segments consisting of collecting, transferring, and transportation, processing, and ultimately disposing of wastes 

(Das & Bhattacharyya, 2015). In some studies, such as (Das & Bhattacharyya, 2015), these sections work separately, and 

separate models are proposed for each section. Often on issues that are individually or hierarchically seen, the local optimal 

solutions are obtained for each and will not lead to a globally optimal solution. For this reason, the newer models integrated 

these sections like the one offered by Habibi et al (2007).  

MSW management studies can be categorized into three main categories (Rabbani, Heidari, Farrokhi-Asl, & Rahimi, 2018). 

Due to the importance of routing decisions in this system, the first category relates to studies seeking to find optimal or 

rational collection routes in this system. For example, Das and Bhattacharyya, (2015) divided routing decisions into four 

different sections: routing from source or generated nodes to collection centers and from collection centers to transfer 

centers, then to transportation centers, and then to processing and disposal centers. For each of these sections, they provide 

a routing mathematical formulation and the problems were solved sequentially. Moreover, Louati (2016) proposes an 

integrated model for routing among the various components of the municipal solid waste problem considering time window 

constraint. Time windows is a set of intervals at each site to collect wastes (Louati, 2016). The second category relates to 

the studies seeking to the location of facilities in the MSW management system. For example, Lyeme, Mushi, and Nkansah-

Gyekye (2016) proposed a multi-objective model for locating facilities by considering the flow between these facilities. 

The purpose of this study was the minimization of costs and amount of waste that finally should be discarded as well as 

their environmental impacts. The model locates recycling facilities, separators, composting facilities, incinerating facilities 

and landfills. It also specifies waste flow between these facilities. Combining these two categories, we can find studies that 

seek to optimize location and routing phases, simultaneously. For example, Asefi and Lim, (2017) developed a multi-

objective model for locating and routing between different components of the MSW. More study can be found in (Harijani, 

Mansour, Karimi, & Lee 2017; Habibi et al., 2017). 

Operation research (OR) techniques have been widely used in MSW management issues (Ghiani, Laganà, Manni, 

Musmanno, & Vigo 2014). A great number of researches in this field can be found in the last two decades. Alumur and 

Kara (2007) provided a multi-objective model for hazardous wastes location-routing by considering transportation risks and 

total costs. In this paper, some of the constraints that have not been considered in the previous literature are addressed such 

as waste-waste, and waste–technology compatibility constraints. Chatzouridis and Komilis (2012) developed a 

methodology based on geographical information system (GIS) and a mathematical model to locate transfer stations centers 

and landfills in order to design a user-friendly network. They solved the corresponding model in Excel software. 

Furthermore, the output of the proposed model is to find the locations and number of transfer stations centers and landfills. 

Eiselt and Marianov, (2014) developed a two-objective model to locate collection and disposal sites which determined the 

capacity of each center. To help improve the second objective of the proposed problem (i.e., minimization of pollution), the 

model considered a constraint to apply legal restrictions on pollution. Xue, Cao, and Li (2015) examined the current status 

of municipal solid waste routing from its source centers to collection centers in Singapore. The model offered a quantitative 

and subjective approach to find the optimum amount of waste to be sent from each source center to each incineration plant 

to minimize overall transportation cost. Generally, Lee, Yeung, Xiong, and Chung (2016) examined municipal solid waste 

management models. Then, it developed a model for locating collection centers and incinerator and landfills in Hong Kong. 

It focused on waste flows between collection centers and incinerator and landfills replacement truck warehouses. Taking 

into account the time window, for moving vehicles between different facilities of the municipal solid waste system, Louati 
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(2016) focused on routing and allocating vehicles to each of the facilities with the aim of minimizing the distance traveled 

by each vehicle and the pollution which produce by these facilities and system costs. In (Yildiz, Johnson, & Roehrig 2013), 

a model was developed for locating the components of the municipal solid waste management system and routing between 

them. It has developed sustainability indicators for locating components of the system using TOPSIS in the GIS. In addition 

to costs, its objective was to maximize system stability. Therefore, it provided a multi-objective model and then solved the 

model with the augmented e-constraint method. Lyeme, Mushi, and Nkansah-Gyekye (2016) developed a model for 

location-routing, but unlike other researches, its objective was to maximize profits. Revenues are obtained through recycled 

materials or energy generated from the waste in this model. A summary of the literature review carried out in this study can 

be seen in Table 1. 

Based on the literature review and to the best of our knowledge, the presented models are not fully customized. The model 

presented in this study is more customized and can include a set of processing centers in the model. These centers are centers 

for the recycling, disposal, waste to energy or any other centers with regard to organizations which use this model. 

Therefore, the presented model in the current study can be applicable for different real cases. Furthermore, it cohesively 

considers the various stage of the waste management system including collection and separation, processing and disposal. 

This makes the result more efficient than non-integrated approach

Given that the model presented is NP-hard and exact solution approaches are not efficient in large sizes (usually real 

cases are in large scale), an approach based on a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is applied 

which is rarely seen in the literature. Moreover, augmented ε-constraint method is applied to tackle the problems in 

small scales. However, this method will be inefficient in large size problems. 

Parameters tuning is an essential factor in designing meta-heuristic algorithms (Eiben & Smit, 2011). Applying the 

Taguchi method (Taguchi, 1986) to design experiments and the best worst method (BWM) (Rezaei, 2015) for multi-

criteria decision making, a novel method for parameters tuning is presented here. In this method, contrary to existing 

methods, several criteria are used for parameters tuning and a novel method developed. 

As seen in Table 1, some aspects of location-routing models are less noted in municipal solid waste management 

literature, for instance, location of various process centers, selecting fleet of vehicles and determining number of vehicles 

for routing and efficient solution approach to tackle the large-sized problem. Given the existing gaps in these studies 

and by considering real-world assumptions, some features of this study are as follows: 

Table 1. A summarized literature review
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Badran & El-Haggar, (2006) ✔ 
 

✔ ✔ ✔ 
    

Chatzouridis & Komilis, (2012) ✔ 
 

✔ ✔ ✔ 
    

Eiselt & Marianov, (2014) ✔ ✔ ✔ ✔ 
     

Eiselt & Marianov, (2015) ✔ 
  

✔ 
     

Xue et al., (2015) ✔ 
   

✔ 
    

Lee et al., (2016) ✔ ✔ 
 

✔ 
     

Louati, (2016) ✔ 
  

✔ 
 

✔ ✔ ✔ ✔ 

Yu & Solvang, (2017) ✔ ✔ ✔ ✔ 
 

✔ 
 

✔ 
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Table 1. Continued
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Asefi & Lim, (2017) ✔ ✔ ✔ ✔ 
 

✔ 
 

✔ 
 

Lyeme et al., (2016) ✔ ✔ ✔ ✔ 
     

this study ✔ ✔ ✔ ✔ 
 

✔ ✔ ✔ ✔ 

 

 Determining the number of vehicles which are needed for each phase of routing. 

 Selecting vehicles from a set of vehicles. 

 Locating various process centers. 

 Providing a solution method based on NSGA-II algorithm to solve large size problems. 

 Proposing a new strategy to tune the parameters of algorithms. 

