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Abstract 

In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell 

formation problem considering that labor utilization with uncertain data is carried out. The robust 

approach is used to reduce the effects of fluctuations of the uncertain parameters with regard to all 

the possible future scenarios. In this research, cost parameters of the cell formation and demand 

fluctuations are subjects to uncertainty and a mixed-integer programming (MIP) model is 

developed to formulate the related robust dynamic cell formation problem. Then the problem is 

transformed into a bi-objective linear one. The first objective function seeks to minimize relevant 

costs of the problem including machine procurement and relocation costs, machine variable cost, 

inter-cell movement and intra-cell movement costs, overtime cost and labor shifting cost between 

cells, machine maintenance cost, inventory, holding part cost. The second objective function seeks 

to minimize total man-hour deviations between cells or indeed labor utilization of the modeled. 

 

Keywords: Dynamic Cellular Manufacturing; Robust Optimization; man-hour deviations; 

bi-objective mathematical model. 
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1. Introduction 

Cellular manufacturing systems that have combined the flexibility of job shop systems and high 

production rate of flow lines are introduced as a system superior to other production systems. One 

of the difficult steps designing a cellular manufacturing system is the cell formation problem 

including grouping the parts into part families and grouping the machines into manufacturing cells. 

This is done in a way that the parts having similar manufacturing process are produced in the same 

cell. It is usually assumed in modeling this problem that operations of a particular machine are 

specified. Cellular manufacturing system is used in production environments in order to increase 

flexibility and efficiency. Cellular manufacturing is an innovative production strategy based on 

group production. The designing method of cellular manufacturing is usually considered for one 

period that the product composition (the number of pieces of each type to be produced) and the 

demand for each part (The number of pieces of each type demanded) are considered constant in 

each period of planning. Since in the real world these two amounts are not constant in many cases 

and it is impossible to predict demand dynamic cell manufacturing is utilized. Dynamic cell 

manufacturing system is actually reconfiguration of manufacturing cells including part families and 

grouping machinery in each period. In order to reach optimal production cell and machinery 

configuration can be changed in each period. Due to the advancement of technology, the increase of 

demand and followed by an increase in production as well as more complex manufacturing systems, 

a model with high reliability and flexibility is needed for the manufacturing planning. Although 

models with deterministic approach are efficient in many cases, however it’s obvious that in a real 

production and planning environment many of the effective elements in manufacturing are 

indefinite and uncertain. However the solution to these problems is different from deterministic 

problems. The approach expanded to deal with the uncertainty of the data in recent years is robust 

optimization where the opportune optimization will be done in the worst cases which may lead to a 

maximum minimizing objective function. In this approach researchers seek to near to optimal 

solutions which are highly probable to be feasible. In other words, being a bit regardless of the 

objective function guarantees the feasible results obtained. However, in the case of uncertainty in 

the coefficients of the objective function, being slightly regardless of optimal value of objective 

function researchers seek to find an answer that actual answers are better than it with a high 

probability. A robust optimization bi-objective function is utilized in this paper in order to minimize 

costs and maximize labor utilization in a dynamic cell formation problem in a state of data 

uncertainties. In most of the cell production system models input data are assumed to be certain and 

deterministic.  However, in real world conditions most of the parameters are uncertain and 

ambiguous such as part demand and processing time.  

2. Literature review 

The beginning of using technology group dates back to about 1920, the time when Taylor used a 

classification system to group the parts in need of special operations. Group technology was first 

introduced as a single machine concept by Mitrofanoff in 1959 in Russia. That’s in a way that some 

of the similar parts are grouped and added to machine works subsequently in order to take 

advantage of continuous production of parts or reduce machine setup time as once for all parts.  

Cellular Manufacturing (CM), which is an innovative manufacturing strategy derived from group 
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technology concept, is an approach that can be used to improve both flexibility and efficiency in 

today modern competitive manufacturing environments, such as flexible manufacturing system and 

just-in-time production. The basic idea behind GT/CM is to decompose a manufacturing system 

into subsystems by identifying and exploiting the similarities amongst part and machines 

(Venugopal, V., and T. T. Narendran, 1992). CM is an efficient way to cut down the costs, improve 

the quality of the products and strengthen the manufacturing flexibility (Zhang, Zhifeng, and 

Renbin Xiao, 2009). The aim of CM is to reduce setup and flow times and therefore reduce 

inventory and market response times. Setup times are reduced by using part-family tooling and 

sequencing, whereas flow times are reduced by minimizing setup and move times, wait times for 

moves and by using small transfer batches (Wemmerlöv, Urban, and Nancy L. Hyer, 1989). Design 

of a cellular manufacturing system is composed of four phases of (1) cell formation (i.e., grouping 

parts with similar processing requirements into part families and corresponding machines into 

machine cells), (2) group layout (i.e., laying out machines within each cell, called intra- cell layout, 

and laying out cells within a shop floor, called inter-cell layout), (3) group scheduling (i.e., 

scheduling part families), and (4) resource allocation (i.e., assigning tools, human and material 

resources) (Wemmerlöv et al., 1986). 

Dynamic Cellular Manufacturing System (DCMS) has been discussed by Rheault et al. 

(1995).DCMS considers a multi-period planning horizon and involves differences in product mix 

and demand requirements. As a result, the formed cells in one period may not be optimal for the 

successive periods and reconfiguration is inescapable. Literature body of dynamic cell formation 

(DCF) problem has evolved since the first research paper denoted to this problem by Burbidge in 

1960s (Burbridge, J.L., 1971). In last decades, many researches have been done on cell formation 

problems and many methods such as meta-heuristic algorithms (like genetic algorithms, simulated 

annealing, and taboo search) and mathematical programming have been proposed. Gupta et al. 

(1995) developed a GA for Minimizing total inter-cell and intra-cell moves in cellular 

manufacturing system. Khaksar et al. (Khaksar- Haghani, 2013) presented a new integer linear 

programming model for designing multi-floor layout of CMS. An aspect of the model was 

concurrently making the cell formation and group layout decision to achieve an optimal design 

solution in a multi-floor factory. Kumar Saxena et al. (2011) proposed a mixed-integer nonlinear 

programming model to design the dynamic cellular manufacturing systems (DCMSs) under 

dynamic environment. Kia et al. (2012) presented a new mixed-integer nonlinear programming 

model for an intra-cell layout design for a DCMS. One of the new aspects of the proposed model 

was the concurrent making of the cell formation and intra-cell layout decisions in a dynamic 

environment. The other aspect of the model was utilization of a multi-row machine layout for 

machines of unequal-area. Defersha and Chen (Defersha, et al. 2008) proposed a comprehensive 

mathematical model for dynamic cell formation problem considering cell reconfiguration, 

alternative routings, and sequence of operations, duplicate machines, machine capacity, workload 

balancing and production cost. But the matter of concern is that effective parameters in the 

manufacturing system are considered constant in previous studies while that is not true in reality. In 

the real world, there are different types of uncertainties influencing manufacturing procedure. These 

uncertainties are divided into two main categories: a) environmental uncertainty and b) system 

uncertainty. Environmental uncertainty includes uncertainties belonging to manufacturing 
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procedure such as demand and supplier uncertainty. System uncertainty is related to uncertainties 

inside the manufacturing procedure such as uncertainty at delivery time, uncertainty in quality, 

sudden failure in manufacturing system and product changes. In fact if the models are stable, the 

risk of incorrect use will be much less. Stability means that the output of the model should not be 

much sensitive about the exact values of the parameters and inputs. Robust optimization is applied 

to model problems related to optimization where data uncertainties are relevant and get an answer 

which is good enough about all or most of the uncertain parameters. Robust optimization can be 

considered as a complementary option for sensitivity analysis and stochastic planning. In classical 

paradigms of mathematical programming input data of the model (the parameters) are certain 

(deterministic) and equivalent to the nominal values. This attitude does not take into account the 

effect of uncertainty on the quality and feasibility of the model. In fact, different amounts of data 

available from their nominal values may lead to some constraints to be violated; the optimum 

solution is not optimal in the long run, or even is not feasible any more. These solutions are called 

robust. Based on previous studies, robust optimization is one of the approaches that work very 

efficiently in the presence of uncertainty (Feizollahi et al., 2012). Robust optimization was 

introduced by Sweester in 1973. The model proposed by Singh is very conservative and is the most 

pessimistic approach (Singh, C., 1982). Many attempts have been done to provide sustainable and 

manageable models in past two decades in order to solve different optimization problems with 

uncertain data. Mulvey et al. proposed a model which decision maker can undertake incompatibility 

risk or the level of service function and propose a set of solutions that are less sensitive to data 

realization in a set of scenarios. Two types of robustness are proposed in this approach: solution 

robust (remains close to optimal for all scenarios) and model robust (remains almost feasible for all 

data scenarios). Optimized solution gained by robust optimization model is called robust. If input 

data changes and remains close to optimal, it will be called solution robust. A solution is robust 

when remains feasible despite small changes in input data which is called model robust (Mulvey et 

al., 1995). Ben-Tal et al. proposed models as well as robust linear programming called a conic 

quadratic programming (Ben-Tal et al., 2009). These models are less conservative and provide 

better solutions. Meanwhile, Bertsimas et al. made an evolution in robust optimization proposing a 

model with adjustable levels of conservative work as well as robust linear programming. Their 

work can be applied on optimization problems with discrete variables (Bertsimas et al., 2004). One 

of the basic assumptions in optimization models in mentioned investigations is that the resources 

and associated costs are considered certain, while many of these parameter values are uncertain in 

real world and instead of an exact value a range of values are allocated to them. Due to the 

uncertainty of the data, it is possible that the optimum solution by the models is not feasible. 

Sensitivity analysis and stochastic planning approaches are used in classic method for taking into 

account the uncertainty of the data. In the first approach, the impact of uncertainty on the model 

data is ignored primarily and later for endorsing the results obtained the sensitivity analysis is used. 

But the sensitivity analysis is only a tool for analysis of appropriateness of solutions and can’t be 

used to produce robust solutions. In addition, simultaneously the sensitivity analysis on parameters 

is not practical in models having a lot of uncertain data. In the middle of 1950s, Dantzig presented 

stochastic planning as an approach to model the uncertainty of the data. This approach takes 

scenarios with different probabilities into consideration to assign values to parameters and solution 

feasibility is expressed by the chance constraints. There are three main problems with this approach: 
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1) Understanding the data distribution function and create values from scenarios getting values by 

this distributions. 2) Chance constraints eliminate the convex feature of the main problem and add 

too much to the complexity of problem. 3) The dimensions of obtained optimization model 

increases too much with the rise of scenarios that causes major computing challenges (Dantzig, 

George B., 1955). Sustainable optimization approach is presented in recent years to deal with the 

uncertainty of the data. This approach seeks to related optimal solutions having a high probability. 