 

The rest of this study is structured as follows: Section 2 describes the problem and its assumptions and presents the 

mathematical model for the problem and Section 3 addresses the problem-solving approach for the developed model. 

The presented model is validated in Section 4 and several numerical instances of small and large sizes are solved in 

this section. Finally, Section 5 deals with results and discussion and some directions for future studies. 

 

2. Problem description 

This study aims to develop a new mathematical model based on location-routing problem for municipal solid waste 

management which involves collecting waste from sources and transferring them to the collection centers and 

transferring separated wastes to their required processing centers. Wastes are transferred to collection centers after 

being gathered from sources. Then they are separated in these centers. Afterward, separated wastes are transported to 

related processing centers. This model is capable of finding locations for collection centers and processing facilities 

between candidate points considering different types of waste, as well as routing from generation nodes to collection 

centers and from the collection centers to the processing centers. Given the importance of environmental issues, 

selecting each candidate points for collection centers and processing facilities different environmental factors are taken 

into account. Furthermore, for each vehicle, the pollution rate is considered. It is done to simultaneously optimize the 

impacts of the system on environmental factors along with optimizing costs of the system. The waste generated can 

be distinguished by the type of waste as follows: 1) Recyclable paper; 2) Recyclable metal; 3) Recyclable plastic; 4) 

Energy-convertible; 5) Composite; and 6) Other wastes that must be disposed. For each type of waste, a facility is 

considered that has a specific capacity to respond to the entire volume of that type of waste in the system. In the 

routing stage from the sources to the collection centers, different vehicles can be used. Each vehicle has different fixed 

and variable cost and different rates of emissions. Other assumptions of this study are discussed as follows: 

• The amount of waste generated from any type of waste is known and deterministic. 

• The number of points that collection centers or processing centers can deploy is limited. 

• Routing cost is based on traveling distance from each vehicle. 

• Vehicles have travel distance restrictions. 

• The amount of waste generated per source does not exceed the maximum capacity of vehicles. 
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The proposed model in this study is able to meet customized type of wastes and environmental factors. Then you can 

consider your customized type of waste and environmental factors based on your needs. The schematic demonstration 

of the proposed model is shown in Figure 1.
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Figure 1. A view of the simple municipal solid waste system 

By considering the aforementioned assumptions, we present the mixed-integer programming (MIP) model for 

managing municipal solid waste. In this model, number, location and capacity of each waste collection center is 

determined. Collection vehicles are selected from a number of available vehicles and assigned to each collection 

center. Moreover, routing of vehicles from sources to collection centers and from collection centers to processing 

centers is determined. Regarding different types of waste, separated wastes in the collection centers are assigned to 

the suitable processing centers. Moreover, the location of each of these processing centers is determined. All in all, 

the formulation of this problem is based on the notations of Tables 2-4. The objective functions and problem 

constraints are given in Equations (1) - (37). 

Table 2. Definition of sets 

Set: 

I All potential collection center nodes 

J All source nodes 

R All potential process nodes 

K All vehicles in collection phase 

S All vehicles in process phase for collecting the reminder of different waste in each collection center 

N All environmental factors 

L All process plants 

Table 3. Definition of parameters 

Parameter: 

𝑂𝑗 produced waste in source 𝑗 ∈ 𝐽 

𝐺𝑖 Fixed cost of setting up collection center 𝑖 ∈ 𝐼 

𝐵𝑖 Maximum capacity of collection center 𝑖 ∈ 𝐼 

𝑈𝐵𝑖 Minimum capacity of collection center 𝑖 ∈ 𝐼 

𝐻𝑟,𝑙  Fixed cost of setting up process center 𝑟 ∈ 𝑅 in node 𝑙 ∈ 𝐿 

𝐹𝑘 Fixed cost of using vehicle 𝑘 ∈ 𝐾 

𝑃𝑘 Maximum traveling distance of vehicle 𝑘 ∈ 𝐾 

𝑄𝑘    Maximum capacity of vehicle 𝑘 ∈ 𝐾 
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Table 3. Continued

Parameter: 

𝛼𝑘 Unit vehicle transportation cost in collection phase fore vehicle 𝑘 ∈ 𝐾 

𝛽𝑘 Unit vehicle transportation emissions in collection phase fore vehicle 𝑘 ∈ 𝐾 

𝐶𝐴𝑙 Maximum capacity of vehicle of process plant 𝑙 ∈ 𝐿 

𝐶𝐹𝑙 Fixed cost of using vehicle of process plant 𝑙 ∈ 𝐿 

𝐹𝑆𝑠 Fixed cost of using vehicle 𝑠 ∈ 𝑆 in process phase 

𝜔𝑙 Unit vehicle transportation cost of process plant 𝑙 ∈ 𝐿 

𝜆𝑙 Unit vehicle transportation emissions of process plant 𝑙 ∈ 𝐿 

𝛿𝑠 Unit vehicle transportation cost in process phase for vehicle 𝑠 ∈ 𝑆 

𝜌𝑠 Unit vehicle transportation emissions in process phase for vehicle 𝑠 ∈ 𝑆 

𝛾𝑗,𝑙 percent of waste for process plant 𝑙 ∈ 𝐿 which produced in source node 𝑗 ∈ 𝐽 

𝑑𝑖,𝑗  Distance between 𝑗 , 𝑖 nodes for i , j ∈ 𝐼 ∪ 𝐽 

𝑚𝑖,𝑟 Distance between 𝑖 , 𝑟 nodes for 𝑖 , 𝑟 ∈ 𝐼 ∪ 𝐽 

𝜏𝑖,𝑛 Reduction amount of condition 𝑛 ∈ 𝑁 by setting up collection center 𝑖 ∈ 𝐼 

𝜋𝑟,𝑛,𝑙 Reduction amount of condition 𝑛 ∈ 𝑁 by setting up process plant 𝑙 ∈ 𝐿 in node 𝑟 ∈ 𝑅 

𝑐𝑠𝑙,𝑠 Is equal to 1 if vehicle 𝑠 ∈ 𝑆 is for process plant 𝑙 ∈ 𝐿; 0 otherwise 

A Number of source center 

NL Number of process plant 

AI Number of collection center 

BM A very large number 

Table 4. Definition of variables 

Variables: 

𝑦𝑖 Is equal to 1 if collection center 𝑖 ∈ 𝐼 is established; 0 otherwise 

𝑥𝑖,𝑗,𝑘 Is equal to 1 if node 𝑖 immediately precedes node 𝑗 by vehicle 𝑘 ; 0 otherwise for 𝑖, 𝑗 ∈ 𝐼 ∪ 𝐽 and 𝑘 ∈ 𝐾 

𝑧𝑖,𝑗  Is equal to 1 if source 𝑗 ∈ 𝐽 allocated to collection center 𝑖 ∈ 𝐼 ; 0 otherwise 

𝑈𝑗,𝑘 Auxiliary variable for sub-tour elimination constraints for vehicle 𝑘 ∈ 𝐾 in collection phase 

𝑈𝑅𝑖,𝑠,𝑙 Auxiliary variable for sub-tour elimination constraints for vehicle 𝑠 ∈ 𝑆 in process phase 