In other words, being a bit regardless of the objective function, feasibility of the objective function 

is guaranteed. In recent years, special attention is associated to the development of sustainable 

models (Pan et al., 2010). Integrated logistics optimization and production costs related to the 

supply chain is proposed based on the scenario where the demand parameter is considered uncertain. 

Robust optimization model formulation with expected costs, cost variability due to demand 

uncertainty and expected penalties are proposed in this paper. Vafaeinezhad et al. formulated robust 

optimization of a mathematical model of a dynamic cell formation problem integrating CF, 

production planning and worker assignment that implemented with uncertain scenario-based data 

(Vafaeinezhad et al., 2016). In their research, miscellaneous cost parameters of the cell formation 

and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming 

model is developed to formulate the related robust dynamic cell formation problem Zanjani et al. 

focused on a multi-period, multi-product sawmill production planning problem considering 

uncertain quality of raw materials (Zanjani et al., 2010). They proposed two robust optimization 

models with different variability measures and the tradeoff between plant stability as well as 

consumption of raw materials and expected backorder/inventory cost is proposed. Robust 

optimization model for the general cell formation problem considering machinery layout is 

presented. Intracellular transport costs of materials, cost of sending materials from parts to cells, 

cost of materials left from parts to cells, inventory costs and the part demand parameter under 

scenario are considered in (Paydar et al., 2014). The objective of this model including the total cost 

of the intracellular and intercellular transport, the investment cost of the machinery and inventory 

cost is minimized. A robust optimization model for manufacturing planning problem is considered 

in (Rahmani et al. 2013). In this model, the total cost parameters including setup costs, production 

cost, labor cost, inventory cost, labor transportation cost and nonlinear demand parameter under 

scenario is considered. In this model the relationship between response robustness and model 

robustness is analyzed. Aalaei and Davoudpour (Aalaei and Davoudpour, 2015) designed a 

bi-objective optimization model for a dynamic virtual cellular manufacturing system and supply 

chain design. Their presented model considers important manufacturing features thoroughly such as 

multi-plants and facility locations, multi-markets allocations, multi-period production planning 

under uncertain demand of products and capacities of resources. Also their model is converted into 

an equivalent auxiliary crisp model. Then, to solve the model, a revised multi-choice goal 

programming approach is applied to find a favorite solution. Sakhaeii and et al (2016) presented a 

robust optimization approach a new integrated mixed-integer linear programming (MILP) model to 

solve a dynamic cellular manufacturing system (DCMS) with unreliable machines and a production 

planning problem simultaneously. Their model is incorporated with dynamic cell formation, 

inter-cell layout, machine reliability, operator assignment, alternative process routings and 

production planning concepts. To cope with the parts processing time uncertainty, a robust 

optimization approach immunized against even worst-case is adopted. Deep and Singh (Deep and 

http://www.sciencedirect.com/science/article/pii/S095219761500086X
http://www.sciencedirect.com/science/article/pii/S095219761500086X
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Singh, 2015) designed a comprehensive mathematical model for designing robust machine cells for 

dynamic part production. The proposed model incorporates machine cell configuration design 

problem bridged with the machines allocation problem, the dynamic production problem and the 

part routing problem. For some applications of robust optimization can refer to (Saffarian et al., 

2051). In this study researcher proposed a bi-objective model for relief chain logistic in uncertainty 

condition including uncertainty in traveling time and also amount of demand in damaged areas. And 

other, (Shishebori and Ghaderi, 2015) considers the combined facility location/network design 

problem with regard to transportation link disruptions and develops a mixed integer linear 

programming formulation to model it. 

In this paper, a bi-objective optimization model is proposed in order to minimize the costs and 

maximize the labor utilization in dynamic cell formation problem while data uncertainty. In most of 

cell manufacturing system models input data are considered certain and deterministic. In order to 

model the dynamic cell formation problem, a bi-objective function is considered including 

minimization of cell formation costs and also minimizing the total man-hour deviations among cells 

in different periods. Therefore, the main objective of this paper is presenting a bi-objective model in 

order to reduce cell formation costs and the total man-hour deviations simultaneously. In this regard, 

the first objective of this paper is minimizing the cell dynamic formation problem costs including 

machinery and transportation cost, the variable machinery cost, the intracellular and intercellular 

transportation cost, the overtime cost, the cost of labor transfer between cells and the maintenance 

cost of inventory. The second objective is minimizing the total man-hour deviations among cells 

and actually maximizing labor utilization in dynamic cell formation problem. 

3. Model description 

A new model is proposed in this part in order to robust optimization considering the objectives of 

minimizing the costs primarily and then minimizing the total man-hour deviations among cells. 

3-1 Assumptions 

 Each type of part has several operations which should be processed based on the number 

of operations. 

 Operation time and the amount of manual labor required for all operations are clear 

according to one part on different machineries. 

 The demand for different parts in each period is uncertain and under scenario. 

 Time capacity of all machineries in normal time in the planning horizon is clear and 

consistent. 

 Time capacity of machinery in overtime period in the planning horizon is clear and 

consistent. 

 The purchase price of any machinery in the entire time period is known. 

 Fixed cost of any machinery is uncertain and under the scenario. Even when the machine 

is idle is assumed for each machine. 