𝑤𝑙,𝑟 Is equal to 1 if process plant 𝑙 ∈ 𝐿 stablished in process potential node 𝑟 ∈ 𝑅 ; 0 otherwise 

𝑤𝑠𝑙,𝑠 Is equal to 1 if process plant 𝑙 ∈ 𝐿 use vehicle 𝑠 ∈ 𝑆 for reminder part of waste 

𝑒𝑟,𝑖,𝑠,𝑙 Is equal to 1 if node 𝑟 immediately precedes node 𝑗 by vehicle 𝑠 for process plant 𝑙 ; 0 otherwise for 

𝑖, 𝑟 ∈ 𝐼 ∪ 𝑅 and 𝑠 ∈ 𝑆 

𝑐𝑖,𝑙 Auxiliary variable for computing the remainder of waste type 𝑙 ∈ 𝐿 in collection center 𝑖 ∈ 𝐼 

𝑅𝐸𝑖,𝑙 Auxiliary variable for store the remainder of waste type 𝑙 ∈ 𝐿 in collection center 𝑖 ∈ 𝐼 

𝑣𝑟,𝑖,𝑠 Is equal to 1 if collection center 𝑖 ∈ 𝐼 allocated to process plant 𝑟 ∈ 𝑅 for process plant 𝑙 ∈ 𝐿 ; 0 

otherwise 

𝑐𝑤𝑖,𝑙,𝑟 Auxiliary variable for linearization of product of 𝑐 and 𝑤 in goal functions for 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 

𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙  Auxiliary variable for linearization of product of 𝑒 and 𝑅𝐸 in vehicle capacity limitations in process 

phase for 𝑟 ∈ R ∈ 𝐼 ∪ 𝐽, 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 
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Objective 1 =      ∑ 𝐺𝑖 ∗ 𝑦𝑖

𝑖∈𝐼

+ ∑ ∑ ∑ 𝑑𝑖,𝑗 ∗ 𝛼𝑘

𝑘∈𝐾𝑗∈𝐼∪𝐽

∗ 𝑥𝑖,𝑗,𝑘

𝑖∈𝐼∪𝐽

+ ∑ 𝐹𝑘 ∗ ∑ ∑ 𝑥𝑖,𝑗,𝑘

𝑗∈𝐽𝑖∈𝐼𝑘∈𝐾

+ ∑ ∑ 𝐻𝑟,𝑙 ∗ 𝑤𝑙,𝑟

𝑙∈𝐿𝑟∈𝑅

+ ∑ ∑ ∑ ∑ 𝑚𝑖,𝑟 ∗ 𝛿𝑠 ∗ 𝑒𝑟,𝑖,𝑠,𝑙

𝑠∈𝑆𝑟∈𝐼∪𝑅𝑖∈𝐼∪𝑅𝑙∈𝐿

+  ∑ ∑ 𝐹𝑆𝑠 ∗ 𝐶𝑆𝑙,𝑠 ∗ ∑ ∑ 𝑒𝑟,𝑖,𝑠,𝑙

𝑖∈𝐼𝑟∈𝑅𝑠∈𝑆𝑙∈𝐿

+ 2 ∗ ∑ ∑ ∑ 𝑐𝑖,𝑙 ∗ 𝑤𝑙,𝑟 ∗ 𝑚𝑟,𝑖 ∗ 𝜔𝑙

𝑖∈𝐼𝑟∈𝑅𝑙∈𝐿

+ ∑ ∑ 𝑐𝑖,𝑙 ∗ 𝐶𝐹𝑙

𝑖∈𝐼𝑙∈𝐿

 

(1) 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2 = ∑ ∑ ∑ 𝑑𝑖,𝑗 ∗ 𝛽𝑘 ∗ 𝑥𝑖,𝑗,𝑘

𝑘∈𝐾𝑗∈𝐼∪𝐽𝑖∈𝐼∪𝐽

+ ∑ ∑ 𝑦𝑖 ∗ 𝜏𝑖,𝑛

𝑛∈𝑁𝑖∈𝐼

+ ∑ ∑ ∑ ∑ 𝑚𝑖,𝑟 ∗ 𝜌𝑠 ∗ 𝑒𝑟,𝑖,𝑠,𝑙

𝑠∈𝑆𝑟∈𝐼∪𝑅𝑖∈𝐼∪𝑅𝑙∈𝐿

 

+  2 ∗ ∑ ∑ ∑ 𝑐𝑖,𝑙 ∗ 𝑤𝑙,𝑟 ∗ 𝑚𝑟,𝑖 ∗ 𝜆𝑙

𝑖∈𝐼𝑟∈𝑅𝑙∈𝐿

+ ∑ ∑ ∑ 𝜋𝑟,𝑛,𝑙 ∗ 𝑤𝑙,𝑟

𝑛∈𝑁𝑟∈𝑅𝑙∈𝐿

 

(2) 

𝑆. 𝑡. 

 
 

 

∑ ∑ 𝑥𝑖,𝑗,𝑘

𝑖∈𝐼∪𝐽

= 1

𝐾

 ∀ 𝑗 ∈ 𝐽 (3)  

∑ 𝑂𝑗 ∗

𝑗∈𝐽

∑ 𝑥𝑖,𝑗,𝑘

𝑖∈𝐼∪𝐽

 ≤ 𝑄𝑘 ∀ 𝑘 ∈ 𝐾 (4)  

∑ ∑ 𝑑𝑖,𝑗 ∗ 𝑥𝑖,𝑗,𝑘  ≤  𝑃𝑘

𝑖∈𝐼∪𝐽𝑗∈𝐼∪𝐽

 ∀ 𝑘 ∈ 𝐾 (5)  

𝑈𝑗,𝑘 − 𝑈𝑢,𝑘 + 𝐴 ∗ 𝑥𝑢,𝑗,𝑘  ≤ 𝐴 − 1 ∀ 𝑗, 𝑢 ∈ 𝐽, 𝑘 ∈ 𝐾 (6)  

∑ 𝑥𝑗,𝑖,𝑘

𝑖∈𝐼,𝐽

− ∑ 𝑥𝑖,𝑗,𝑘

𝑖∈𝐼,𝐽

= 0 ∀ 𝑗 ∈ 𝐼 ∪ 𝐽, 𝑘 ∈ 𝐾 (7)  

∑ ∑ 𝑥𝑖,𝑗,𝑘

𝑗∈𝐽

≤ 1

𝑖∈𝐼

 ∀ 𝑘 ∈ 𝐾 (8)  

∑ 𝑂𝑗 ∗ 𝑧𝑖,𝑗

𝑗∈𝐽

− 𝐵𝑖 ∗ 𝑦𝑖  ≤ 0 ∀ 𝑖 ∈ 𝐼 (9)  

∑ 𝑂𝑗 ∗ 𝑧𝑖,𝑗

𝑗∈𝐽

− 𝑈𝐵𝑖 ∗ 𝑦𝑖  ≥ 0 ∀ 𝑖 ∈ 𝐼 (10)  

−𝑧𝑖,𝑗 + ∑ (𝑥𝑖,𝑢,𝑘 + 𝑥𝑢,𝑗,𝑘)