 The variable cost of each type of machinery is uncertain and under the scenario. The 

variable cost covers the operations associated to workload assigned to the machine. 
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 The inventory and backorder between periods is allowed considering costs under scenario. 

 Overtime operations on all types of machinery are determined and constant and the 

maximum time to work on any machinery is determined and limited. 

 The maximum size of cell is known and constant in each period. 

 All machineries operate multitask. Therefore the switch cost for one or more operations 

should be considered. 

 Total number of human resources is fixed for all periods. Layoffs and hiring are not 

allowed. 

 Intracellular transportation cost for each machine between periods is uncertain and under 

scenario. 

 Batch sizes to move parts between and inside cells are fixed, but the size of intercellular 

and intracellular batches are different. Researchers assumed that carrying batches 

between cells are of similar cost and intercellular movement of batches cost the same. 

 Labor intracellular transportation cost for each period is uncertain and under scenario. 

 The cost of intercellular and intracellular in each batch is uncertain and under scenario. 

 The purchase cost of machinery is uncertain and under scenario. 

 The variable cost of processing on machinery in the whole time of each period is uncertain 

and under scenario. 

 The final income proceeded from sale of machinery is uncertain and under scenario. 

 The available time to manpower is constant. 

2-3 Mathematical model 

Sets & Notations 

C=1,2…C cell production set C 

m=1,2…M set of different types of machines M 

p=1,2…P set of different types of parts P 

h=1,2…H set of time periods H 

j=1,2…OP set of operations related to part p J 

s=1,2…S set of scenarios S 

Parameters 

the number of different types of machines 
 

the total number of human resources 
 

the maximum number of cells that could be formed 
 

the demand for part P in period h under scenario S 
 

1 if part p is produced in period h under scenario S, otherwise 0 
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the batch size for part P intercellular movement 
 

the batch size for part P intracellular movement 
 

the cost of intercellular movement in each batch under scenario s 
 

the cost of intracellular movement in each batch under scenario s 
 

the cost of purchasing a machine type m under scenario s 
 

the inventory cost for part P  maintenance at the end of  h period under scenario 

s  

Final income by selling machine type m under scenario s  
 

Overhead cost of machine type m in each period under s  scenario 
 

Constant cost of intracellular movement of labor in period h under scenario s 
 

variable cost of machine m for each unit of time in a certain time  under scenario 

s  

the transportation cost of machine m under scenario s 
 

time capacity of the machine m in period h in normal time 
 

time capacity of the machine m in period h in overtime  
 

variable processing time on machine m in each part of the whole time in period h 

under scenario s  

the maximum cell size 
 

the probability of each scenario 
 

available time for each labor 
 

the processing time needed to do operation j from part p on machine m 
 

the amount of manual work required to do operation j from part p on machine m  
 

1 if operation j from part p is done on machine m, otherwise 0 
 

the weight assigned to total costs response variance (risk aversion range of the first 

objective function)  
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the weight assigned to total man-hour variations response variance (risk aversion 

range of the second objective function)  

the penalty of deviation from uncertain parameters of the problem 

  

Decision variables  

the number of machine m assigned to cell c in period h 
 

the number of machine m added to cell c  in period h 
 

the number of machine m omitted from cell c  in period h 
 

the number of machine m purchased in period h 
 

the number of machine m sold in period h 
 

1 if operation j from part p on machine m in cell c in period h under scenario 

s is one, otherwise 0   

the number of labor assigned to cell c in period h 
 

rate of man-hour workload in cell c in period h under scenario s 
 

the average rate of man-hour workload in cell c in period h under scenario s 
 

additional time needed for machine m in cell c  in period h 
 

unsatisfied demand of part p in period h under scenario s  
 

the number of parts p manufactured in period h under scenario s 
 

the inventory rate of part p at the end of period h under scenario s 
 

Mathematical model 

 
 

(1) 

 

(2) 
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(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 

 
 

(11)  

 

(12)   

(13)  

 

(14)  

 

(15)   

(16)  
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(17)  

 

(18)  

 

(19)  

 

(20)  

 

(21)  

 

(22)   

(23)   

(24)   

(25)   

The first objective includes nine cost parameters. The first expression is the constant cost of the 

machine; second one is the difference between the machine purchase cost and revenue, the third one 

is the variable cost of the machine, the forth one is the cost of intercellular movement, the fifth one 

is the cost of intracellular movement, the sixth one is the overtime cost of the machine, the seventh 

one is the cost of labor transportation between cells, the eighth one is the cost of movement of the 

machine, and the ninth one is the cost of part inventory. In the second objective function the tenth 

expression is minimizing total man-hour deviations between cells in different periods and actually 

labor utilization. The first constraint proposed in inequality (11) guaranties that each operation is 

assigned to one machine and one cell, if assuming that the constraint is equal to 1, and then all 

products are manufactured in every period. The constraint (12) does not let x to be equal to 1 while 

the parameter corresponding to “a” is equal to 0. The constraint (13) guarantees that the capacity of 

the machine does not exceed and prevent the repeat of machines to meet the demand. The constraint 

(14) shows the number of machines purchased or sold in each period. The constraint (15) shows the 

balance of the machine. The number of different machine in current period in a specific cell is equal 

to the number of different machines in the previous period in addition to the number of machines 

added minus the number of machines removed from the cell. The constraint (16) guarantees that the 

sum of time assigned to each cell and each kind of machine can’t exceed capacity in overtime 

period. The constraint (17) guarantees the sum of labor assigned to each cell is equal to the total 

number of labor in each period. The constraint (18) specifies the upper limit for the size of the cell. 

The constraint (19) shows the man-hour workload in cell c in period h under scenario s. The 
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constraint (20) shows the average of man-hour workload in cell c in period h under scenario s. The 

constraint (21) guarantees that the work time of an operator does not exceed the available time that 

an operator is allowed to work. The constraint (22) shows the inventory balance between periods for 

each kind of parts which means that the level of inventory of each part at the end of period is equal 

to the level of inventory in the previous period in addition to the amount of production minus the 

demand for the part. The constraint (23) is the complementary of constraint (11). This constraint 

guarantees some of the demand of the part can be produced in each period if its corresponding 

operation in constraint (11) is satisfied. The constraints (24) to (26) specify type of decision 

variables in the model. 

4. Linearization of the proposed model 

The proposed model of the problem is mixed-integer nonlinear programming because the absolute 

exists in the fourth, fifth and seventh expression of the first objective function and the tenth 

expression in the second objective function and also multiplying the decision variable to the second, 

fourth and fifth expressions of the first objective function and the constraints number 13, 19, 20, 21. 

Linearization is performed in two steps. In the first step the absolute expression is linearized as 

follows. Non-negative variables of 𝑍1
𝑗𝑝𝑐ℎ𝑠 and 𝑍2

𝑗𝑝𝑐ℎ𝑠 are defined and the fourth expression of the 

objective function is rewritten as follows. 

(27) 

 

Then the following expressions are added to the constraints of the original model in order to 

complete the linearization: 

 

(28) 

The fifth expression of the first objective function is replaced as follows because of the existence of 

absolute values of 𝑌1
𝑗𝑝𝑚𝑐ℎ𝑠 and 𝑌2

𝑗𝑝𝑚𝑐ℎ𝑠 and the fifth expression of the first objective function is 

rewritten as follows: 

 

(29) 

Following items are added to the constraints of the original model in order to complete the 

linearization: 

(30)  

In the seventh expression of the first objective function two expressions as 𝑊1
𝑐ℎ and 𝑊2

𝑐ℎ are 

replaced to the absolute expression and the objective function is rewritten as follows: 
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(31) 

 
The following items are added to the constraints of the original model in order to complete the 

linearization: 

(32)  

In the tenth expression of the second objective function two expressions as G1
𝑐ℎs and G2

𝑐ℎs are 

replaced to the absolute expression and the objective function is rewritten as follows: 

(33) 

 
Following items are added to the constraints of the original model in order to complete the 

linearization: 

(34)  

As it is clear the objective function (27) is still nonlinear because of multiplying of two variables of 

𝑄𝑝ℎ (𝑍1
𝑗𝑝𝑐ℎ𝑠+𝑍2

𝑗𝑝𝑐ℎ𝑠). Therefore the expression 𝜑1
𝑗𝑝𝑐ℎ𝑠 is added to make it linear and the objective 

function is rewritten as follows: 

(35) 

 
Following items are added to the constraints of the original model in order to complete the 

linearization: 

(36)  

(37)  

Also, the objective function (5) is nonlinear because of multiplying of two variables. Therefore the 

expression 𝜑2
𝑗𝑝𝑐ℎ𝑠 is added to make it linear and the objective function is rewritten as follows: 

(38) 

 
Following items are added to the constraints of the original model in order to complete the 

linearization: 

(39) 

 

(40) 

 

In the third expression of the first objective function, the constraints (21), (20), (19), (13) are 

nonlinear because of multiplying of two variables as (𝑋𝑗𝑝𝑚𝑐ℎ𝑠×𝑄𝑝ℎ𝑠). Therefore the non- negative 
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expression 𝜑𝑗𝑝𝑚𝑐ℎ𝑠 is added to the objective function to make it linear. So the following items are 

added to the constraints: 

(40)  

(41)  

Finally linear model of the dynamic cell formation problem is written as follows: 

 

 

 

 

 

 

(42)  

 

(43)  

 

(44)  
 

(45)  

 
 

5. The framework of the robust optimization model 

The robust optimization acquires a set of solutions which are stable to fluctuations in parameters 

(input data) in the future. The robust optimization approach is proposed by Mulvey which decision 

maker can undertake incompatibility risk or the level of service function and propose a set of 

solutions that are less sensitive to data realization in a set of scenarios. Two types of robustness are 

proposed in this approach: solution robust (remains close to optimal for all scenarios) and model 

robust (remains almost feasible for all data scenarios). Optimized solution gained by robust 

optimization model is called robust. If input data changes and remains close to optimal, it will be 

called solution robust. A solution is robust when remains feasible despite small changes in input 
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data which is called model robust. Robust optimization includes two specific constraints: 1) 

Structural constraint 2) control constraint. The structural constraint is a concept of linear 

programming and input data are constant and determined and far from any disturbance, while the 

control constraints are formulated as assistant constraints that have been affected by uncertain data. 

The robust optimization framework is explained briefly. 

First, 𝑥𝜖𝑅𝑛
1 the design variable vector and y𝜖𝑅𝑛

1 the control variable vector are considered. The 

robust optimization model is as follows: 

 
 

1 
 

2 
 

3 
 

The constraint (1) is a structural constraint and the constant variables are determined and certain. 