𝑢∈𝐼∪𝐽

 ≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑢 ∈ 𝐼 ∪ 𝐽, 𝑘 ∈ 𝐾 (11)  

∑ 𝑧𝑖,𝑗

𝑖∈𝐼

= 1 ∀ 𝑗 ∈ 𝐽 (12)  

∑ 𝑤𝑙,𝑟

𝑟∈𝑅

= 1 ∀ 𝑙 ∈ 𝐿 (13)  

∑ 𝑤𝑙,𝑟

𝑙∈𝐿

≤ 1 ∀ 𝑟 ∈ 𝑅 (14)  

∑ ∑ ∑ 𝑒𝑟,𝑖,𝑠,𝑙 ≤ 𝐵𝑀 ∗ 𝑦𝑖

𝑙∈𝐿𝑠∈𝑆𝑟∈𝐼∪𝑅

 ∀ 𝑖 ∈ 𝐼 (15)  
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∑ ∑ 𝑒𝑟,𝑖,𝑠,𝑙

𝑠∈𝑆𝑟∈𝐼∪𝑅

= 𝑦𝑖  ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 (16)  

∑ 𝛾𝑗,𝑙 ∗ 𝑜𝑗 ∗ 𝑧𝑖,𝑗 − 𝑐𝑖,𝑙 ∗ 𝐶𝐴𝑙  ≥ 0

𝑗∈𝐽

 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 (17)  

∑ 𝛾𝑗,𝑙 ∗ 𝑜𝑗 ∗ 𝑧𝑖,𝑗 − 𝑐𝑖,𝑙 ∗ 𝐶𝐴𝑙  ≤ 𝐶𝐴𝑙

𝑗∈𝐽

 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 (18)  

𝑅𝐸𝑖,𝑙 − ∑ 𝛾𝑗,𝑙 ∗ 𝑜𝑗 ∗ 𝑧𝑖,𝑗 + 𝑐𝑖,𝑙 ∗ 𝐶𝐴𝑙 = 0

𝑗∈𝐽

 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 (19)  

∑ 𝑅𝐸𝑖,𝑙 ∗ ∑ 𝑒𝑟,𝑖,𝑠,𝑙

𝑟∈𝐼∪𝑅

 ≤ 

𝑖∈𝐼

𝐶𝐴𝑙 ∀ 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (20)  

𝑈𝑅𝑖,𝑠,𝑙 − 𝑈𝑅𝑢,𝑠,𝑙 + 𝐴𝑙 ∗ 𝑒𝑖,𝑢,𝑠,𝑙  ≤ 𝐴𝑙 − 1 ∀ 𝑖, 𝑢 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (21)  

∑ 𝑒𝑟,𝑖,𝑠,𝑙

𝑖∈𝐼∪𝑅

− ∑ 𝑒𝑖,𝑟,𝑠,𝑙

𝑖∈𝐼∪𝑅

= 0 ∀ 𝑟 ∈ 𝐼 ∪ 𝑅, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (22)  

∑ ∑ 𝑒𝑟,𝑖,𝑠,𝑙  ≤ 1

𝑖∈𝐼𝑟∈𝑅

 ∀ 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (23)  

𝑤𝑠𝑙,𝑠 − ∑ ∑ 𝑒𝑟,𝑖,𝑠,𝑙

𝑖∈𝐼𝑟∈𝑅

= 0 ∀ 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆 (24)  

𝑤𝑠𝑙,𝑠  ≤  𝑐𝑠𝑙,𝑠 ∀ 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆 (25)  

−𝑣𝑟,𝑖,𝑠 + ∑ (𝑒𝑟,𝑢,𝑠,𝑙 + 𝑒𝑢,𝑖,𝑠,𝑙) ≤ 1

𝑢∈𝐼∪𝑅

 ∀ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (26)  

∑ 𝑣𝑟,𝑖,𝑠

𝑖∈𝐼

− 𝐵𝑀 ∗ 𝑤𝑙,𝑟  ≤ 0 ∀ 𝑟 ∈ 𝑅, 𝑙 ∈ 𝐿 (27)  

∑ 𝑣𝑟,𝑖,𝑠

𝑟∈𝑅

≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿 (28)  

𝑐𝑤𝑖,𝑙,𝑟 ≤  𝑐𝑖,𝑙 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 (29)  

𝑐𝑤𝑖,𝑙,𝑟 ≤  𝑤𝑙,𝑟 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 (30)  

𝑐𝑤𝑖,𝑙,𝑟 ≥  𝑐𝑖,𝑙 + 𝑤𝑙,𝑟-1 ∀ 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 (31)  

𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙 ≤ 𝑅𝐸𝑖,𝑙 ∀ 𝑟 ∈ R ∈ 𝐼 ∪ 𝐽, 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (32)  

𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙 ≤ BM*𝑒𝑟,𝑖,𝑠𝑙 ∀ 𝑟 ∈ R ∈ 𝐼 ∪ 𝐽, 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (33)  

𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙 ≥ 𝑅𝐸𝑖,𝑙 - BM*(1-𝑒𝑟,𝑖,𝑠𝑙) ∀ 𝑟 ∈ R ∈ 𝐼 ∪ 𝐽, 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (34)  

𝑦𝑖  , 𝑥𝑖,𝑗,𝑘 , 𝑧𝑖,𝑗 , 𝑤𝑙,𝑟 , 𝑤𝑠𝑙,𝑠, 𝑒𝑟,𝑖,𝑠,𝑙 , 𝑣𝑟,𝑖,𝑠, 𝑐𝑤𝑖,𝑙,𝑟  ∈ {0,1} (35)  

𝑐𝑖,𝑙 ∈ 𝑍+ (36)  

𝑈𝑗,𝑘, 𝑈𝑅𝑖,𝑠,𝑙 , 𝑅𝐸𝑖,𝑙 , 𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙 ∈ 𝑅+ (37)  

∑ ∑ 𝑒𝑅𝐸𝑟,𝑖,𝑠,𝑙

𝑟∈𝐼∪𝑅

 

𝑖∈𝐼

≤  𝐶𝐴𝑙 ∀ 𝑠 ∈ 𝑆, 𝑙 ∈ 𝐿 (18b) 

2 ∗ ∑ ∑ ∑ 𝑐𝑤𝑖,𝑙,𝑟 ∗ 𝑚𝑟,𝑖 ∗ 𝜔𝑙

𝑖∈𝐼𝑟∈𝑅𝑙∈𝐿

  (1.7b) 

2 ∗ ∑ ∑ 𝑐𝑤𝑖,𝑙,𝑟 ∗ 𝑚𝑟,𝑖 ∗ 𝜆𝑙

𝑟∈𝑅𝑙∈𝐿

  (2.4b) 

In this model, Equation (1) is the first objective minimizing the overall cost of the system. Equation (2) is the second 

objective that minimizes total emissions and reduction of environmental impacts. Equation (3) indicates that each 

source must be allocated to a single route in the collection phase. Equation (4) shows the capacity constraint of vehicles 
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in the collection phase, and Equation (5) indicates maximum traveling distance of vehicles in the collection phase. 

Equation (6) defines auxiliary constraints for sub-tour elimination in the collection phase (Yildiz et al., 2013).  Flow 

conservation constraints in the collection phase are addressed in Equation (7).  Equation (8) states that each vehicle 

can be used at most once in the collection phase. Equations (9) and (10) indicate the capacity constraint of collection 

centers in the collection phase. Equation (11) specifies that a source can be assigned to a collection center only if there 

is a route from that collection center going through that source in the collection phase. Equation (12) guarantees that 

each source must be allocated just to one collection center. Equations (13) and (14) indicate that each process plant 

must be allocated once in process phase, Equation (15) specifies that only established collection centers must be routed 

in process phase, Equation (16) indicates that each collection center must be allocated to a single route for each process 

plant in process phase. Equation (17), (18) and (19) compute the remainder of any type of waste in each collection 

center. Equation (20) indicate the capacity constraint of vehicles for collecting reminder of each type of wastes from 

collection centers in the process phase. Equation (21) indicates auxiliary constraints for sub-tour elimination in the 

process phase. Equation (22) indicates flow conservation constraints in the process phase. Equation (23) indicates that 

each vehicle for collecting reminder of each type of wastes can be served at most once in process phase. Equation (24) 

and (25) indicate that only the vehicles can use for collecting reminder of each type of wastes which are compatible 

with the process plant. Equations (26), (27) and (28) specify that a collection center can be assigned to a process plant 

only if there is a route from that process going through that collection center in process phase for each waste type. 

Equations (29), (30) and (31) linearize product 𝑐 𝑎𝑛𝑑 𝑤 in objectives. Equations (32), (33) and (34) linearize   product 

𝑒 𝑎𝑛𝑑 𝑅𝐸 in vehicle capacity for collecting the remainder of each type of wastes limitations in process phase. Equation 

(35) must replace   Equation (18) because of none linearity of Equation (18). Equation (36) must replace   Equation 

(1) because of none linearity of Equation (1) and at last, Equation (37) must replace   Equation (2) because of none 

linearity of Equation (2). 

3. Solution methodology 

The location-routing problem belongs to NP-hard problem group (Yildiz et al., 2013). In such cases, finding the 

optimal solution for the large-scale problem is extremely difficult. Because of the difficulty of solving the problem at 

large sizes, in this research, an evolutionary algorithm is used to solve the large-size problem. The main advantage of 

these algorithms is their ability to solve large-size problems in a short time with a fairly acceptable answer (Zhou et 

al., 2011). Given that the main variables of the proposed problem are discrete, The Non-Dominated Sorting Genetic 

Algorithm II (NSGA-II) is used which works well for the discrete problem. Also, because the evolutionary algorithms 

offer close-to-optimal solutions and do not yield absolute optimal solutions, and given that the problem is bi-objective, 

to solving in small sizes, augmented 휀-constraint is used. It is proposed by Chen, Wu, and Lin, (2013) to get non-

dominated Pareto's answer set. 

In the following, we outline the definitive solution of the model using the augmented ε-constraint. Then, we describe 

the approximate solution for large-scale problems with Non-Dominated Sorting Genetic Algorithm II. 

3.1. Augmented ε-constraint 
Augmented ε-constraint is used to present effective solution of presented problem in section 3. This method obtains 

only efficient Pareto optimal solutions and speeds up the solving process. For this purpose, presented model is 

programmed in GAMS software with CPLEX solver. Considering the presented model with 𝜇 = 2 objectives, the 

programming is done base on following steps   proposed by Chen et al., (2013). 

min 𝑓1(𝑥) 

min 𝑓2(𝑥) 

𝑠. 𝑡. 

𝑥 ∈ ℶ. 

Where 𝑥 is decision variables 𝑓1 𝑎𝑛𝑑 𝑓2 are 𝜇 objectives and ℶ is feasible area. 

3.1.1. Making payoff table 

To effectively apply the ε-constraint method we must have range of 𝜇 − 1 objective   used as constraints (Chen et al., 

2013). We compute the payoff table by performing the lexicographic optimization of the objective. 
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3.1.2. Setting up the new constraint base on objectives 

After making payoff table, we divide the range of each objective to 𝑒𝑖 equal intervals. It produces 𝑒𝑖 + 1 grid points 

as the value of 𝑒2 in ε-constraint method. Accordingly, the model 𝐼𝐼 is made as follow. 

min 𝑓1(𝑥) 

𝑠. 𝑡. 

𝑓2(𝑥) ≤  𝑒𝑓2
 

𝑥 ∈ ℶ. 

In this model, 𝑒𝑓2
 is calculated as follow: 

𝑒𝑓 =
𝑙𝑓 + (𝑗𝑓 ∗ 𝑣𝑓)

𝑠𝑓

 

where 𝑙𝑓 is the lower bound of objective 2, 𝑣𝑓 is the range of the objective 2, 𝑠𝑓 is the number of grid points and 𝑗𝑓 is 

the counter for the objective 𝑓2 from zero to a large enough number of produced effective solution. 

3.1.3. Guaranteed efficiency of the result 

The point is that the optimal solution of problem (2) is guaranteed to be an effective solution only if all the (𝜇 −  1) 

objective’s constraints are binding (Mavrotas, 2009). Otherwise, it is a weakly efficient solution (Mavrotas, 2009). 

For the model only generate optimal solution, the objective constraints must be transformed to equalities by explicitly 

incorporating the suitable auxiliary variable. These variables are also used as a second term in objective to generate 

only efficient solutions. So the new model is constructed as follows: 

min (𝑓1(𝑥) + 휀 (−
𝜑𝑓2

𝑣𝑓2

)) 

𝑆. 𝑡. 

𝑓2(𝑥) + 𝜑𝑓2 = 𝑒𝑓2
 , 

𝑥 ∈ ℶ. 

𝜑𝑓2 ∈ 𝑅+ 

Where in this model 휀 is a very small number (between10−3𝑎𝑛𝑑10−6). 

3.2.  NSGA-II Algorithm 
The NSGA-II strategy was suggested by Deb, Agrawal, Pratap, and Meyarivan (2000). it is based on Genetic algorithm 

that adds features to the selection stage which makes it possible to apply this algorithm to multi-objective problems. 

In NSGA-II, prior to selecting the set of answers, they are sorted according to the Pareto ranking in a quick procedure. 

Also, a population gap is obtained based on the density estimate for each of them. A schematic of the NSGA-II 

algorithm is shown in Fig 2. For more information, see Deb et al., (2000). 

This algorithm starts with a bunch of randomly generated initial solution. Then, in each iteration, it initially creates a 

certain number of crossover children. And then it produces a number of mutation children. Then it calculates fitness 

of each of these children. At this stage, the total population, which includes the initial population and the children, is 

arranged based on the non-dominated sorting of the crowding distance, and keeps, as much as the initial population, 

the top answers that have a higher fitness in the Pareto ranking, and eliminates other answers. The idea behind this 

selection method is that solution with better rank and less crowded distance is preferred. The algorithm repeats this 

until one of the end conditions that can be the number of iterations or reach a level that does not make significant 

changes. In this study, the condition for reaching the end is based on the number of iterations. Eventually sets out 

Pareto solutions. 

3.2.1. Solution representation 

The performance of evolutionary algorithms is heavily influenced by how the problem is encoded (Chen et al., 2013). 