The constraint (2) is the control constraint and their variables are uncertain and under scenario. The 

constraint (3) guarantees the non-negativity of the variables. 

The robust optimization problem formulation includes a set of scenarios such as τ={1,2,…S} . 

Under each scenario  , the coefficients of control constraints are equal to constant Ps 

probability of { 𝑑𝑠,𝐵𝑠,𝐶𝑠,𝑒𝑠} that Ps stands for probability of happening of each scenario and 

Σs𝑃𝑠=1. The optimum solution of this model is robust when solution remains close to optimal for 

each specific scenario of . This is called model robustness. 

There are conditions that solutions obtained by the model are not both feasible and optimum for all 

scenarios . The relation between robustness of answer and robustness of model is 

determined using the concept of multi-criteria decision-making. The robust optimization model is 

formulated to measure this equation. First, the control variable Ys for each scenario  and also 

the fault vector 𝛿𝑠 that measures admissible non feasibility in control constraints under scenario s 

are introduced. 

Because of uncertain parameters of the model it can be unjustified for some of the scenarios. 

Therefore 𝛿𝑠 show non feasibility of the model under scenario s. If the model is feasible, 𝛿𝑠 will be 

equal to 0; otherwise 𝛿𝑠 is a positive value according to constraint (57). In fact the robustness of the 

model measures unsatisfied demand for part production. The robust optimization model is 

formulated as follows based on mathematical programming problem (1)-(4): 
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5 
 

 
 

It should be noted that because robust optimization model considers multiple scenarios, the first 

expression from the primary objective function is a unique selection for the previous objectives of 

(47) and ℶ𝑠=𝑐𝑇𝑥+𝑑𝑇𝑦 is a random variable having the random value of ℶ𝑠=𝑐𝑇𝑥+𝑑𝑠𝑇𝑦𝑠 and 

probability of Ps under scenario . 

In random linear programming formulation the average value of is used and 

shows the first expression of solution robustness. The second expression in objective function as 

ρ(𝛿1,𝛿2,…,𝛿𝑠) is the feasible penalty function that penalties control constraints violations under 

some of the scenarios. The violation of control constraints means that non feasible solution is 

gained under some of the scenarios. Using the weight of ω the relation between solution robustness 

measured by the first expression σ(0) and model robustness measured by penalty function of ρ(0), it 

can be modeled under multi-criteria decision making. As an instance, ω(0) stands to minimize σ(0) 

and the solution is non-feasible. While if ω is extended enough, ρ(0) will dominate and lead to 

higher costs. Surveying the selection of the appropriate type of ρ (0) and σ (0) can be referred to [3]. 

The expression of σ (𝑥,1,…,𝑦𝑠) is proposed as follows by [3]: 

6 

 
In order to show robustness the variance of equation (5) shows that the decision has a high risk. In 

the other words a small variable in uncertain parameters can cause big changes in the value of 

measurement function. Λ is the assigned weigh to solution variance. As it can be seen, there is a 

quadratic expression in equation (6). In order to reduce computer operations an absolute expression 

is used instead of the quadratic expression as follows: 

7 

 
5.1 the suggested robust optimization model 

In this paper, the overhead cost of the machine, the purchase cost of the machine, the revenue 

gained by machine sale, the variable cost of the machine, the cost of intercellular movement in each 

batch, the cost of intracellular movement in each batch, the cost of overtime of the machine, the cost 

of labor transportation between cells, the cost of machine movement, the cost of part inventory and 

the part demand parameter are considered uncertain and under scenario. The explained robustness 

model above for this dynamic cell formation problem is as follows: 



Robust Optimization Approach for Design for … 

  

Int J Supply Oper Manage (IJSOM), Vol.3, No.1 1159 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

Therefore the robust optimization model of dynamic cell formation problem is as follows: 

 

 

 

 

 
 

 
 

 Other Constraints 

The first and second expressions of the first objective function are the average and variance of total 

costs respectively. Actually, these two expressions measure the solution robustness. The third 

expression of the first objective function measures the robustness of the model considering 

non-feasibility of control constraint under scenario s.  The first and second expressions of the 

second objective function are the average and variance of total man-hour deviations respectively. 
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Actually, these two expressions measure the solution robustness. The third expression of the second 

objective function measures the robustness of the model considering non-feasibility of control 

constraint under scenario s. 

The first objective function is nonlinear because of absolute expression and the problem changes 

into linear programming with two new variables 𝑞1𝑠, 𝑝1𝑠. Following constraint is added to the 

original model: 

 

Also, the second objective function is nonlinear because of absolute expression and the problem 

changes into linear programming with two new variables 𝑞2 , 𝑝2𝑠 . Following constraint is added to 

the original model: 

 

Therefore the robust optimization of dynamic cell formation problem is written as follows: 

 

 

 

 

 
 

 
 

 Other constraints 

6. The suggested procedure to solve the model 

The robust optimization proposed in previous section is a multi-objective programming problem. 

First, the problem should be changed into an equal problem having an objective function. In this 

section, the problem can be replaced with an objective function in order to solve multi objective 

models using 𝐿𝑃−𝑚𝑒𝑡𝑟𝑖𝑐 method. Because these two objective functions are not scaled similarly, 

they should be normalized using the following relation that 𝑍*𝑖 is the optimum value for each 

objective function. Two objective functions with following equations are replaced and leads the 

problem to have one objective. In this paper, researchers assumed that two objective functions are 

named as 𝑍1 ، Z2. Based on 𝐿𝑃−𝑚𝑒𝑡𝑟𝑖𝑐 method the robust optimization model of dynamic cell 

formation for each of these two objective functions are solved separately. The formulation of 

objective function related to 𝐿𝑃−𝑚𝑒𝑡𝑟𝑖𝑐 model is as follows: 
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Where 0≤ α ≤1. Weight coefficients belong to parameters of the objective function in above 

equation. Using above equation, the problem changes to have one objective that can be solved 

easily. 

 

7. Numerical Example 

In order to solve dynamic cell production problem using robust optimization approach a numerical 

example is utilized. Following similar data in the literature (Vafaeinezhad et al. 2016). First, inputs 

and information of the problem enter the model and the problem is solved using software and then 

output results will be analyzed. This problem that is proposed in uncertain environment includes 5 

parts, 3 periods, and 3 cells. In each part the number of operations is assumed 3 which must be 

performed consecutively and in terms of processing time. Also, it is assumed that financial 

scenarios of the future would be appropriate for four probable scenarios as excellent, good, fair and 

poor respectively with 45%, 25%, 20% and 15% probabilities respectively. In this example 

manufacturing costs are selected from uniform random sets and some of the other parameters are 

according to the following table. 

Table 1. Time capacity of machine type m in period h in normal time and overtime 

machine Normal time overtime 

M1 500 200 

M2 500 200 

M3 500 200 

M4 500 200 

M5 500 200 

 

 

Table 2. The processing time needed to perform operation j from part p on machine type m 

 

 

 

 

 

 

P5 P4 P3 P2 P1  

J3 J2 J1 J3 J2 J1 J3 J2 J1 J3 J2 J1 J3 J2 J1 

 

0 0 0 0 83 0 0 0 0 39 0 176 0 0 0 M1 

0 0 0 74 0 0 33 0 99 0 0 0 0 0 0 M2 

0 0 0 0 0 45 0 0 0 0 0 0 0 93 73 M3 

0 26 0 0 0 0 0 0 0 0 81 0 46 0 0 M4 

75 0 12 0 0 0 0 48 0 0 0 0 0 0 0 M5 
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Table 3. The manual work time needed to perform operation j from part p on machine type m 

 P1 P2 P3 P4 P5 

 

J1 J2 J3 J1 J2 J3 J1 J2 J3 J1 J1 J3 J1 J2 J3 

M1 0 0 0 176 0 39 0 0 0 0 0 0 0 0 0 

M2 0 0 0 0 0 0 99 0 33 0 0 74 0 0 0 

M3 73 93 0 0 0 0 0 0 0 45 45 0 0 0 0 

M4 0 0 46 0 81 0 0 0 0 0 0 0 0 26 0 

M5 0 0 0 0 0 0 0 48 0 0 0 0 12 0 75 

Because of the importance of two objective functions the total costs and total man-hour deviations 

between cells three models are proposed simultaneously to perform sensitivity analysis: 

1- The Z1 model: includes total costs of manufacturing system. 

2- The Z2 model: includes total man-hour deviations between cells in different periods and 

under different scenarios considering related constraints. 

3- The Z3 model: the 𝐿𝑃_𝑚𝑒𝑡𝑟𝑖𝑐 a combination of Z1 and Z2 model considering related 

constraints. 

Therefore a series of multi-objective solutions are purchased for the model considering different 

values of α. 

After solving the model using the software, the following results are gained: 

 

Table 4. Unsatisfied demand of the parts in three periods 

     senario  

0 0 0 17.391 0 Boom 

 
0 0 0 0 0 Good 

0 0 0 0 0 Fair 

0 0 0 0 0 poor 

0 0 0 117.391 75.301 Boom 

 
0 0 0 0 0 Good 

0 0 0 0 0 Fair 

0 0 0 0 0 poor 

0 0 0 0 0 Boom 

 
0 0 0 0 0 Good 

0 0 0 0 0 Fair 

0 0 0 0 0 poor 
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Table 5. Analysis of the components of the objective function in different scenarios in three periods 

Overhead  

cost 

Inventory 

cost 

Intra cell 

movement 

Inter cell 

movement 

Purchasing 

machine cost 

Machine 

variable 

cost 

Machine 

constant 

cost 

Workload 

imbalanced 
Total Cost  

28813.413 0 1862.174 12571.792 100000 87218 30000 687.879 275040.319 Boom 

25826.087 388.506 1689.962 4422.727 88000 28888.091 27000 244.109 189211.564 Good 

22807.261 634.94 1226.513 3313.027 81000 25414.862 24300 370.321 179160.169 Fair 

19829.935 1569.697 1250 1266.667 74000 9528 22000 111 134714.601 poor 

Figure 1 shows the cell configuration in the first period for the main model of dynamic cell 

formation problem. In this figure three cells are formed for each period. The parts, the machine, the 

operation assignment of the part and machine allocation are also shown in following figure. For 

sample 2, machine type 3 is allocated to cell one in period one. The cell is shown in a rectangular 

shape and the numbers inside show the operations of the parts. Part 1 in period one performs 

operation 1 on machine 3 in cell 1 and with an intercellular movement performs operation 2 in cell 

3 on machine 3, then with an intercellular movement performs operation 3 in cell 1 on machine 4. 