How to choose the encoding of the solution should be in such a way that it can cover all possible scenarios in the 

solution to the problem. Thus, each chromosome must be defined in a way that can cover all the components of the 

problem. For this purpose, one of the most popular methods is order-based methods for encoding the problem (Rabbani 

et al., 2018). 
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In this research, we define each chromosome as a structure which includes arrays of the following descriptions. The 

first array is made up of 𝐾 + 𝐽 − 1, 𝑘 denotes the number of vehicles in the waste collection phase from its sources, 

and 𝐽 is the number of sources. The second array is made up of 𝐾 + 𝐼 − 1, 𝑘 denotes the number of vehicles in the 

waste collection phase from its sources, and I is the number of sources. By this encoding, it is possible to identify all 

possible scenarios that may occur for vehicle and collection centers in collection phase. The next array includes the 𝑅 

members, where 𝑅 refers to the number of potential points for establishing processing centers. This array contains 𝐿 

members from one to 𝐿 and 𝑅 − 𝐿 zero members which specify in which of the points 𝑅 the particular processing 

center 𝐿 has been set up. Then a two-dimensional array is defined which contains 𝐿 rows, each row of which is used 

for routing one of the processing centers. And each row contains 𝐽 + 𝑆 − 1 members for routing in process phase for 

each process center. Figure 3 shows an example of this encoding.  

3.2.2. NSGA-II operators 

Start

Create Initial solution’s population of size Np randomly

Calculate fitness of each solution

Sort solution’s using none-dominated sorting based on ranking and crowding distance

Create crossover and mutation children and calculate fitness of each child 

Combine population of parents and children and make union population 

Select population of size Np based on ranking and crowding distance 

Is the condition for the stop reached?

Return the best solutions

Stop

No

Yes

 
Figure 2. The flowchart of NSGA-II algorithm 

 

To find a solution that is close to the optimal solution, it needs to get the whole space of the answer. To this end, this 

algorithm produces new solutions in two different approaches from the old ones (primary population). The first is the 

creation of crossover children which are based on two selective parents. There are various methods for selecting 

parents, in this research, where random method has been used. This approach seeks to improve the parent's answers 

and in some ways, one can say that it seeks to improve previous solutions and find optimal local solution. The second 

approach is to create mutated children based on a selective parent. Like the first approach, the selected parent is chosen 
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randomly in this approach. This approach is used to escape from being trapped in local optimal solution and scrolling 

through the entire feasible space. 

 Crossover 

Based on the structure of the chromosomes, which is a structure, for each array, a single-point crossover operator is 

used separately. The operation of this operator is such that it randomly selects a random number from one to 𝑛, where 

n is the length of the array. Then, according to the selected number, the selected parents are divided into two parts. 

Then it generates two children whose first child consists of the first part of the first parent and the second part of the 

second parent and second child consists of the second part of the first parent and the first part of the second parent. In 

this study, since there are 3 + 𝐿 rows, this operator generate2 ∗ (𝐿 + 3), child. Figure 4 shows an example of crossover 

operator on array 1. 

 Mutation 

This operator initially selects the two members from the selected parent and then for generating new child, exchange 

those two members with each other. In this study, (𝐿 + 3) mutant children are produced in each iteration. Figure 5 

shows an example of mutation operator on array 2. 

3.2.3. Fitness 

This function calculates the fitness of solution given by each of these operators. Indeed, this function performs the 

function of the objectives and after the generation of each child, the amount of solution cost and solution pollution 

and emissions, which are the objective functions of this study, is compiled as fitness.

3.2.4. Parameters tuning 

Since tuning the parameters of the algorithm into fit reduces the runtime and enhances performance and reliability, 

properly setting these parameters is important (Eiben & Smit, 2011). For this purpose, Taguchi method (Taguchi, 

1986) has employed to set up parameters NSGA-II algorithm. By using this method, the most information can be 

obtained with the least number of possible trials (Hasçalık & Çaydaş, 2008). For this purpose, a four-level Taguchi 

design is applied to check the parameters affecting this algorithm and select the best combination of these parameters. 

These parameters are the size of the population (𝑁𝑝)  is considered to be  20, 40, 60 and 80, the number of iterations 

(𝑀𝑎𝑥𝑖𝑡𝑒𝑟) is considered to be 50, 75, 100  and 125, and Crossover rate (𝐶𝑟), which also affects mutations (𝑀𝑟 = 1 −
𝐶𝑟), is considered to be  0.9, 0.8, .07 and 0.6. Based on the statistical basis of the Taguchi method, using Minitab 

software, 16 trials are required. The value of the objectives and execute time of trials have been used as criteria to 

check the quality of trials. Then, trials were performed by considering a random instance with the following 

specification: 𝐼 =  5, 𝐽 = 50, 𝐾 = 10 , 𝐿 = 5, 𝑅 = 10, 𝑆 = 4 , 𝑁 = 5,  . The results of these trials are demonstrated 

in Table 5. 

1 3 8 10 2 5 6 11 4 7 9 12 

Array 1. Order of 10 source nodes and 3 vehicles 

3 4 2 1 5        

Array 1. Order of 3 vehicles and 2 collection centers 

0 0 3 0 2 1 0      

Array 3. Order of 3 process plants and 7 potential nodes 

3 1 2          

2 1 3          

1 2 3          

Array 4. Order of 2 collection centers and 2 vehicles 

 for each of 3 process plants 

 

Figure 3. An example of solution representation 
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Parent 1 

2 3 7 5 1 6 4 

1 3 4 2    

0 1 0 2 3 0  

2 3 1     

2 1 3     

3 2 1     

 

 

Parent 2 

3 7 2 4 5 1 6 

1 4 2 3    

0 3 1 0 2 0  

2 3 1     

2 1 3     

3 2 1     
 

Child 1 

2 3 7 4 5 1 6 

1 3 4 2    

0 1 0 2 3 0  

2 3 1     

2 1 3     

3 2 1     
 

Child 2 

3 7 2 5 1 6 4 

1 4 2 3     

0 3 1 0 2 0   

2 3 1      

2 1 3      

3 2 1         
 

Figure 4. Example of crossover operator 

 

Parent 

2 3 7 5 1 6 4 

1 3 4 2    

0 1 0 2 3 0  

2 3 1     

2 1 3     

3 2 1     
 

Child 

2 3 7 5 1 6 4 

1 2 4 3    

0 1 0 2 3 0  

2 3 1     

2 1 3     

3 2 1     

 

 
Figure 5. Example of Mutation operator 

 
Table 5. Taguchi trials for selecting the best combination of NSGA-II parameters 

No. 𝐌𝐚𝐱𝐢𝐭𝐞𝐫 𝐍𝐩 𝐂𝐫 Execute time Mean of objective 1 Mean of objective 2 

1 50 20 0.9 88 4.53E+10 3.24E+10 

2 75 20 0.8 140 5.35E+10 4.62E+10 

3 100 20 0.7 177 5E+10 4.07E+10 

4 125 20 0.6 219 3.74E+10 3.11E+10 
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Table 5. Continued 
No. 𝐌𝐚𝐱𝐢𝐭𝐞𝐫 𝐍𝐩 𝐂𝐫 Execute time Mean of objective 1 Mean of objective 2 