Part 2 performs operation 1 in cell 1 on machine 1 and with an intercellular movement performs 

operation 2 in cell 2 on machine 4 then with an intercellular movement performs operation 3 in cell 

3 on machine 1. Part 4 performs operation 1 in cell 3 on machine 3 and with an intercellular 

movement performs operation 2 in cell 2 on machine 1 then with an intercellular movement 

performs operation 3 on machine 2. Therefore in order to process parts in period 1 six intracellular 

movements are done. 

 

Figure 1. Cell configuration in the original model in period one under an excellent scenario 

 

Figure 2 shows the cell configuration in the first period for robust optimization of dynamic cell 

formation problem model. In period 1, one type 3 machine and one type 4 machine in cell 1, one 

type 1 machine and one type 3 machine in cell 2 and one type 1 machine and  two type 1 machine 

and two type 1 machine and one type 4 machine and one type 2 machine are assigned to cell 3. 

Actually this is less than the number of machines in the original model. Part 4 performs operation 1 

in cell 1 on machine 3 and with an intercellular movement performs operation 2 in cell 3 on 

machine 1 then performs operation 3 in cell 3 on machine 2. Part 2 performs operation 1 in cell 2 on 

machine 1 and with an intercellular movement performs operation 2 in cell 1 on machine 4 then 

with an intracellular movements performs operation 3 in cell 2 on machine 3. Part 1 performs 

operation 1 in cell 3 on machine 3 and with an intercellular movement performs operation 2 in cell 
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2 on machine 3 then with another intracellular movement performs operation 3 in cell 3 on machine 

4. Actually cell configuration in robust model in period 1 has less intracellular movements and 

machines compared to the original model. Therefore the cost of movement of the machines and 

constant cost of the machine and also the cost of intracellular and intercellular movements are 

reduced. 

 

Figure 2. Cell configuration in the robust optimized model in period one under an excellent scenario 

In order to show the robustness of dynamic cell formation problem by MIP model, expected value 

of uncertain parameters in the original uncertain linear integer programming model and the certain 

values of parameters, are called the average of the original model and compared to robust 

optimization model. As mentioned in previous sections, robust optimization obtains solution 

robustness against uncertain parameters fluctuations in the future. Some of the parameters are 

uncertain at the beginning of the planning horizon and only at the time of implementation, the 

actual values of uncertain parameters will be specified. In this problem considered 10 random 

samples of uncertain parameters and the sum of the first objective function (total cost of cell 

formation) and the second objective function (sum of the man-hour deviations in the cell) is shown 

as a total objective function. The total objective function of each sample for dynamic cell formation 

problem is compared to robust and original models. Table 5 shows the value of total objective 

function for scenarios with the probabilities of 45%, 25%, 20% and 15%. 

 

Table 6. The total value of the objective function obtained from the robust model and the original model considering 

scenarios mentioned in the problem 

01 9 8 7 6 5 4 3 2 0 instances 

309443 279743.5 308646.9 298255.4 301591.6 271391.6 285993.3 294127.3 286941.8 257361.8 
Robust 

Model 

434360.9 406668.8 439419.8 371037.8 432788.6 410668.2 421225.5 389787.9 394204.2 316642.7 
Main 

Model 

8. Conclusion 

Problems in dynamic cellular production systems vary greatly and many tools have been used to 

solve them. Literature and history of the dynamic cell formation problem shows that so far, solving 

the dynamic cell formation problem is not considered regarding labor utilization uncertainly. One of 

the main assumptions in optimization model in mentioned researches is considering the resources 

and their corresponding costs certain. While many of these parameter values in real conditions is 
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uncertain and instead of an accurate value, they allocate a range of values to themselves. So, it is 

possible for the optimized solution of the models to be non-feasible because of uncertainty of data. 

On this paper robust optimization of a bi-objective mathematical model in a dynamic cell formation 

problem considering labor utilization with uncertain data is carried out. Some of the uncertain costs 

of cell formation model are as follows: The cost of purchasing machinery, costs of movements, 

variable costs of the machine, the cost of the intracellular and intercellular movements, the cost of 

overtime work, the cost of labor transportation between cells and the maintenance inventory cost of 

parts. Robust optimization is a model proposed to deal with data uncertainty in recent years. This 

approach seeks for close to optimal solutions having a high probability. In other words, with a bit 

ignorance of the objective function, it guarantees the feasibility of the gained solution. This model 

was solved considering robust optimization approach. The robust optimization approach reduces the 

effect of uncertain parameters fluctuations under specific scenarios. In this paper, the cell formation 

cost parameter and part demand fluctuations are considered uncertain in each period. This problem 

was formulated as the bi-objective mixed integer non-linear programming primarily and then 

changed into a linear model. This robust optimization bi-objective model is solved by LP method as 

a mono-objective model. The computational experiments obtained from a set of used data in 

(Vafaeinezhad et al. 2016) from a set of virtual data for a factory show that the proposed robust 

model is more practical for handling uncertain parameters in the production environments. The 

tradeoff between optimality and infeasibility is used for obtaining robust solution based on the 

opinion of decision-makers. The results show the robustness and effectiveness of the model in 

real-word practical production planning problem. Also, the results obtained by the robust MIP 

model (Requires less execution time ) indicate the advantages of robust optimization in generating 

more robust production plans over the considering expected value of uncertain parameters in 

deterministic programming model. 
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