5 75 40 0.9 290 3.22E+10 1.57E+10 

6 50 40 0.8 205 4.58E+10 2.09E+10 

7 125 40 0.7 470 3.65E+10 2.25E+10 

8 100 40 0.6 377 3.53E+10 2.00E+10 

9 100 60 0.9 611 3.64E+10 2.09E+10 

10 125 60 0.8 706 2.52E+10 1.18E+10 

11 50 60 0.7 285 2.65E+10 1.51E+10 

12 75 60 0.6 444 2.53E+10 1.64E+10 

13 125 80 0.9 1037 2.05E+10 5.45E+09 

14 100 80 0.8 786 2.61E+10 1.45E+10 

15 75 80 0.7 604 2.16E+10 1.46E+10 

16 50 80 0.6 425 3.50E+10 1.93E+10 

 

Then, to compare and choose the best combination of parameters, first, the three criteria are considered normalized 

and dimensionless.  For this purpose, each of the criteria was divided in its best value. Second, the Best-Worst Method 

(BWM) (Rezaei, 2015) was used to weight each criterion. The prominent attribute of BWM is the utilization of a 

structured way for generating pairwise comparisons which leads to trustworthy results. According to BWM, the best 

and the worst criteria are primarily specified by the decision-maker. Then, other criteria are compared with the worst 

and the best criterion using pairwise comparison. Then, a min-max model is formulated in order to obtain the weight 

of each criterion (Rezaei, 2015). 

For this purpose, the most important criterion was specified as objective 2 and the least important criterion was 

specified as objective 1. Then another criterion (execution time) is compared with the worst and the best criterion 

using pairwise comparison. This comparison is shown in Table 6. 

Table 6. Pairwise comparison of criteria 

Criterion In comparison with the 

most important Criterion 

In comparison with the least 

important Criterion 

Weight 

Execution Time 2 3 0.222 

Objective 1 1 2 0.222 

Objective 2 3 1 0.556 

 

Then, following model has been solved to gain weight of each criterion. 

𝑀𝑖𝑛 𝜆 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑤𝑛

𝑤𝑗

− 𝑎𝐵𝑗 ≤ 𝜆     ∀𝑗 

𝑤𝑛

𝑤𝑗

− 𝑎𝐵𝑗 ≥ −𝜆   ∀𝑗 

𝑤𝑗

𝑤𝑤

− 𝑎𝑗𝑤 ≤ 𝜆     ∀𝑗 

𝑤𝑗

𝑤𝑤

− 𝑎𝑗𝑤 ≥ −𝜆   ∀𝑗 

∑𝑤𝑗 = 1 

𝑤𝑗 ≥ 0  ∀𝑗 
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Where 𝑤𝑗  is the weight of criterion “𝑗”, 𝑎𝑏𝑗 is the amount of superiority of the best criterion in comparison with 

criterion “𝑗”, 𝑎𝑗𝑤 is the amount of superiority of criterion “𝑗” in comparison with the worst criterion, 𝑤𝑏  represents the 

weight of the best criterion and 𝑤𝑤 represents the weight of the worst criterion. 

Then, the weighted sum of these three criteria was calculated for each combination of parameters (𝑖) as follows and 

the results of these calculations are in Table 7. 

∑ 𝑤𝑗𝑎𝑖𝑗
5

𝑗=1
     ∀𝑖 

 

Table 7. Weighted sum of each combination of parameters 

No. Execution time Objective 1 Objective 2 Weighted sum 

1 0.2222 0.4910 3.3027 4.0158 

2 0.3527 0.5791 4.7094 5.6412 

3 0.4452 0.5415 4.1441 5.1308 

4 0.5517 0.4055 3.1689 4.1261 

5 0.7285 0.3485 1.6012 2.6782 

6 0.5150 0.4964 2.1334 3.1447 

7 1.1807 0.3953 2.2941 3.8701 

8 0.9468 0.3829 2.0394 3.3691 

9 1.5352 0.3938 2.1285 4.0575 

10 1.7735 0.2733 1.2019 3.2487 

11 0.7153 0.2872 1.5386 2.5411 

12 1.1164 0.2739 1.6711 3.0614 

13 2.6069 0.2222 0.5556 3.3847 

14 1.9750 0.2830 1.4762 3.7343 

15 1.5181 0.2343 1.4910 3.2434 

16 1.0673 0.3790 1.9628 3.4090 

Then the combination with the lowest weighted sum were selected as the optimal combination. Based on these 

calculations, the best combination of these parameters is 𝑁𝑝 = 60 , 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 50, 𝐶𝑟 = 0.7 . 

4. Model Validation and Numerical examples 

4.1.   Model Validation 

In order to validate the solution presented by NSGA-II algorithm and ensuring that the presented solution can be at an 

acceptable level of optimality, we have solved an instance of the problem with the GAMS software and CPLEX solver 

based on the Epsilon constraint method. Then we compare the result of this method with the result of the NSGA-II 

algorithm. The problem considered for this purpose is a small size problem. Full details of this problem are available 

in the following link address: 

 https://www.dropbox.com/sh/jpo9kjojgnyjtne/AAAdeINObNuIo2DMEk9y1DZ2a?dl=0  

The solutions obtained by this method are shown in Table 8 and solutions obtained by NSGA-II are in Table 9 for this 

problem. 

Table 8. Payoff table of solution created by augmented ε-constraint 

Solution Objective 1 Objective 2 

1 3042260 342850 

2 3255750 338420 

3 3462400 335600 
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Table 9. Obtained solutions using NSGA-II algorithm for validation problem 

Solution Objective 1 Objective 2 

1 3152390 423850 

2 3432120 416850 

3 3668370 397550 

4 3752540 383950 

5 3807790 382250 

6 3892580 371250 

7 4121680 359250 

8 4321580 358450 

9 4408650 344150 

10 4498050 341750 

 

4.2. Numerical examples 

Due to lack of appropriate data for this problem, 14 sample problems in different sizes were considered. Parameters 

of these problem were randomly created using the MATLAB software. Main characteristics of these problems are in 

Table 10 and the full details of these problem are available in the following link address: 

 https://www.dropbox.com/sh/jpo9kjojgnyjtne/AAAdeINObNuIo2DMEk9y1DZ2a?dl=0  

In Table 10, J indicates number of source centers, I indicates number of potential collection center nodes, L indicates 

number of process plants, R indicates potential nodes for establishing process plants, K indicates available vehicles in 

collection phase, S indicates available vehicles for collecting reminder of each type of waste in process phase and at 

last, N indicates number of environmental factors. The ranges of creating random parameters of these instances are in 

Table 11. These instances were solved with the proposed algorithm using MATLAB software. In order to compare 

and discuss the answers of these instances, Figure 6 and Figure 7 are prepared. More detail about these figures is in 

Section 6. Spacing metric and diversity metric are used to evaluate quality of solution. Spacing metric gives 

information about distribution of None-dominated solutions (Suo, Yu, & Li, 2017) which calculated using following 

equation: 

𝑑𝑖 =  𝑚𝑖𝑛𝑗 ∑|𝑓𝑡
𝑗

− 𝑓𝑡
𝑖|

𝑇

𝑡=1

        ∀ 𝑖, 𝑗 ∈ {1, … , 𝑁} 

𝑆𝑝𝑎𝑐𝑖𝑛𝑔 =  √
1

𝑁 − 1
∑(𝑑𝑖 − �̃�)

2
𝑁

𝑖=1

2

 

Where 𝑁 is number of None-dominated solutions, 𝑑𝑖 is the minimum distance of pareto optimal solution 𝑖 from other 

solutions, �̃� is the average of 𝑑𝑖, and 𝑡 ∈ { 1, … , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 }, and value of each objectives denoted by 

𝑓𝑡
𝑖. 

Diversity metric calculated as the maximum Euclidean distance between non-dominated solutions (Rabbani et al., 

2018). The results of this metrics are in Table 12. 

Also, for further discussion on the details of the problem, for instance, one of the solutions for problem instance 2 is 

schematically shown in Figure 8. None-dominated solutions for this problem instance is shown in Figure 9. 

Considering the uncertainty in the amount of waste produced in waste sources, and in order to investigate the effect 

of waste amount on the objectives, problem instance2 has been solved with different volumes of waste amount. The 

average of None-dominated solutions of these states is shown in Figure 10 and Figure 11. The ranges of creating 

random amount of waste for sensitivity analysis is shown in Table 13. 
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Table 10. Characteristics of instance problems 

No. J I L R K S N 

1 10 2 6 10 5 2 5 

2 20 5 6 10 5 2 5 

3 50 5 6 20 7 3 5 

4 75 10 6 25 10 4 5 

5 100 10 6 25 10 4 5 

6 125 10 6 30 15 4 5 

7 150 13 6 30 15 4 5 

8 200 13 6 40 20 5 5 

9 250 13 6 40 20 5 5 

10 500 14 6 50 30 5 5 

11 750 14 6 50 40 8 5 

12 1000 20 6 50 40 10 5 

13 1500 30 6 50 40 10 5 

14 2000 50 6 75 50 10 5 

 
Table 11. The ranges of creating random parameters 

Parameter Lower bound Upper bound 

𝑂𝑗 50 150 

𝐺𝑖 50000000 100000000 

𝐵𝑖 5000 7000 

𝑈𝐵𝑖 1 1000 

𝐻𝑟,𝑙 50000000 100000000 

𝐹𝑘 40000000 80000000 

𝑃𝑘 50000 100000 

𝑄𝑘 1000 5000 

𝛼𝑘 1000 2000 

𝛽𝑘 3000 6000 

𝐶𝐴𝑙 5000 10000 

𝐶𝐹𝑙 40000000 80000000 

𝜔𝑙 5000 10000 

𝜆𝑙 4000 10000 

𝑑𝑖,𝑗(between sources) 200 1000 

𝑑𝑖,𝑗(between potential collection centers) 25000 50000 

𝑑𝑖,𝑗(between sources and potential collection centers) 2000 10000 

𝑚𝑖,𝑟(between potential process nodes) 30000 60000 

𝑚𝑖,𝑟(between collection centers and potential process nodes) 10000 25000 

𝜏𝑖,𝑛 400 800 

𝜋𝑟,𝑛,𝑙 500 1200 

 
Table 12. Results of diversity and spacing metrics 

Problem instance Diversity metric Spacing metric 

1 102540000 1300500 

2 93411000 1120700 

3 5701300 169110 

4 215320000 445480 

5 54200000 154580 
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Table 12. Results of diversity and spacing metrics 

Problem instance Diversity metric Spacing metric 

6 123600000 1437800 

7 456250000 3213300 

8 285670000 2673100 

9 276090000 146900 

10 3047500000 4820200 

11 1130800000 4958100 

12 13226000000 34050000 

13 18321000000 17075000 

14 18685000000 863230 

 

Table 13. The ranges of creating random amount of waste 

Instance Lower bound of range Upper bound of range 

1 50 150 

2 100 300 

3 200 400 

4 300 500 

5 500 700 

6 600 800 

7 800 1000 

 
Figure 6. The execution time of each instance 

 

 
Figure 7. Number of paretor solutions for each instance 
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Figure 8. Schematic solution representation for problem instance 2 

 

 
Figure 9. None-dominated solutions for problem instance 2 
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Figure 10. Variations of objective 1 

 
Figure 11. Variations of Objective 2 

 

Throughout, this study has been carried out in a series of studies, some of which are more relevant to the subject of 

this research and are listed in the literature review. Considering the importance of municipal waste management which 

is mentioned in section 1, in this study, a model has been developed that simultaneously identifies collection and 

separation centers for waste and reverse logistics centers, including recycling centers. One of the important findings 

of this study is the presentation of a solution based on NSGA-II algorithm, which, given the type of problem that is 

NP-Hard, is very crucial because softwares such as GAM cannot solve such problems. But as shown in Figure 6, the 

solving time with this solution is more appropriate and more efficient for problems of different sizes. Also, as shown 

in Figure 7, even in the large sizes, various numbers of Pareto's solutions are presented by this method, which grants 

the decision-maker more initiative to select different solutions. As shown in Fig. 8, the solution presented by this 

method is logical and can be relied upon by a   high precision. In the parameters tuning and select the best combination 

of parameters of the evolutionary algorithm that strongly affects the algorithm's performance, a systematic approach 

based on multi-criteria decision making was presented. Given the uncertainty in the volume of wastes and also the 

fact that the volume of wastes can vary in different problem, the sensitivity analysis of the objectives based on the 

amount of waste is presented in Figure 10 and Figure 11. As can be seen, the first objective increases exponentially 

and the second objective increases logarithmically with increasing wastes volume. As there are limitations in any 

study, we also encountered some limitations in this research. Including the fact that the real data is uncertain in the 

real world, but here, in order to avoid the complexity of the problem, we assume the data to be deterministic. And the 

other limitation was the use of approximate method. Although the solution is close to the optimal solution, sometimes 

the solution may need to be reviewed by decision maker. 
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5. Conclusion 

In this paper, a model was proposed to minimize waste management system costs and minimize the environmental 

impacts that arise from setting up a facility or transporting wastes. In order to minimize the environmental impacts, 

various environmental factors that arise from establishing a center were considered like soil pollution or noise 

pollution. This article describes the waste management system in two parts, which are integrated together. The first 

part relates to the location of waste collection centers and the routing of waste production centers, like markets, to 

these centers. The second part relates to the location of reverse logistics centers, such as waste to energy center or 

electronic waste recycle center, and routing from collection centers to each of these centers. Then a solution 

representation is proposed based on the NSGA-II algorithm. In tuning the parameters of the meta-heuristic algorithm, 

which has a significant effect on the efficiency of these algorithms, using the Taguchi method, first, the number of 

necessary experiments to select the best combination of parameters was determined. Then, based on the BWM method, 

which is for multi-criteria decision making the optimal combination was selected. Minimizing the time needed to 

solve, the first goal of the problem and the second goal of the problem were considered as the criteria choosing the 

best combination of parameters. In future studies, the model can be developed in a multi-period model, or time window 

can be considered, helping to make the model more realistic. Also, since real-world data is uncertain, fuzzy approaches 

can be used to develop the model. 
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